JPH0624989B2 - Method for manufacturing optical glass element and manufacturing apparatus used for the method - Google Patents
Method for manufacturing optical glass element and manufacturing apparatus used for the methodInfo
- Publication number
- JPH0624989B2 JPH0624989B2 JP1080371A JP8037189A JPH0624989B2 JP H0624989 B2 JPH0624989 B2 JP H0624989B2 JP 1080371 A JP1080371 A JP 1080371A JP 8037189 A JP8037189 A JP 8037189A JP H0624989 B2 JPH0624989 B2 JP H0624989B2
- Authority
- JP
- Japan
- Prior art keywords
- processing jig
- optical glass
- heat processing
- optical
- glass element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、レンズやプリズム等の高精度な光学ガラス素
子および前記光学ガラス素子のリヒートプレス成形用素
材の光学ガラス成形体等の光学ガラス素子の製造方法お
よびその製造方法に用いる製造装置に関する。Description: TECHNICAL FIELD The present invention relates to the production of highly accurate optical glass elements such as lenses and prisms, and optical glass elements such as an optical glass molded body of a material for reheat press molding of the optical glass element. The present invention relates to a method and a manufacturing apparatus used for the manufacturing method.
従来の技術 近年、光学ガラスレンズは光学機器のレンズ構成の簡略
化とレンズ部分の軽量化の両方を同時に達成しうる非球
面化の方向にある。この非球面レンズの製造にあたって
は、従来の光学ガラスの製造方法である研磨法では、加
工および量産化が困難であり、金型を用いた成形法が有
望視されている。2. Description of the Related Art In recent years, optical glass lenses are in the direction of aspherical surface that can achieve both simplification of the lens structure of optical equipment and weight reduction of the lens portion at the same time. In manufacturing this aspherical lens, it is difficult to process and mass-produce it by a conventional polishing method which is a manufacturing method of optical glass, and a molding method using a mold is considered to be promising.
この金型を用いた成形法というのは、予め所望の面品質
および面精度に仕上げた金型上に水酸化アルミニウム、
炭酸マグネシウム、カーボン等の離型剤を塗布あるいは
被覆した状態で、光学ガラスの塊状物を加熱成形する
か、あるいは溶融状態の光学ガラスの塊状物の加熱成形
を行う方法である(例えば、特公昭54−60312号
公報)。The molding method using this mold is that aluminum hydroxide is applied on the mold that has been finished to the desired surface quality and surface accuracy in advance,
This is a method in which a lump of optical glass is heat-molded or a lump of optical glass in a molten state is heat-molded in a state where a release agent such as magnesium carbonate or carbon is applied or covered (for example, Japanese Patent Publication No. 54-60312).
発明が解決しようとする課題 非球面レンズ,プリズム等の光学ガラス素子の場合、欠
陥あるいは離型剤の付着のない表面,面粗度、および面
精度であることが要求されるため、光学ガラス素子およ
び前記光学ガラス素子のリヒートプレス成形用素材の光
学ガラス成形体は非常に高価なものになっていた。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the case of an optical glass element such as an aspherical lens or a prism, it is required to have a surface free from defects or a release agent, surface roughness, and surface accuracy. Also, the optical glass molded body of the reheat press molding material for the optical glass element has become very expensive.
すなわち光学ガラス成形体の表面に欠陥がない状態(例
えば表面粗さRMSで0.005ミクロン以下の鏡面状
態)にするために、研磨またはエッチング処理を施す必
要があり光学ガラス成形体が高価なものになっており、
低コストで高精度な光学ガラス成形体が製造できる方法
の開発が強く望まれていた。That is, it is necessary to perform polishing or etching treatment in order to make the surface of the optical glass molded body have no defects (for example, a mirror surface state with a surface roughness RMS of 0.005 micron or less), and the optical glass molded body is expensive. Has become
There has been a strong demand for development of a method capable of producing a highly accurate optical glass molded body at low cost.
課題を解決するための手段 本発明は前記課題を解決するために、非酸化性雰囲気中
で、溶融ガラスを第一の熱加工治具で受ける工程、第一
の熱加工治具を反転させることにより溶融ガラスを第二
の熱加工治具に反転させて置換する工程、第二の熱加工
治具で熱変形により光学ガラス成形体を作製する工程、
光学ガラス成形体をプレス成形用金型で加熱加圧成形す
る工程を含む光学ガラス素子の製造方法並びに該方法に
用いるノズルから流出した溶融ガラスを受ける第一の熱
加工治具を反転させることにより、熱変形させるための
第二の熱加工治具に溶融ガラスを反転した状態で置換す
る手段を備えた光学ガラス素子の製造装置を提供するも
のである。Means for Solving the Problems In order to solve the above problems, the present invention comprises a step of receiving molten glass with a first heat processing jig in a non-oxidizing atmosphere, and inverting the first heat processing jig. A step of inverting and replacing the molten glass with a second heat processing jig, a step of producing an optical glass molded body by thermal deformation with the second heat processing jig,
A method for manufacturing an optical glass element including a step of heating and pressing an optical glass molded body with a press molding die, and by reversing a first heat processing jig that receives molten glass flowing out from a nozzle used in the method. Provided is an optical glass element manufacturing apparatus provided with means for replacing a molten glass in an inverted state with a second heat processing jig for thermal deformation.
作用 高温の溶融ガラスは化学的に極めて活性な状態にあるた
め、熱加工治具に非常に大きなダメージを与え、光学ガ
ラスと反応あるいは融着した。このことを防ぐために熱
加工治具を加熱せずに使用することは有効であるが、熱
加工治具と接した光学ガラス面には熱収縮に起因するし
わ状の大きな欠陥が発生する。Action Since high-temperature molten glass is in a chemically extremely active state, it caused a great deal of damage to the heat processing jig and reacted or fused with the optical glass. In order to prevent this, it is effective to use the heat processing jig without heating it, but large wrinkle-shaped defects due to thermal contraction occur on the optical glass surface in contact with the heat processing jig.
熱加工治具と接した光学ガラス面のしわ状の欠陥を取り
除くために、溶融ガラスを比較的低温の第一の熱加工治
具で受けた後、第一の熱加工治具を反転させることによ
り溶融ガラスを第二の熱加工治具に反転した状態で置換
し、第二の熱加工治具で光学ガラスのしわ状の面を上に
して熱変形を行う。さらにこの光学ガラス成形体をプレ
ス成形用金型で加熱加圧成形することにより、表面に欠
陥のない光学ガラス素子を製造することができる。In order to remove the wrinkle-like defects on the surface of the optical glass in contact with the heat processing jig, the molten glass is received by the first heat processing jig at a relatively low temperature and then the first heat processing jig is inverted. The molten glass is replaced by the second thermal processing jig in the inverted state, and thermal deformation is performed by the second thermal processing jig with the wrinkled surface of the optical glass facing upward. Furthermore, the optical glass element having no surface defects can be manufactured by subjecting this optical glass molded article to heat and pressure molding with a press molding die.
溶融ガラスを直接受ける第一の熱加工治具は、溶融ガラ
スと濡れ性が悪く、離型性が優れている材料、例えばカ
ーボン、ボロンナイトライド、窒化アルミ、窒化クロ
ム、ステンレス鋼等が適している。また、第二の熱加工
治具及びプレス成形用金型に被覆する葉巻は、非酸化性
雰囲気中光学ガラスと反応あるいは融着しない貴金属、
タングステン、タンタル、レニウム、ハフニウムの単体
あるいはそれらの合金であることが望ましい。For the first heat processing jig that directly receives the molten glass, a material having poor wettability with the molten glass and excellent releasability, such as carbon, boron nitride, aluminum nitride, chromium nitride, and stainless steel is suitable. There is. Further, the cigar covering the second heat processing jig and the press molding die is a noble metal that does not react with or fuse with the optical glass in a non-oxidizing atmosphere,
Desirably, it is a simple substance of tungsten, tantalum, rhenium, or hafnium or an alloy thereof.
本発明において、光学ガラスとこれらの薄膜とが反応あ
るいは融着しない非酸化性雰囲気は、窒素、アルゴン、
ヘリウム等の不活性ガス、およびこれらの不活性ガスに
水素、あるいは一酸化炭素、二酸化炭素の炭素酸化物、
メタン、エタン、エチレン、トルエン等の炭化水素類、
トリクロロエチレン、トリクロルトリフルオルエタン等
のハロゲン化炭化水素類、エチレングリコール、グリセ
リン等のアルコール類、F−113,F−11等のフル
オロカーボン類を適宜混合したものである。In the present invention, the non-oxidizing atmosphere in which the optical glass and these thin films do not react or fuse with each other is nitrogen, argon,
Inert gas such as helium, and hydrogen, carbon monoxide, carbon dioxide of carbon dioxide,
Hydrocarbons such as methane, ethane, ethylene, toluene,
It is a mixture of halogenated hydrocarbons such as trichloroethylene and trichlorotrifluoroethane, alcohols such as ethylene glycol and glycerin, and fluorocarbons such as F-113 and F-11.
これらの雰囲気は、光学ガラス組成、熱加工治具に被覆
する薄膜粗成、熱変形の温度と時間、プレス成形の温度
と時間、あるいは光学ガラス成形体の形状等の条件によ
って適宜選択する。These atmospheres are appropriately selected according to the conditions such as the optical glass composition, the thin film roughening covering the heat processing jig, the temperature and time of thermal deformation, the temperature and time of press molding, the shape of the optical glass molded body, and the like.
実施例 以下本発明の一実施例について、図面を用いて詳細に説
明する。Embodiment One embodiment of the present invention will be described in detail below with reference to the drawings.
実施例1 第1図は本発明に用いた第一の熱加工治具、第二の熱加
工治具及びプレス成形用金型の断面図である。第一の熱
加工治具としてカーボンを使用し、曲率半径が15mmの
凹形に加工した。第二の熱加工治具の母材として超硬合
金(WC−5TiC−8Co)を用いて曲率半径が15
mmの凹形の光学面1を形成した。この光学面1をさらに
超微細なダイヤモンド粉末を用いてラッピングし、約1
時間で表面の表面粗さ(RMS)が約30Åの鏡面にし
た。鏡面となった熱加工治具面に、スパッタ法で白金−
イリジウム−オスミウム合金(Pt−Ir−Os)の薄
膜2を被覆した。第二の熱加工治具と同様に母材として
超硬合金(WC−5TiC−8Co)を用いて曲率半径
が20mmの凹形の光学面1を形成し、スパッタ法で白金
−イリジウム−オスミウム合金(Pt−Ir−Os)の
薄膜2を被覆し、プレス成形用金型とした。Example 1 FIG. 1 is a sectional view of a first heat processing jig, a second heat processing jig and a press molding die used in the present invention. Carbon was used as the first heat processing jig and processed into a concave shape with a radius of curvature of 15 mm. Cemented carbide (WC-5TiC-8Co) was used as the base material of the second heat processing jig, and the radius of curvature was 15
A concave optical surface 1 of mm was formed. The optical surface 1 was lapped with ultrafine diamond powder to obtain about 1
The surface had a surface roughness (RMS) of about 30Å in time. Platinum was sputtered on the mirror surface of the heat processing jig.
A thin film 2 of an iridium-osmium alloy (Pt-Ir-Os) was coated. Similar to the second heat processing jig, a cemented carbide (WC-5TiC-8Co) is used as a base material to form a concave optical surface 1 having a radius of curvature of 20 mm, and a platinum-iridium-osmium alloy is formed by a sputtering method. A thin film 2 of (Pt-Ir-Os) was coated to obtain a press molding die.
溶融ガラス14は、シリカ(SiO2)30重量パーセ
ント、酸化バリウム(BaO)50重量パーセント、ホ
ウ酸(B2O3)15重量パーセント、残部が微量成分
からなるホウケイ酸バリウムガラスを用いた。このガラ
スを1200℃で溶融したあと、800℃に保持したノ
ズル12から約3グラムの溶融ガラス14を窒素ガス2
0リッター/分、水素ガス2リッター/分の割合で混合
した雰囲気の成形機内に保持した第一の熱加工治具24
に滴下した。第一の熱加工治具24は予め200℃に加
熱しておき、滴下後直ちにアーム25によって第一の熱
加工治具24を反転させ、第二の熱加工治具16に第2
図のように溶融ガラス14を載せた。第二の熱加工治具
16で360℃、10分間熱変形させたあと、プレス成
形用金型20でプレス整形した。プレス成形条件は金型
温度560℃、プレス圧力30kg/cm2、プレス時間2
分であった。その後300℃まで徐冷し、取り出し口2
3から光学ガラス素子22を取り出した。As the molten glass 14, 30% by weight of silica (SiO 2 ), 50% by weight of barium oxide (BaO), 15% by weight of boric acid (B 2 O 3 ), and barium borosilicate glass having the balance of trace components were used. After melting this glass at 1200 ° C., about 3 g of molten glass 14 was passed through the nozzle 12 kept at 800 ° C. and nitrogen gas 2
First heat processing jig 24 held in a molding machine in an atmosphere mixed with 0 liter / min and hydrogen gas 2 liter / min.
Was added dropwise. The first heat processing jig 24 is heated to 200 ° C. in advance, the first heat processing jig 24 is inverted by the arm 25 immediately after dropping, and the second heat processing jig 16 is moved to the second heat processing jig 16.
Molten glass 14 was placed as shown. After being thermally deformed by the second heat processing jig 16 at 360 ° C. for 10 minutes, it was press shaped by the press molding die 20. Press molding conditions are mold temperature 560 ° C., press pressure 30 kg / cm 2 , press time 2
It was a minute. After that, slowly cool to 300 ° C, and take out port 2
The optical glass element 22 was taken out from No. 3.
このような工程によって作製した光学ガラス素子22に
おいて、プレス成形面の表面粗さ(RMS)は約25Å
の光学的鏡面であり、気泡,傷,あるいは剥離跡といっ
た欠陥は認められず、面精度もニュートンリング2本以
内、アス5分の1本以内であり、その光学性能は極めて
優れていた。In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press-molded surface is about 25Å
No optical defects such as bubbles, scratches, or traces of peeling were observed, and the surface accuracy was within 2 Newton rings and within 1/5 ass, and the optical performance was extremely excellent.
実施例2 第一の熱加工治具としてボロンナイトライドを使用し、
曲率半径が45mmの凹形に加工した。第二の熱加工治具
の母材としてオーステナイト鋼(SUS316)を用い
て曲率半径が45mmの凹形の光学面1を形成した。この
光学面1をさらに超微細なダイヤモンド粉末を用いてラ
ッピングし、約1時間で表面の表面粗さ(RMS)が約
30Åの鏡面にした。鏡面となった熱加工治具表面に、
スパッタ法で白金−イリジウム−オスミウム合金(Pt
−Ir−Os)の薄膜2を被覆した。第二の熱加工治具
と同様に母材としてオーステナイト鋼(SUS316)
を用いて曲率半径が150mmの凹形の光学面1を形成
し、スパッタ法でロジウム−金−タングステン合金(R
h−Au−W)の被膜2を被覆し、プレス成形用金型と
した。Example 2 Using boron nitride as the first thermal processing jig,
It was processed into a concave shape with a radius of curvature of 45 mm. A concave optical surface 1 having a radius of curvature of 45 mm was formed using austenitic steel (SUS316) as a base material of the second heat processing jig. The optical surface 1 was further lapped with ultrafine diamond powder to make it a mirror surface having a surface roughness (RMS) of about 30Å in about 1 hour. On the surface of the heat processing jig that became a mirror surface,
Platinum-iridium-osmium alloy (Pt
-Ir-Os) thin film 2 was coated. Austenitic steel (SUS316) as a base material similar to the second heat processing jig
Is used to form a concave optical surface 1 having a radius of curvature of 150 mm, and a rhodium-gold-tungsten alloy (R
h-Au-W) was coated to form a die for press molding.
溶融ガラス14は、ジルコニア(ZrO2)8重量パー
セント、酸化ランタン(La2O3)30重量パーセン
ト、ホウ酸(B2O3)42重量パーセント、酸化カルシ
ウム(CaO)10重量パーセント、残部が微量成分から
なるランタン系ガラスを用いた。このガラスを1400
℃で溶融したあと、950℃に保持したノズル12から
約3グラムの溶融ガラス14を窒素ガス20リッター/
分、トリクロルトリフルオルエタン(C2Cl3F3)ガ
ス1リッター/分の割合で混合したハロゲン化炭化水素
雰囲気の成形機内に保持した第一の熱加工治具24に滴
下した。第一の熱加工治具24は予め400℃に加熱し
ておき、滴下後直ちにアーム25によって第一の熱加工
治具24を反転させ、第二の熱加工治具16に第2図の
ように溶融ガラス14を載せた。第二の熱加工治具16
で780℃、20分間熱変形させたあと、プレス成形用
金型20でプレス成形した。プレス成形条件は金型温度
680℃、プレス圧力30kg/cm2、プレス時間2分で
あった。その後400℃まで徐冷し、取り出し口23か
ら光学ガラス素子22を取り出した。Molten glass 14, zirconia (ZrO 2) 8% by weight, lanthanum oxide (La 2 O 3) 30% by weight, of boric acid (B 2 O 3) 42% by weight, calcium oxide (CaO) 10% by weight, the balance being trace amounts A lanthanum-based glass composed of the components was used. 1400 this glass
After melting at 950 ° C., about 3 grams of molten glass 14 was discharged from the nozzle 12 kept at 950 ° C. to 20 liters of nitrogen gas /
Min, was added dropwise to trichloro trifluoroethane (C 2 Cl 3 F 3) first heat working jig 24 holding the molding machine of the halogenated hydrocarbon atmosphere in a mixing ratio of 1 liter / minute gas. The first heat processing jig 24 is heated to 400 ° C. in advance, the first heat processing jig 24 is inverted by the arm 25 immediately after dropping, and the second heat processing jig 16 is placed on the second heat processing jig 16 as shown in FIG. The molten glass 14 was placed on. Second heat processing jig 16
After being thermally deformed at 780 ° C. for 20 minutes, it was press-molded with the press-molding die 20. The press molding conditions were a mold temperature of 680 ° C., a press pressure of 30 kg / cm 2 , and a press time of 2 minutes. After that, it was gradually cooled to 400 ° C., and the optical glass element 22 was taken out from the take-out port 23.
このような工程によって作製した光学ガラス素子22に
おいて、プレス成形面の表面粗さ(RMS)は約209
Åの光学的鏡面であり、気泡,傷,あるいは剥離跡とい
った欠陥は認められず、面精度もニュートンリング2本
以内、アス5分の1本以内であり、その光学性能は極め
て優れていた。In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press molding surface is about 209.
Since it is an optical mirror surface of Å, defects such as bubbles, scratches, and peeling marks were not recognized, and the surface accuracy was within 2 Newton rings and within 1/5 ass, and its optical performance was extremely excellent.
実施例3 第一の熱加工治具として窒化アルミを使用し、曲率半径
が200mmの凹形に加工した。第二の熱加工治具の母材
としてサーメット(TiC-10Mo-9Ni)を用いて曲率半径が2
00mmの凹形の光学面1を形成した。この光学面1をさ
らに超微細なダイヤモンド粉末を用いてラッピングし、
約1時間で表面の表面粗さ(RMS)が約30Åの鏡面
にした。鏡面となった熱加工治具表面に、スパッタ法で
白金−タンタル−レニウム合金(Pt−Ta−Re)の薄
膜2を被覆した。第二の熱加工治具と同様に母材として
サーメット(TiC-10Mo-9Ni)を用いて曲率半径
が500mmの凹形の光学面1を形成し、スパッタ法で白
金−タンタル−レニウム合金(Pt−Ta−Re)の薄
膜2を被覆し、プレス成形用金型とした。Example 3 Aluminum nitride was used as the first heat processing jig and processed into a concave shape with a radius of curvature of 200 mm. Cermet (TiC-10Mo-9Ni) was used as the base material of the second heat processing jig, and the radius of curvature was 2
A 00 mm concave optical surface 1 was formed. Lapping the optical surface 1 with ultrafine diamond powder,
The surface roughness (RMS) was about 30Å in about 1 hour. A thin film 2 of platinum-tantalum-rhenium alloy (Pt-Ta-Re) was coated on the mirror-finished surface of the heat-processing jig by a sputtering method. Similar to the second heat processing jig, cermet (TiC-10Mo-9Ni) was used as a base material to form a concave optical surface 1 having a radius of curvature of 500 mm, and a platinum-tantalum-rhenium alloy (Pt) was formed by a sputtering method. -Ta-Re) thin film 2 was coated to obtain a die for press molding.
溶融ガラス14は、シリカ(SiO2)65重量パーセ
ント、酸化カリウム(K2O)9重量パーセント、ホウ
酸(B2O3)10重量パーセント、酸化ナトリウム
(Na2O)10重量パーセント、残部が微量成分から
なるホウケイ酸ガラスを用いた。The molten glass 14 comprises 65 weight percent silica (SiO 2 ), 9 weight percent potassium oxide (K 2 O), 10 weight percent boric acid (B 2 O 3 ), 10 weight percent sodium oxide (Na 2 O), and the balance being Borosilicate glass consisting of trace components was used.
このガラスを1350℃で溶融したあと、920℃に保
持したノズル12から約3グラムの溶融ガラス14をア
ルゴンガス20リッター/分、エチレン(C2H4)1
リッター/分の割合で混合した炭化水素雰囲気の成形機
内に保持した第一の熱加工治具24に滴下した。第一の
熱加工治具24は予め550℃に加熱しておき、滴下後
直ちにアーム25によって第一の熱加工治具24を反転
させ、第二の熱加工治具16に第2図のように溶融ガラ
ス14を載せた。第二の熱加工治具16で780℃、5
分間熱変形させたあと、プレス成形用金型20でプレス
成形した。プレス成形条件は金型温度680℃、プレス
圧力80kg/cm2、プレス時間1分であった。その後3
80℃まで徐冷し、取り出し口26から光学ガラス素子
22を取り出した。After melting this glass at 1350 ° C., about 3 g of molten glass 14 was discharged from the nozzle 12 kept at 920 ° C., with an argon gas of 20 liter / min, ethylene (C 2 H 4 ) 1
It was dropped onto the first thermal processing jig 24 held in the molding machine in a hydrocarbon atmosphere mixed at a rate of liter / minute. The first heat processing jig 24 is heated to 550 ° C. in advance, and immediately after the dropping, the first heat processing jig 24 is inverted by the arm 25, and the second heat processing jig 16 is placed on the second heat processing jig 16 as shown in FIG. The molten glass 14 was placed on. Second heat processing jig 16 at 780 ° C., 5
After thermally deforming for a minute, it was press-molded with the press-molding die 20. The press molding conditions were a mold temperature of 680 ° C., a press pressure of 80 kg / cm 2 , and a press time of 1 minute. Then 3
After gradually cooling to 80 ° C., the optical glass element 22 was taken out from the take-out port 26.
このような工程によって作製した光学ガラス素子22に
おいて、プレス成形面の表面粗さ(RMS)は約20Å
の光学的鏡面であり、気泡,傷あるいは剥離跡といった
欠陥は認められず、面精度もニュートンリング2本以
内、アス5分の1本以内であり、その光学性能は極めて
優れていた。In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press-molded surface is about 20Å
No optical defects such as bubbles, scratches, or traces of peeling were observed, and the surface accuracy was within 2 Newton rings and within 1/5 ass, and the optical performance was extremely excellent.
実施例4 第一の熱加工治具としてマルテンサイト系ステンレス鋼
(SUS420)を使用し、曲率半径が45mmの凹形に
加工した。第二の熱加工治具の母材としてシリコンを用
いて曲率半径が55mmの凹形の光学面1を形成した。こ
の光学面1をさらに超微細なダイヤモンド粉末を用いて
ラッピングし、約1時間で表面の表面粗さ(RMS)が
約20Åの鏡面にした。鏡面となった熱加工治具表面
に、スパッタ法でロジウム−金−タングンステン合金
(Rh−Au−W)の薄膜2を被覆した。第二の熱加工
治具と同様に母材としてシリコンを用いて曲率半径が1
00mmの凹形の光学面1を形成し、スパッタ法でロジウ
ム−金−タングンステン合金(Rh−Au−W)の薄膜
2を被覆し、プレス成形用金型とした。Example 4 Martensitic stainless steel (SUS420) was used as the first heat processing jig and processed into a concave shape having a radius of curvature of 45 mm. A concave optical surface 1 having a radius of curvature of 55 mm was formed by using silicon as a base material of the second heat processing jig. The optical surface 1 was further lapped with ultrafine diamond powder to make a mirror surface having a surface roughness (RMS) of about 20Å in about 1 hour. The thin film 2 of rhodium-gold-Tungsten alloy (Rh-Au-W) was coated on the mirror surface of the heat-processed jig by a sputtering method. Similar to the second heat processing jig, silicon is used as the base material and the radius of curvature is 1
A 00 mm concave optical surface 1 was formed, and a thin film 2 of a rhodium-gold-Tungsten alloy (Rh-Au-W) was coated by a sputtering method to obtain a press molding die.
溶融ガラス14は、シリカ(SiO2)52重量パーセ
ント、酸化カリウム(K2O)6重量パーセント、酸化
鉛(PbO)35重量パーセント、酸化ナトリウム(N
a2O)5重量パーセント、残部が微量成分からなる重
フリントガラスを用いた。The molten glass 14 contains 52 weight percent silica (SiO 2 ), 6 weight percent potassium oxide (K 2 O), 35 weight percent lead oxide (PbO), and sodium oxide (N
a 2 O) 5% by weight, the balance being a heavy flint glass consisting of trace components.
このガラスを1250℃で溶融したあと、750℃に保
持したノズル12から約5グラムの溶融ガラス14のヘ
リウムガス20リッター/分、二酸化炭素ガス2リッタ
ー/分の割合で混合した雰囲気の成形機内に保持した第
一の熱加工治具24に滴下した。第一の熱加工治具24
は加熱せずにおき、滴下後直ちにアーム25によって第
一の熱加工治具24を反転させ、第二の熱加工治具16
に第2図のように溶融ガラス14を載せた。第二の熱加
工治具16で610℃、5分間熱変形させたあと、プレ
ス成形用金型20でプレス成形した。プレス成形条件は
金型温度550、プレス圧力80kg/cm2、プレス時間
1分であった。その後380℃まで徐冷し、取り出し口
26から光学ガラス素子22を取り出した。After melting this glass at 1250 ° C., from a nozzle 12 kept at 750 ° C., about 5 g of molten glass 14 was mixed in a molding machine in an atmosphere of 20 liter / min of helium gas and 2 liter / min of carbon dioxide gas. It was dropped on the held first heat processing jig 24. First heat processing jig 24
Is left unheated, the first heat processing jig 24 is inverted by the arm 25 immediately after dropping, and the second heat processing jig 16
The molten glass 14 was placed on the glass as shown in FIG. After being thermally deformed at 610 ° C. for 5 minutes by the second heat processing jig 16, it was press-molded by the press molding die 20. The press molding conditions were a mold temperature of 550, a press pressure of 80 kg / cm 2 , and a press time of 1 minute. After that, it was gradually cooled to 380 ° C., and the optical glass element 22 was taken out from the take-out port 26.
このような工程によって作製した光学ガラス素子22に
おいて、プレス成形面の表面粗さ(RMS)は約20Å
の光学的鏡面であり、気泡,傷,あるいは剥離跡といっ
た欠陥は認められず、面精度もニュートンリング2本以
内、アス5分の1本以内であり、その光学性能は極めて
優れていた。In the optical glass element 22 manufactured by such a process, the surface roughness (RMS) of the press-molded surface is about 20Å
No optical defects such as bubbles, scratches, or traces of peeling were observed, and the surface accuracy was within 2 Newton rings and within 1/5 ass, and the optical performance was extremely excellent.
なお本発明の光学ガラス素子の製造方法並びに該方法に
用いる製造装置は、非酸化性雰囲気中で、溶融ガラスを
第一の熱加工治具で受ける工程、第一の熱加工治具を反
転させることにより溶融ガラスを第二の熱加工治具に反
転させて置換する工程、第二の熱加工治具で熱変形によ
り光学ガラス成形体を作製する工程、光学ガラス成形体
をプレス成形用金型で加熱加圧成形する工程を含む光学
ガラス素子の製造方法並びに該方法に用いるノズルから
流出した溶融ガラスを受ける第一の熱加工治具を反転さ
せることにより、熱変形させるための第二の熱加工治具
に溶融ガラスを反転した状態で置換する手段を備えた光
学ガラス素子の製造装置であることを特徴とするもので
あり、成形の雰囲気、光学ガラス組成、熱加工治具に被
覆する薄膜組成、熱変形の温度と時間、あるいは光学ガ
ラス成形体の形状等の条件は本実施例に限定されるもの
ではない。The optical glass element manufacturing method of the present invention and the manufacturing apparatus used for the method include a step of receiving molten glass with a first thermal processing jig in a non-oxidizing atmosphere, and inverting the first thermal processing jig. By inverting the molten glass to the second heat processing jig to replace it, a step of producing an optical glass molded body by thermal deformation with the second heat processing jig, and a mold for press molding the optical glass molded body. A method for manufacturing an optical glass element including a step of heating and pressurizing at 1, and a second heat for thermally deforming by inverting the first heat processing jig that receives the molten glass flowing out from the nozzle used in the method. An apparatus for producing an optical glass element, which is provided with a means for displacing a molten glass in an inverted state in a processing jig, wherein a molding atmosphere, an optical glass composition, and a thin film for coating a thermal processing jig. composition, Temperature and time of the modification, or conditions such as the shape of the optical glass shaped material is not limited to this embodiment.
発明の効果 以上説明したように、本発明の光学ガラス素子の製造方
法並びに該方法に用いる製造装置は、溶融ガラスを比較
的低温の第一熱加工治具で受けた後、第一の熱加工治具
を反転させることにより溶融ガラスを第二の熱加工治具
に反転した状態で置換し、第二の熱加工治具で光学ガラ
スのしわ状の面を上にして熱変形を行う。さらにこの光
学ガラス成形体をプレス成形用金型で加熱加圧成形する
ことにより、表面に欠陥のない光学ガラス素子を製造す
ることができる。EFFECTS OF THE INVENTION As described above, the manufacturing method of the optical glass element of the present invention and the manufacturing apparatus used in the method are the same as the first thermal processing after receiving the molten glass by the first thermal processing jig at a relatively low temperature. By inverting the jig, the molten glass is replaced with the second heat processing jig in a reversed state, and the second heat processing jig performs thermal deformation with the wrinkled surface of the optical glass facing up. Furthermore, the optical glass element having no surface defects can be manufactured by subjecting this optical glass molded article to heat and pressure molding with a press molding die.
すなわち、本発明によって高精度な光学ガラス素子の大
量生産が可能になり、生産性の向上と製造コストの低減
に著しい効果がある。That is, the present invention enables mass production of highly accurate optical glass elements, and has a remarkable effect in improving productivity and reducing manufacturing cost.
第1図は第一の熱加工治具、第二の熱加工治具、プレス
成形用金型の断面図、第2図は光学ガラス素子の製造装
置を示す本発明実施例の断面図である。 1……光学面、2……薄膜、10……ガラス溶融炉、1
1……加熱ヒータ、12……ノズル、13……ノズル加
熱ヒータ、14……溶融ガラス、15……加熱ヒータ、
16……第二の熱加工治具、17……ガス入口、18…
…光学ガラス成形体、19……プレスシリンダ、20…
…プレス成形用金型、21……コンベア、22……光学
ガラス素子、23……取り出し口、24……第一の熱加
工治具、25……アーム。FIG. 1 is a sectional view of a first thermal processing jig, a second thermal processing jig, and a press molding die, and FIG. 2 is a sectional view of an embodiment of the present invention showing an optical glass element manufacturing apparatus. . 1 ... Optical surface, 2 ... Thin film, 10 ... Glass melting furnace, 1
1 ... Heating heater, 12 ... Nozzle, 13 ... Nozzle heating heater, 14 ... Molten glass, 15 ... Heating heater,
16 ... Second heat processing jig, 17 ... Gas inlet, 18 ...
… Optical glass molding, 19 …… Press cylinder, 20…
... press molding die, 21 ... conveyor, 22 ... optical glass element, 23 ... outlet, 24 ... first heat processing jig, 25 ... arm.
フロントページの続き (72)発明者 梅谷 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 川田 紀行 埼玉県大宮市東大宮5丁目19番地24号Front page continuation (72) Inventor Makoto Umeya 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Kiyuki Kawada 5-19, Higashi Omiya, Omiya City, Saitama Prefecture
Claims (8)
熱加工治具で受ける工程、第一の熱加工治具を反転させ
ることにより溶融ガラスを第二の熱加工治具に反転させ
て置換する工程、第二の熱加工治具で熱変形により光学
ガラス成形体を作製する工程、光学ガラス成形体をプレ
ス成形用金型で加熱加圧成形する工程とを有する光学ガ
ラス素子の製造方法。1. A step of receiving molten glass with a first heat processing jig in a non-oxidizing atmosphere, and reversing the first heat processing jig to reverse the molten glass to a second heat processing jig. Of the optical glass element, which has a step of performing the replacement, a step of producing an optical glass molded body by thermal deformation with a second thermal processing jig, and a step of heating and pressing the optical glass molded body with a press molding die. Production method.
悪い請求項(1)記載の光学ガラス素子の製造方法。2. The method for producing an optical glass element according to claim 1, wherein the first heat processing jig has poor wettability with the molten glass.
が、所望の形状および光学面に加工され、かつ化学的に
安定な薄膜で被覆された請求項(1)記載の光学ガラス素
子の製造方法。3. The optical glass according to claim 1, wherein the second heat processing jig and the press molding die are processed into a desired shape and optical surface and covered with a chemically stable thin film. Device manufacturing method.
レニウム、ハフニウムの単体あるいはそれらの合金であ
る請求項(3)に記載の光学ガラス素子の製造方法。4. The thin film is a noble metal, tungsten, tantalum,
4. The method for producing an optical glass element according to claim 3, which is a simple substance of rhenium or hafnium or an alloy thereof.
一の熱加工治具を反転させることにより、熱変形させる
ための第二の熱加工治具に溶融ガラスを反転した状態で
置換する手段を備えた光学ガラス素子の製造方法。5. A means for replacing the molten glass in the inverted state with a second thermal processing jig for thermal deformation by reversing the first thermal processing jig for receiving the molten glass flowing out from the nozzle. A method for manufacturing the provided optical glass element.
悪い請求項(5)記載の光学ガラス素子の製造装置。6. The optical glass element manufacturing apparatus according to claim 5, wherein the first heat processing jig has poor wettability with the molten glass.
学面に加工され、かつ化学的に安定な薄膜で被覆された
請求項(5)記載の光学ガラス素子の製造装置。7. The optical glass element manufacturing apparatus according to claim 5, wherein the second heat processing jig is processed into a desired shape and optical surface and is covered with a chemically stable thin film.
レニウム、ハフニウムの単体あるいはそれらの合金であ
る請求項(7)に記載の光学ガラス素子の製造方法。8. The thin film is a noble metal, tungsten, tantalum,
8. The method for producing an optical glass element according to claim 7, which is a simple substance of rhenium or hafnium or an alloy thereof.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1080371A JPH0624989B2 (en) | 1989-03-30 | 1989-03-30 | Method for manufacturing optical glass element and manufacturing apparatus used for the method |
EP90300031A EP0378292B1 (en) | 1989-01-13 | 1990-01-03 | Method of manufacturing glass optical element |
DE1990604103 DE69004103T2 (en) | 1989-01-13 | 1990-01-03 | Process for the production of an optical object made of glass. |
US07/866,265 US5171347A (en) | 1989-01-13 | 1992-04-10 | Method of manufacturing glass optical element |
US07/932,228 US5284501A (en) | 1989-01-13 | 1992-08-19 | Method of manufacturing glass optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1080371A JPH0624989B2 (en) | 1989-03-30 | 1989-03-30 | Method for manufacturing optical glass element and manufacturing apparatus used for the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02258640A JPH02258640A (en) | 1990-10-19 |
JPH0624989B2 true JPH0624989B2 (en) | 1994-04-06 |
Family
ID=13716417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1080371A Expired - Lifetime JPH0624989B2 (en) | 1989-01-13 | 1989-03-30 | Method for manufacturing optical glass element and manufacturing apparatus used for the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0624989B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5762673A (en) * | 1997-01-24 | 1998-06-09 | Hoya Precision Inc. | Method of manufacturing glass optical elements |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4910806A (en) * | 1972-05-31 | 1974-01-30 | ||
JPS5331487A (en) * | 1976-09-02 | 1978-03-24 | Dainippon Printing Co Ltd | Method for producing gas permeable packing material |
JPS6013981A (en) * | 1983-07-06 | 1985-01-24 | Mazda Motor Corp | Ignition device for engine |
JPS61132526A (en) * | 1984-11-29 | 1986-06-20 | Olympus Optical Co Ltd | Production of optical element |
JPS62132734A (en) * | 1985-12-05 | 1987-06-16 | Olympus Optical Co Ltd | Mold for forming optical element |
-
1989
- 1989-03-30 JP JP1080371A patent/JPH0624989B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4910806A (en) * | 1972-05-31 | 1974-01-30 | ||
JPS5331487A (en) * | 1976-09-02 | 1978-03-24 | Dainippon Printing Co Ltd | Method for producing gas permeable packing material |
JPS6013981A (en) * | 1983-07-06 | 1985-01-24 | Mazda Motor Corp | Ignition device for engine |
JPS61132526A (en) * | 1984-11-29 | 1986-06-20 | Olympus Optical Co Ltd | Production of optical element |
JPS62132734A (en) * | 1985-12-05 | 1987-06-16 | Olympus Optical Co Ltd | Mold for forming optical element |
Also Published As
Publication number | Publication date |
---|---|
JPH02258640A (en) | 1990-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5284501A (en) | Method of manufacturing glass optical element | |
US5120343A (en) | Apparatus for producing optical glass element | |
KR900000622B1 (en) | Method for forming of optical glass element | |
EP0378292B1 (en) | Method of manufacturing glass optical element | |
JPH0624989B2 (en) | Method for manufacturing optical glass element and manufacturing apparatus used for the method | |
JPS61183134A (en) | Die for press-forming optical glass element | |
JP2875621B2 (en) | Method for manufacturing optical glass molded body and method and apparatus for manufacturing optical glass element | |
JPH0645465B2 (en) | Method for manufacturing optical glass element | |
JPH0745328B2 (en) | Method and apparatus for manufacturing optical glass element | |
JPH0645464B2 (en) | Method for manufacturing optical glass element and manufacturing apparatus used for the method | |
JP3110501B2 (en) | Method and apparatus for manufacturing glass gob | |
JP3192274B2 (en) | Method for producing glass material for molding optical elements | |
JPH0696458B2 (en) | Optical glass molding and molding method thereof | |
JP2892217B2 (en) | Method and apparatus for manufacturing glass material | |
JPH0745327B2 (en) | Method for manufacturing optical glass element | |
JPH0489326A (en) | Optical glass formed body, its production and production apparatus | |
JP2790547B2 (en) | Glass material manufacturing method | |
JPH02225324A (en) | Production of optical glass element and apparatus therefor | |
JPH0717391B2 (en) | Optical glass element press molding method | |
JPH01111738A (en) | Molding die for molded glass | |
JP2003048723A (en) | Press forming method and press formed equipment | |
JPH02243522A (en) | Mold for forming optical element | |
JPH0352415B2 (en) | ||
JPH0248497B2 (en) | KOGAKUGARASUSOSHINOSEIKEIHOHO | |
JPS6217029A (en) | Production of optical glass element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |