JPH06249339A - Hst hydraulic traveling driving device - Google Patents

Hst hydraulic traveling driving device

Info

Publication number
JPH06249339A
JPH06249339A JP5033292A JP3329293A JPH06249339A JP H06249339 A JPH06249339 A JP H06249339A JP 5033292 A JP5033292 A JP 5033292A JP 3329293 A JP3329293 A JP 3329293A JP H06249339 A JPH06249339 A JP H06249339A
Authority
JP
Japan
Prior art keywords
pressure
valve
main
pipeline
pilot pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5033292A
Other languages
Japanese (ja)
Inventor
Hisao Okui
久雄 奥井
Koichiro Murakami
行一郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Uchida Oil Hydraulics Mfg Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Uchida Oil Hydraulics Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Uchida Oil Hydraulics Mfg Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP5033292A priority Critical patent/JPH06249339A/en
Publication of JPH06249339A publication Critical patent/JPH06249339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Gearings (AREA)

Abstract

PURPOSE:To carry out smooth inertial running by providing a logic valve, which is provided with a master valve opening/closing a by-pass pipeline on the basis of a difference between pressure of a pair of main pipelines and a pilot pressure and a pilot pressure controlling part, which selects one of the pressure between the pressure of a pair of a main pipeline as a pilot pressure of the master valve part, in a by-pass pipeline. CONSTITUTION:A directional control valve 121 of a logic valve 100 is switched to an F position and a pressure Pa of a main pipeline 3 is selected as a pilot pressure Pc of a master valve part 110. When an accelerator pedal is stepped down in this condition, a discharging amount of an oil pressure pump 2 is increased and the pressure Pa of the main pipeline 3 becomes higher than the pressure Pb of the main pipeline 4, so that the by-pass pipeline 20 is closed. Reversely, when the accelerator pedal is released, the pressure Pb becomes higher than the pressure Pa, so that a poppet 111 is moved so as to open the by-pass pipeline 20. In this way, discharged oil from an oil pressure motor 5 to the main pipeline 4 is returned to the main pipeline 3 via the by-pass pipeline 20, so that no containment pressure is generated on a discharging side of the oil pressure motor 5 and inertial running can be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばホイールローダ
などの作業車両に用いられるHST油圧走行駆動装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an HST hydraulic traveling drive system used in a work vehicle such as a wheel loader.

【0002】[0002]

【従来の技術】ホイールローダ等の作業車両の油圧走行
駆動装置として、例えば実開平3−12659号公報に
示すように、原動機に駆動される可変容量形油圧ポンプ
と、一対の主管路により前記油圧ポンプに閉回路接続さ
れた油圧モータとを備え、運転席のアクセルペダルの操
作により原動機の回転数を増減させて油圧ポンプの吐出
量を変化させ、このポンプ吐出量に応じて油圧モータの
回転数を変化させて車両の走行速度を変化させるHST
油圧走行駆動装置が知られている。上記公報に記載され
た装置では、一対の主管路を結ぶバイパス管路に、運転
席のスイッチで切換制御される開閉弁が設けられてい
る。この開閉弁を閉位置に切換えてバイパス管路を閉じ
た場合、アクセルペダルの緩め操作で油圧モータの吐出
側に閉じ込み圧が発生し、車両が減速する。開閉弁を開
位置に切換えてバイパス管路を開いた場合は、油圧モー
タの吐出油がバイパス管路を介して吸込側へ戻るため
に、アクセルペダルを緩め操作しても油圧モータの吐出
側に閉じ込み圧が発生せず、車両が慣性走行する。
2. Description of the Related Art As a hydraulic traveling drive system for a work vehicle such as a wheel loader, for example, as disclosed in Japanese Utility Model Laid-Open No. 3-12659, a variable displacement hydraulic pump driven by a prime mover and a pair of main pipes are used to control the hydraulic pressure. The pump is equipped with a hydraulic motor connected in a closed circuit, and the discharge rate of the hydraulic pump is changed by increasing or decreasing the rotation speed of the prime mover by operating the accelerator pedal in the driver's seat, and the rotation speed of the hydraulic motor is changed according to this pump discharge quantity. HST that changes the running speed of the vehicle by changing the
Hydraulic drive devices are known. In the device described in the above publication, an on-off valve that is switch-controlled by a switch in the driver's seat is provided in a bypass line connecting a pair of main pipes. When the opening / closing valve is switched to the closed position to close the bypass line, a closing pressure is generated on the discharge side of the hydraulic motor by loosening the accelerator pedal, and the vehicle is decelerated. When the on-off valve is switched to the open position and the bypass line is opened, the discharge oil of the hydraulic motor returns to the suction side through the bypass line, so even if the accelerator pedal is loosened, the discharge side of the hydraulic motor is not discharged. The vehicle runs inertially without generating the closing pressure.

【0003】ここで、慣性走行中にアクセルペダルを踏
込んだ場合、バイパス管路が開いたままでは油圧ポンプ
の吐出油がバイパス管路から油圧モータの吐出側へ抜け
てしまい油圧モータの回転数が上がらない。そこで、公
報記載の装置では、原動機に駆動されるチャージポンプ
の吐出圧を監視し、アクセルペダルが踏込まれてチャー
ジポンプ吐出圧が所定値を越えたとき、開閉弁を一旦閉
位置に戻してバイパス管路を閉塞している。
Here, when the accelerator pedal is depressed during inertial traveling, the discharge oil of the hydraulic pump escapes from the bypass conduit to the discharge side of the hydraulic motor if the bypass conduit is left open, and the rotational speed of the hydraulic motor. Does not rise. Therefore, in the device described in the publication, the discharge pressure of the charge pump driven by the prime mover is monitored, and when the accelerator pedal is depressed and the discharge pressure of the charge pump exceeds a predetermined value, the on-off valve is once returned to the closed position and bypassed. The pipeline is blocked.

【0004】[0004]

【発明が解決しようとする課題】しかし、チャージポン
プの吐出圧は、アクセルペダルの操作による原動機回転
数の変化のみならずチャージ配管系の負荷変動など種々
の要因で変化する。しかも、チャージポンプと油圧モー
タ駆動用ポンプとは容量が異なるため、アクセルペダル
の操作に対する圧力変化特性も相違する。このため、チ
ャージポンプの吐出圧の変化に応じてバイパス管路を開
閉したのでは、油圧モータ駆動用ポンプの吐出量の変化
とバイパス管路の開閉を同期させるのが難しく、円滑な
慣性走行を実現し難い。
However, the discharge pressure of the charge pump changes due to various factors such as a change in the rotational speed of the prime mover due to the operation of the accelerator pedal, as well as a load change in the charge piping system. Moreover, since the charge pump and the hydraulic motor driving pump have different capacities, the pressure change characteristics with respect to the operation of the accelerator pedal also differ. For this reason, if the bypass pipeline is opened / closed according to the change in the discharge pressure of the charge pump, it is difficult to synchronize the change in the discharge amount of the hydraulic motor drive pump with the opening / closing of the bypass pipeline, and smooth inertial running is ensured. It's hard to realize.

【0005】本発明の目的は、円滑な慣性走行を行ない
得るHST油圧走行駆動装置を提供することにある。
An object of the present invention is to provide an HST hydraulic traveling drive system capable of smooth inertia traveling.

【0006】[0006]

【課題を解決するための手段】一実施例である図1に対
応づけて本発明を説明すると、本発明は、原動機1に駆
動される可変容量形油圧ポンプ2と、一対の主管路3,
4により可変容量形油圧ポンプ2に閉回路接続され、こ
の可変容量形油圧ポンプ2からの吐出油により駆動され
る油圧モータ5とを備えてなるHST油圧走行駆動装置
に適用される。そして、上述した目的は、一対の主管路
3,4を結ぶバイパス管路20に、一対の主管路3,4
の圧力Pa,Pbとパイロット圧Pcとの差に基づいてバ
イパス管路20を開閉する親バルブ部110と、一対の
主管路3,4のいずれか一方の圧力を親バルブ部110
のパイロット圧Pcとして選択するパイロット圧制御部
120とを備えたロジック弁100を設けることにより
達成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 which is an embodiment. In the present invention, the variable displacement hydraulic pump 2 driven by a prime mover 1 and a pair of main pipelines 3, 3.
4 is applied to the variable displacement hydraulic pump 2 in a closed circuit, and is applied to an HST hydraulic traveling drive device including a hydraulic motor 5 driven by oil discharged from the variable displacement hydraulic pump 2. The above-described object is to provide the bypass conduit 20 connecting the pair of main conduits 3 and 4 with the pair of main conduits 3 and 4.
Of the parent valve portion 110 that opens and closes the bypass pipeline 20 based on the difference between the pressures Pa and Pb of the main pipelines and the pilot pressure Pc, and the parent valve portion 110 that controls either one of the pair of main pipelines 3 and 4.
It is achieved by providing a logic valve 100 having a pilot pressure control section 120 which is selected as the pilot pressure Pc.

【0007】[0007]

【作用】本発明のHST油圧走行駆動装置では、一対の
主管路3,4のいずれか一方をパイロット圧Pcとして
選択することにより、油圧モータ5の吐出側圧力と吸込
側圧力の大小関係を判別できる。そして、例えば油圧モ
ータ5の吸込側となる主管路の圧力をパイロット圧Pc
として選択したときは、アクセルペダルが踏込み操作さ
れて油圧モータ5の吸込側の圧力が上がればパイロット
圧Pcが高くなり、アクセルペダルの緩め操作で油圧モ
ータ5の吐出側の圧力が上がればパイロット圧Pcが低
くなるので、この間のパイロット圧の差で親バルブ11
0が開閉するように調整しておけば、主管路3,4の圧
力変化に連動してバイパス管路20が開閉する。
In the HST hydraulic traveling drive system of the present invention, by selecting either one of the pair of main pipelines 3 and 4 as the pilot pressure Pc, the magnitude relationship between the discharge side pressure and the suction side pressure of the hydraulic motor 5 is determined. it can. Then, for example, the pressure of the main pipeline on the suction side of the hydraulic motor 5 is set to the pilot pressure Pc.
When the accelerator pedal is depressed, the pilot pressure Pc increases if the pressure on the suction side of the hydraulic motor 5 rises, and if the pressure on the discharge side of the hydraulic motor 5 rises by loosening the accelerator pedal, the pilot pressure Pc rises. Since Pc becomes low, the parent valve 11
By adjusting so that 0 opens and closes, the bypass pipeline 20 opens and closes in conjunction with the pressure change of the main pipelines 3 and 4.

【0008】なお、本発明の構成を説明する前記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above-mentioned problems for explaining the constitution of the present invention, the drawings of the embodiments are used to make the present invention easy to understand. It is not limited to.

【0009】[0009]

【実施例】【Example】

−第1実施例− 以下、図1および図2を参照して本発明の第1実施例を
説明する。図1は本発明の第1実施例を示すものであ
る。図中符号1はホイールローダの原動機(例えばディ
ーゼルエンジン)であり、この原動機1によって駆動さ
れる可変容量形油圧ポンプ2には一対の主管路3,4に
より可変容量形油圧モータ5が閉回路接続されている。
可変容量形油圧ポンプ2の傾転量は、原動機1の回転数
に応じた流量の圧油を吐出する固定容量形のチャージポ
ンプ6によって制御される。すなわち、チャージポンプ
6の吐出油は、その一部が絞り7を介して前後進切換弁
8に導かれる一方で、残りが絞り7を通過することなく
前後進切換弁8に直接導かれ、さらにこれら吐出油は前
後進切換弁8の切換位置に応じて傾転シリンダ9の油室
9a,9bに案内される。チャージポンプ6の吐出量に
応じて絞り7の上流側と下流側との間の圧力差が変化
し、この差圧によって傾転シリンダ9が駆動されて油圧
ポンプ2の傾転量が変化する。なお、前後進切換弁8の
切換位置、油圧ポンプ2の圧油吐出方向およびホイール
ローダの走行方向の相互関係は、前後進切換弁8がF位
置のときに主管路3側に圧油が吐出されてホイールロー
ダが前進し、前後進切換弁8がR位置のときに主管路4
側に圧油が吐出されてホイールローダが後進する。前後
進切換弁8の切換えは、運転室内にある前後進切換スイ
ッチ(不図示)によって行なわれる。
-First Embodiment- Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows a first embodiment of the present invention. In the figure, reference numeral 1 is a prime mover (for example, a diesel engine) of a wheel loader, and a variable displacement hydraulic pump 5 driven by the prime mover 1 is connected to a variable displacement hydraulic motor 5 by a pair of main pipe lines 3 and 4 in a closed circuit. Has been done.
The tilt amount of the variable displacement hydraulic pump 2 is controlled by a fixed displacement charge pump 6 that discharges pressure oil at a flow rate according to the rotation speed of the prime mover 1. That is, a part of the oil discharged from the charge pump 6 is guided to the forward / reverse switching valve 8 via the throttle 7, while the rest is directly guided to the forward / reverse switching valve 8 without passing through the throttle 7, and These discharged oils are guided to the oil chambers 9a and 9b of the tilt cylinder 9 according to the switching position of the forward / reverse switching valve 8. The pressure difference between the upstream side and the downstream side of the throttle 7 changes according to the discharge amount of the charge pump 6, and the tilt cylinder 9 is driven by this pressure difference, and the tilt amount of the hydraulic pump 2 changes. The relationship between the switching position of the forward / reverse switching valve 8, the pressure oil discharge direction of the hydraulic pump 2, and the traveling direction of the wheel loader is such that pressure oil is discharged to the main pipe line 3 side when the forward / reverse switching valve 8 is in the F position. As a result, the wheel loader moves forward, and when the forward / reverse switching valve 8 is in the R position, the main pipe line 4
The pressure load is discharged to the side and the wheel loader moves backward. The forward / reverse selector valve 8 is switched by a forward / rearward selector switch (not shown) in the cab.

【0010】油圧モータ5の出力軸5aにはその出力回
転数を変速する変速機10が接続され、この変速機10
の出力はプロペラシャフト11とアクスルシャフト12
を介して左右の駆動輪13に伝達される。変速機10
は、2機の油圧クラッチを選択的に接続させてこれら油
圧クラッチに取り付けられた歯車の噛み合いを高速度段
と低速度段との間で切換えるものである。前記油圧クラ
ッチの切換えは、運転室内に設けられた変速スイッチ
(不図示)によって行なわれる。
The output shaft 5a of the hydraulic motor 5 is connected to a transmission 10 for changing its output speed.
Output is propeller shaft 11 and axle shaft 12
Is transmitted to the left and right drive wheels 13 via. Transmission 10
Is to selectively connect two hydraulic clutches to switch the meshing of gears attached to these hydraulic clutches between a high speed stage and a low speed stage. The switching of the hydraulic clutch is performed by a shift switch (not shown) provided in the driver's cab.

【0011】油圧モータ5と油圧ポンプ2とを結ぶ主管
路3,4の間にはバイパス管路20が設けられ、このバ
イパス管路20にはロジック弁100が接続されてい
る。ロジック弁100は、バイパス管路20を開閉する
親バルブ部110と、この親バルブ部110へのパイロ
ット圧Pcを制御するパイロット圧制御部120とを備
えている。図2により詳細に示すように、親バルブ部1
10は、ポペット111の一端側の第1,第2の受圧面
111a,111bに作用する主管路3,4の圧力P
a,Pbと、ポペット111の他端側の第3の受圧面11
1cに作用するパイロット圧Pcとの差に基づいてバイ
パス管路20を開閉する。詳しくは、主管路3,4の圧
力Pa,Pbでポペット111が図中左方へ押される力
が、パイロット圧Pcでポペット111が図中右方へ押
される力とばね112の力Fsとの合力を越えたときバ
イパス管路20を開放して主管路3,4を連通する。
A bypass pipe 20 is provided between the main pipes 3 and 4 connecting the hydraulic motor 5 and the hydraulic pump 2, and a logic valve 100 is connected to the bypass pipe 20. The logic valve 100 includes a parent valve unit 110 that opens and closes the bypass conduit 20 and a pilot pressure control unit 120 that controls the pilot pressure Pc to the parent valve unit 110. As shown in more detail in FIG. 2, the parent valve portion 1
10 is the pressure P of the main pipe lines 3 and 4 acting on the first and second pressure receiving surfaces 111a and 111b on one end side of the poppet 111.
a, Pb and the third pressure receiving surface 11 on the other end side of the poppet 111
The bypass line 20 is opened and closed based on the difference from the pilot pressure Pc acting on 1c. Specifically, the force of pushing the poppet 111 to the left in the figure by the pressures Pa and Pb of the main pipelines 3, 4 is the force of pushing the poppet 111 to the right in the figure by the pilot pressure Pc and the force Fs of the spring 112. When the resultant force is exceeded, the bypass pipeline 20 is opened to connect the main pipelines 3 and 4.

【0012】図1に示すように、パイロット圧制御部1
20は、2位置形の方向制御弁121と高圧選択弁12
2とを備えている。方向制御弁121がF位置のときは
主管路3の圧力Paのみが高圧選択弁122に導かれて
パイロット圧Pcとして選択され、方向制御弁121が
R位置のときは主管路3,4の圧力Pa,Pbが高圧選択
弁122へ導かれていずれか高い側の圧力がパイロット
圧Pcとして選択される。図中符号123は、方向制御
弁121の切換時のポペット111の移動速度を規制し
て方向制御弁121の切換時のショックを防止する絞り
である。
As shown in FIG. 1, the pilot pressure controller 1
20 is a two-position type directional control valve 121 and a high pressure selection valve 12
2 and. When the directional control valve 121 is in the F position, only the pressure Pa in the main pipeline 3 is guided to the high pressure selection valve 122 and selected as the pilot pressure Pc. When the directional control valve 121 is in the R position, the pressure in the main pipelines 3 and 4 is selected. Pa and Pb are guided to the high pressure selection valve 122, and the higher pressure is selected as the pilot pressure Pc. Reference numeral 123 in the drawing is a throttle for restricting the moving speed of the poppet 111 when switching the directional control valve 121 to prevent a shock when switching the directional control valve 121.

【0013】パイロット圧制御部120の方向制御弁1
21は切換スイッチ30で切換制御される。この切換ス
イッチ30は前後進切換弁8の切換位置に連動して切換
えられるもので、前後進切換弁8がF位置のときにオン
され、R位置および中立位置のときにオフとなる。切換
スイッチ30がオンされたとき電源31から方向制御弁
121のソレノイド部121sに駆動電流が供給されて
方向制御弁121がF位置に切換えられ、切換スイッチ
30がオフのとき駆動電流の供給が停止されて方向制御
弁121がR位置に戻る。
Directional control valve 1 of pilot pressure control unit 120
Reference numeral 21 is switch-controlled by a change-over switch 30. This changeover switch 30 is changed over in conjunction with the change-over position of the forward / reverse change-over valve 8, and is turned on when the forward-reverse change-over valve 8 is in the F position, and turned off in the R position and the neutral position. When the changeover switch 30 is turned on, a drive current is supplied from the power supply 31 to the solenoid portion 121s of the directional control valve 121 to switch the directional control valve 121 to the F position, and when the changeover switch 30 is turned off, the supply of the drive current is stopped. Then, the directional control valve 121 returns to the R position.

【0014】図中符号14は主管路3,4の最高圧力を
規制するオーバーロードリリーフ弁、15はチャージポ
ンプ6から主管路3,4へ圧油を補給するためのチャー
ジ用チェック弁、16はチャージ系の最高圧力を規制す
るチャージリリーフ弁である。
In the figure, reference numeral 14 is an overload relief valve that regulates the maximum pressure in the main pipes 3, 4, 15 is a charge check valve for supplying pressure oil from the charge pump 6 to the main pipes 3, 4, and 16 is a charge check valve. It is a charge relief valve that regulates the maximum pressure of the charge system.

【0015】次に、以上の構成からなるHST油圧走行
駆動装置の動作を説明する。前後進切換弁8をF位置に
切換えて前進する場合、切換スイッチ30がオンされて
ロジック弁100の方向制御弁121がF位置に切換え
られ、図2(A)に示すように主管路3の圧力Paが親
バルブ部110のパイロット圧Pcとして導かれる。こ
の状態でアクセルペダルを踏込んだ場合、油圧ポンプ2
の吐出量が増加して主管路3の圧力Paが主管路4の圧
力Pbより高くなる。このとき、ポペット111に作用
する力の大小関係は、第1〜第3の受圧面111a〜1
11cの面積をAa〜Acとすると、 Ac・Pc+Fs=(Aa+Ab)・Pa+Fs>Aa・Pa+Ab・Pb ……(1) となるから、バイパス管路20が閉塞される。このた
め、油圧モータ5がその容量と油圧ポンプ2の吐出量と
に応じた速度で駆動されて車両が前進する。
Next, the operation of the HST hydraulic traveling drive system constructed as above will be described. When the forward / reverse switching valve 8 is switched to the F position to move forward, the changeover switch 30 is turned on and the directional control valve 121 of the logic valve 100 is switched to the F position, so that the main conduit 3 of the main pipe line 3 is closed as shown in FIG. The pressure Pa is introduced as the pilot pressure Pc of the parent valve portion 110. If the accelerator pedal is depressed in this state, the hydraulic pump 2
And the pressure Pa of the main pipeline 3 becomes higher than the pressure Pb of the main pipeline 4. At this time, the magnitude relation of the forces acting on the poppet 111 is as follows.
Assuming that the area of 11c is Aa to Ac, Ac · Pc + Fs = (Aa + Ab) · Pa + Fs> Aa · Pa + Ab · Pb (1), the bypass pipe 20 is blocked. Therefore, the hydraulic motor 5 is driven at a speed according to its capacity and the discharge amount of the hydraulic pump 2, and the vehicle moves forward.

【0016】図2(A)の状態でアクセルペダルを緩め
た場合は、油圧ポンプ2の吐出量が減少して油圧モータ
5の吐出側となる主管路4の圧力Pbが主管路3の圧力
Paより高くなるので(1)式の大小関係が成立しなく
なり、 Ab・Pa+Fs<Ab・Pb ……(2) となったときにポペット111が移動してバイパス管路
20が開放される。これにより、油圧モータ5から主管
路4へ吐出された油がバイパス管路20を介して主管路
3へ戻るので、油圧モータ5の吐出側に閉じ込み圧が生
じることなく車両が慣性走行する。ここで、ばね力Fs
は主管路3,4の圧力Pa,Pbで生じる力と比較すると
無視し得る程度に小さいので、油圧モータ5の吐出圧が
吸込圧を越えるとほぼ同時にバイパス管路20が開くこ
とになる。
When the accelerator pedal is loosened in the state shown in FIG. 2A, the discharge amount of the hydraulic pump 2 decreases and the pressure Pb of the main pipe line 4 on the discharge side of the hydraulic motor 5 is the pressure Pa of the main pipe line 3. Since it becomes higher, the magnitude relation of the expression (1) is not established, and when Ab · Pa + Fs <Ab · Pb (2), the poppet 111 is moved and the bypass line 20 is opened. As a result, the oil discharged from the hydraulic motor 5 to the main pipe line 4 returns to the main pipe line 3 via the bypass pipe line 20, so that the vehicle runs inertially without generating a closing pressure on the discharge side of the hydraulic motor 5. Here, the spring force Fs
Is negligibly small compared with the forces generated by the pressures Pa and Pb of the main pipelines 3 and 4, so that the bypass pipeline 20 opens almost at the same time when the discharge pressure of the hydraulic motor 5 exceeds the suction pressure.

【0017】前後進切換弁8をR位置に切換えて後進す
る場合は、切換スイッチ30がオフされてロジック弁1
00の方向制御弁121がR位置に切換えられ、主管路
3,4の圧力Pa,Pbのうちいずれか高い方の圧力が親
バルブ部110のパイロット圧Pcに導かれる。アクセ
ルペダルが踏込まれて油圧モータ5の吸込側となる主管
路4の圧力Pbが主管路3の圧力Paより高くなった場合
は、図2(B)に示すように主管路4の圧力Pbがパイ
ロット圧Pcに導かれ、ポペット111に作用する力の
大小関係が、 Ac・Pc+Fs=(Aa+Ab)・Pb+Fs>Aa・Pa+Ab・Pb ……(3) となるから、バイパス管路20が閉塞される。このた
め、油圧ポンプ2の吐出油で油圧モータ5が駆動されて
車両が後進する。
When the forward / reverse switching valve 8 is switched to the R position to move backward, the selector switch 30 is turned off and the logic valve 1 is turned on.
The directional control valve 121 of 00 is switched to the R position, and the higher pressure of the pressures Pa and Pb in the main pipelines 3 and 4 is introduced to the pilot pressure Pc of the parent valve portion 110. When the pressure Pb of the main pipe line 4 on the suction side of the hydraulic motor 5 becomes higher than the pressure Pa of the main pipe line 3 by depressing the accelerator pedal, the pressure Pb of the main pipe line 4 is increased as shown in FIG. 2 (B). Since the magnitude relation of the forces acting on the poppet 111 due to the pilot pressure Pc is Ac · Pc + Fs = (Aa + Ab) · Pb + Fs> Aa · Pa + Ab · Pb (3), the bypass conduit 20 is blocked. . Therefore, the hydraulic motor 5 is driven by the oil discharged from the hydraulic pump 2 and the vehicle moves backward.

【0018】一方、アクセルペダルの緩め操作で油圧モ
ータ5の吐出側となる主管路3の圧力Paが主管路4の
圧力Pbより高くなった場合は、図2(A)に示すよう
に主管路3の圧力Paがパイロット圧Pcに導かれ、ポペ
ット111に作用する力の大小関係が(1)式の通りと
なるから、バイパス管路20が閉塞されて油圧モータ5
の吐出側となる主管路3に閉じ込み圧が生じて車両が減
速する。
On the other hand, when the pressure Pa of the main conduit 3 on the discharge side of the hydraulic motor 5 becomes higher than the pressure Pb of the main conduit 4 by loosening the accelerator pedal, as shown in FIG. The pressure Pa of No. 3 is guided to the pilot pressure Pc, and the magnitude relation of the force acting on the poppet 111 becomes as shown in the equation (1). Therefore, the bypass line 20 is closed and the hydraulic motor 5
The closing pressure is generated in the main pipe line 3 on the discharge side of the vehicle, and the vehicle is decelerated.

【0019】このように、本実施例の装置では、アクセ
ルペダルの操作による主管路3,4の圧力変化に応じて
バイパス管路20が開閉するから、チャージポンプ6の
吐出圧の変化に応じてバイパス管路20を開閉する従来
例と比較して油圧ポンプ2の吐出量の変化に対するバイ
パス管路20の開閉動作の追従性が向上し、円滑な慣性
走行が実現される。
As described above, in the device of this embodiment, the bypass line 20 opens and closes according to the pressure change in the main lines 3 and 4 due to the operation of the accelerator pedal, so that the discharge pressure of the charge pump 6 changes according to the change. Compared with the conventional example in which the bypass pipeline 20 is opened and closed, the followability of the opening and closing operation of the bypass pipeline 20 with respect to changes in the discharge amount of the hydraulic pump 2 is improved, and smooth inertial traveling is realized.

【0020】また、本実施例では、バイパス管路20の
流量を増加させる場合、親バルブ部110の流量のみ大
きくすれば良く、パイロット圧制御部120は単に圧力
を導くだけなので何等大きくする必要がない。したがっ
て、装置の大型化を防止しつつバイパス管路20の流量
を増大させて本格的な慣性走行を行なうことができる。
ちなみに、電磁切換弁を切換えてバイパス管路を開閉す
る従来例では、電磁切換弁全体を大きくして流量増加に
対応する必要があるので装置が相当に大型化する。しか
も、電磁切換弁を大型化した場合は、これを切換える力
も増加して大きな切換ショックの発生が避けられなくな
るが、実施例の場合は、流量に関係なく主管路3,4の
圧力Pa,Pbとパイロット圧Pcの差でポペット111
が移動するだけなので切換ショックがほとんど生じな
い。パイロット圧制御部120に含まれる方向制御弁1
21も小型なので切換ショックが小さい。
Further, in the present embodiment, when increasing the flow rate of the bypass conduit 20, it is sufficient to increase only the flow rate of the parent valve section 110, and the pilot pressure control section 120 merely guides the pressure, so it is necessary to increase it. Absent. Therefore, it is possible to increase the flow rate of the bypass conduit 20 and perform full-scale inertial traveling while preventing the device from increasing in size.
Incidentally, in the conventional example in which the electromagnetic switching valve is switched to open / close the bypass pipe, the entire electromagnetic switching valve needs to be enlarged to cope with an increase in the flow rate, so that the device becomes considerably large. Moreover, when the electromagnetic switching valve is enlarged, the force for switching the electromagnetic switching valve also increases, and a large switching shock is inevitable. However, in the case of the embodiment, the pressures Pa and Pb in the main pipelines 3 and 4 are irrespective of the flow rate. Difference between the pilot pressure Pc and the pilot pressure Pc
There is almost no switching shock because it only moves. Directional control valve 1 included in pilot pressure control unit 120
Since 21 is also small, switching shock is small.

【0021】本実施例では方向制御弁121の下流側に
高圧選択弁122を配置しているが、本発明はこれに限
るものではなく、例えば図3に示すように、高圧選択弁
122が方向制御弁131の上流に配置されたパイロッ
ト圧制御部130を用いても良い。この場合は、前進時
に方向制御弁131をF位置に切換えて主管路3の圧力
Paを親バルブ部110のパイロット圧Pcに導き、後進
時には方向制御弁131をR位置に切換えて、高圧選択
弁122で選択された主管路3,4の圧力Pa,Pbの高い
方をパイロット圧Pcとして導く。
In this embodiment, the high pressure selection valve 122 is arranged on the downstream side of the directional control valve 121, but the present invention is not limited to this. For example, as shown in FIG. You may use the pilot pressure control part 130 arrange | positioned upstream of the control valve 131. In this case, the directional control valve 131 is switched to the F position at the time of forward movement to guide the pressure Pa of the main pipe line 3 to the pilot pressure Pc of the parent valve section 110, and the directional control valve 131 is switched to the R position at the time of reverse movement to switch the high pressure selection valve. The higher one of the pressures Pa, Pb of the main pipelines 3, 4 selected at 122 is introduced as the pilot pressure Pc.

【0022】−第2実施例− 次に、図2および図4を参照して本発明の第2実施例を
説明する。なお、図1に示す第1実施例と共通の構成要
素には同一符号を付し、説明を省略する。図4に示すよ
うに、本実施例のHST油圧走行駆動装置が第1実施例
と最も大きく異なる点は、ロジック弁102のパイロッ
ト圧制御部140の方向制御弁141に3位値形のもの
が用いられている点にある。
-Second Embodiment- Next, a second embodiment of the present invention will be described with reference to FIGS. The same components as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 4, the greatest difference between the HST hydraulic traveling drive system of this embodiment and that of the first embodiment is that the directional control valve 141 of the pilot pressure control unit 140 of the logic valve 102 is of the three-value type. It is in use.

【0023】方向制御弁141がF位置のときは、図2
(A)に示すように主管路3の圧力Paのみが高圧選択
弁122に導かれてパイロット圧Pcとして選択され、
R位置のときは、図2(B)に示すように主管路4の圧
力Pbのみが高圧選択弁122に導かれてパイロット圧
Pcとして選択される。方向制御弁141が中立位置の
ときは主管路3,4の圧力Pa,Pbが高圧選択弁122
へ導かれていずれか高い側の圧力がパイロット圧Pcと
して選択される。
When the directional control valve 141 is in the F position, FIG.
As shown in (A), only the pressure Pa of the main pipeline 3 is guided to the high pressure selection valve 122 and selected as the pilot pressure Pc,
At the R position, as shown in FIG. 2B, only the pressure Pb in the main conduit 4 is guided to the high pressure selection valve 122 and selected as the pilot pressure Pc. When the directional control valve 141 is in the neutral position, the pressures Pa and Pb in the main pipelines 3 and 4 are high pressure selection valves 122.
Whichever is higher is selected as the pilot pressure Pc.

【0024】方向制御弁141は運転席に設けられた手
動のモード選択スイッチ32と前後進切換スイッチ33
によって切換制御される。モード選択スイッチ32がオ
ンされて前記後進切換弁33のF側がオンされたときソ
レノイド部141aが励磁されてF位置に切換えられ、
前後進切換スイッチ33のR側がオンされたときソレノ
イド部141bが励磁されてR位置に切換えられる。モ
ード選択スイッチ32がオフされたときはソレノイド部
141a,141bの励磁が解除されて中立位置に保持
される。なお、前後進切換スイッチ33は前後進切換弁
8を切換制御するもので、F側をオンしたとき前後進切
換弁8がF位置に、R側をオンしたときR位置に切換え
られる。
The directional control valve 141 includes a manual mode selection switch 32 and a forward / reverse switching switch 33 provided in the driver's seat.
Is controlled by switching. When the mode selection switch 32 is turned on and the F side of the reverse switching valve 33 is turned on, the solenoid portion 141a is excited and switched to the F position,
When the R side of the forward / reverse selector switch 33 is turned on, the solenoid portion 141b is excited and switched to the R position. When the mode selection switch 32 is turned off, the solenoids 141a and 141b are deenergized and held in the neutral position. The forward / reverse changeover switch 33 controls the forward / reverse changeover valve 8 so that the forward / reverse changeover valve 8 is switched to the F position when the F side is turned on and to the R position when the R side is turned on.

【0025】本実施例では、前後進切換スイッチ33の
F側がオンされ、かつモード選択スイッチ32がオンさ
れたとき、方向制御弁141がF位置となって図2
(A)に示すように主管路3の圧力Paがパイロット圧
Pcとして選択されるので、第1実施例で方向制御弁1
21をF位置に切換えた場合と同様に、アクセルペダル
を踏込んだとき(1)式にしたがってバイパス管路20
が閉塞されて油圧モータ5が油圧ポンプ2に駆動され、
アクセルペダルを緩めたとき(2)式にしたがってバイ
パス管路20が開いて車両が慣性走行する。
In this embodiment, when the F side of the forward / rearward travel changeover switch 33 is turned on and the mode selection switch 32 is turned on, the directional control valve 141 is in the F position.
As shown in (A), since the pressure Pa of the main pipeline 3 is selected as the pilot pressure Pc, the directional control valve 1 in the first embodiment is selected.
Similarly to the case where 21 is switched to the F position, when the accelerator pedal is stepped on, the bypass pipe line 20 follows the formula (1).
Is closed and the hydraulic motor 5 is driven by the hydraulic pump 2,
When the accelerator pedal is released, the bypass line 20 is opened according to the equation (2), and the vehicle inertially travels.

【0026】一方、前後進切換スイッチ33のR側がオ
ンされ、かつモード選択スイッチ32がオンされて方向
制御弁141がR位置に切換えられたときは、前進時と
逆に図2(B)に示すように主管路4の圧力Pbがパイ
ロット圧Pcとして選択される。この状態でアクセルペ
ダルが踏込まれて主管路4の圧力Pbが主管路3の圧力
Paよりも高くなったときは、(3)式にしたがってバ
イパス管路20が閉じ、油圧ポンプ2の吐出油で油圧モ
ータ5が駆動される。アクセルペダルが緩められて主管
路3の圧力Paが主管路4の圧力Pbを越えたときは
(3)式の関係が成立しなくなり、 Aa・Pb+Fs<Aa・Pa ……(4) となったときにポペット111が移動してバイパス管路
20が開放されて車両が慣性走行する。
On the other hand, when the R side of the forward / reverse selector switch 33 is turned on, the mode selection switch 32 is turned on, and the directional control valve 141 is switched to the R position, as shown in FIG. As shown, the pressure Pb in the main pipeline 4 is selected as the pilot pressure Pc. In this state, when the accelerator pedal is depressed and the pressure Pb in the main pipeline 4 becomes higher than the pressure Pa in the main pipeline 3, the bypass pipeline 20 is closed according to the equation (3), and the discharge oil of the hydraulic pump 2 is discharged. The hydraulic motor 5 is driven. When the accelerator pedal is loosened and the pressure Pa in the main pipeline 3 exceeds the pressure Pb in the main pipeline 4, the relationship of equation (3) is no longer established, and Aa · Pb + Fs <Aa · Pa (4) At some times, the poppet 111 moves to open the bypass line 20 and the vehicle inertially travels.

【0027】モード選択スイッチ32がオフされて方向
制御弁141が中立位置に切換えられたときは、第1実
施例で方向制御弁121をR位置に切換えたときと同
様、主管路3,4の圧力Pa,Pbの高い方がパイロット
圧Pcとして選択されるので、アクセルペダルの操作に
関係なくバイパス管路20が閉塞される。なお、モード
選択スイッチ32をオフしたときは前後進切換スイッチ
33の切換状態に関係なくバイパス管路20が閉じるの
で、前後進いずれの場合でもHST走行ができることに
なる。
When the mode selection switch 32 is turned off and the directional control valve 141 is switched to the neutral position, as in the case of switching the directional control valve 121 to the R position in the first embodiment, the main pipe lines 3 and 4 are connected. Since the higher of the pressures Pa and Pb is selected as the pilot pressure Pc, the bypass line 20 is closed regardless of the operation of the accelerator pedal. When the mode selection switch 32 is turned off, the bypass conduit 20 is closed regardless of the switching state of the forward / reverse traveling changeover switch 33, so that HST traveling can be performed in either forward or reverse traveling.

【0028】このように本実施例でも、アクセルペダル
の操作による主管路3,4の圧力変化に応じてポペット
111が移動してバイパス管路20が開閉するので、第
1実施例と同様に円滑な慣性走行が実現でき、装置の大
型化を防止しつつ慣性走行回路の流量増加を図ることが
でき、切換ショックも防止できる。加えて、本実施例で
は3位置形の方向制御弁141と選択スイッチ32の組
合せにより後進時の慣性走行と前進時のHST走行の選
択が可能となり、走行モードの選択範囲が広がる利点が
ある。
As described above, also in this embodiment, since the poppet 111 is moved and the bypass conduit 20 is opened and closed according to the pressure change in the main conduits 3 and 4 due to the operation of the accelerator pedal, the smooth operation is smooth as in the first embodiment. Inertial traveling can be realized, the flow rate of the inertial traveling circuit can be increased while preventing the apparatus from becoming large, and switching shock can be prevented. In addition, in the present embodiment, the combination of the three-position type directional control valve 141 and the selection switch 32 makes it possible to select inertia traveling during reverse traveling and HST traveling during forward traveling, which has the advantage of expanding the selection range of traveling modes.

【0029】本実施例では、車両の前後進いずれでもH
ST走行を選択可能としているが、前後進ともに慣性走
行だけで足りるときは方向制御弁141の中立位置を省
略すれば良い。この場合、高圧選択弁122も不要とな
る。前後進いずれでも慣性走行とHST走行を選択可能
とする場合、3位値形の方向制御弁141を必ずしも用
いる必要はない。その変形例を図5に示す。
In this embodiment, H
Although ST traveling can be selected, the neutral position of the directional control valve 141 may be omitted when only inertia traveling is sufficient for forward and backward traveling. In this case, the high pressure selection valve 122 is also unnecessary. When inertial traveling or HST traveling can be selected in either forward or reverse direction, it is not always necessary to use the ternary control valve 141. A modification thereof is shown in FIG.

【0030】図5に示すロジック弁103のパイロット
圧制御部150は、2位値形の方向制御弁151,15
2と高圧選択弁122を組合せて第2実施例と同様に前
後進で慣性走行とHST走行の選択を可能としている。
第2の方向制御弁152をI位置に切換えたときは、第
1の方向制御弁151がF位置のとき主管路3の圧力P
aが、R位置のとき主管路4の圧力Pbがパイロット管路
153から第2の方向制御弁152を介して親バルブ部
110へ導かれる。したがって、車両前進時には第1の
方向制御弁151をF位置に、後進時にはR位置に切換
えることにより、アクセルペダルの操作に合わせてバイ
パス管路20を開閉させて慣性走行することができる。
第2の方向制御弁152をH位置に切換えたときは、高
圧選択弁122で選択された圧力が親バルブ部110へ
導かれるので、第1の方向制御弁151をF位置に切換
えて高圧選択弁122に主管路3,4の圧力Pa,Pbを
導くことにより、いずれか高い方の圧力がパイロット圧
Pcとして選択されて、車両走行方向に拘らず常時バイ
パス管路20が閉塞される。
The pilot pressure control unit 150 of the logic valve 103 shown in FIG. 5 is a two-value type directional control valve 151,15.
2 and the high pressure selection valve 122 are combined to enable selection between inertial traveling and HST traveling by moving forward and backward as in the second embodiment.
When the second directional control valve 152 is switched to the I position, when the first directional control valve 151 is at the F position, the pressure P of the main pipeline 3 is
When a is in the R position, the pressure Pb in the main pipeline 4 is guided from the pilot pipeline 153 to the parent valve section 110 via the second directional control valve 152. Therefore, by switching the first directional control valve 151 to the F position when the vehicle moves forward and to the R position when moving the vehicle backward, it is possible to open and close the bypass conduit 20 in accordance with the operation of the accelerator pedal for inertial traveling.
When the second directional control valve 152 is switched to the H position, the pressure selected by the high pressure selection valve 122 is guided to the parent valve portion 110, so the first directional control valve 151 is switched to the F position to select the high pressure. By guiding the pressures Pa and Pb of the main pipelines 3 and 4 to the valve 122, the higher pressure is selected as the pilot pressure Pc, and the bypass pipeline 20 is always closed regardless of the traveling direction of the vehicle.

【0031】以上の例から明らかなように、ロジック弁
を用いた場合、主管路3,4のPa,Pbのうち油圧モー
タ5の吸込側となるいずれか一方の主管路の圧力をパイ
ロット圧Pcに選択したならば、アクセルペダルの緩め
操作でバイパス管路20が開くことになり、主管路3,
4の圧力Pa,Pbの高い方をパイロット圧Pcとして常
に選択したならば、バイパス管路20が閉塞されるので
あり、このようにパイロット圧を選択できる限り、パイ
ロット圧制御部の具体的構成は種々変更して構わない。
As is clear from the above example, when the logic valve is used, the pressure of either one of the main pipes Pa and Pb of the main pipes 3 and 4 on the suction side of the hydraulic motor 5 is set to the pilot pressure Pc. If it is selected to, the bypass conduit 20 will be opened by loosening the accelerator pedal, and the main conduit 3,
If the higher one of the pressures Pa and Pb of 4 is always selected as the pilot pressure Pc, the bypass line 20 will be closed. As long as the pilot pressure can be selected in this way, the specific configuration of the pilot pressure control unit is Various changes may be made.

【0032】[0032]

【発明の効果】以上説明したように、本発明のHST油
圧走行駆動装置では、アクセルペダルの操作による主管
路の圧力変化に応じてバイパス管路が開閉するので、油
圧ポンプの吐出量の変化に対する開閉動作の追従性が向
上し、円滑な慣性走行が実現される。また、親バルブ部
のみ大きくすれば慣性走行回路の流量の増加に対応でき
るので、装置の大型化を防止しつつ流量の大きい本格的
な慣性走行を実現できる。パイロット圧と主管路圧力と
の差で親バルブ部が開閉するので、バイパス管路の開閉
に伴って大きな切換ショックが発生することもない。
As described above, in the HST hydraulic traveling drive system of the present invention, the bypass pipe opens and closes according to the pressure change in the main pipe due to the operation of the accelerator pedal, so that the discharge amount of the hydraulic pump can be changed. The followability of the opening / closing operation is improved, and smooth inertial running is realized. Moreover, since it is possible to cope with an increase in the flow rate of the inertial traveling circuit by enlarging only the parent valve portion, it is possible to realize full-scale inertial traveling with a large flow rate while preventing the apparatus from becoming large. Since the parent valve portion opens and closes due to the difference between the pilot pressure and the main pipeline pressure, a large switching shock does not occur with the opening and closing of the bypass pipeline.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るHST油圧走行駆動
装置の回路構成を示す図。
FIG. 1 is a diagram showing a circuit configuration of an HST hydraulic traveling drive system according to a first embodiment of the present invention.

【図2】ロジック弁の親バルブ部の作動を説明するため
の図。
FIG. 2 is a diagram for explaining the operation of a parent valve portion of a logic valve.

【図3】本発明の第1実施例の変形例を示す図。FIG. 3 is a diagram showing a modification of the first embodiment of the present invention.

【図4】本発明の第2実施例に係るHST油圧走行駆動
装置の回路構成を示す図。
FIG. 4 is a diagram showing a circuit configuration of an HST hydraulic traveling drive system according to a second embodiment of the present invention.

【図5】本発明の第2実施例の変形例を示す図。FIG. 5 is a diagram showing a modification of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 原動機 2 可変容量形油圧ポンプ 3,4 主管路 5 油圧モータ 20 バイパス管路 100,101,102,103 ロジック弁 110 親バルブ部 120,130,140,150 パイロット圧制御部 1 prime mover 2 variable displacement hydraulic pump 3,4 main pipeline 5 hydraulic motor 20 bypass pipeline 100, 101, 102, 103 logic valve 110 parent valve section 120, 130, 140, 150 pilot pressure control section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原動機に駆動される可変容量形油圧ポン
プと、 一対の主管路により前記可変容量形油圧ポンプに閉回路
接続され、この可変容量形油圧ポンプからの吐出油によ
り駆動される油圧モータとを備えてなるHST油圧走行
駆動装置において、 前記一対の主管路を結ぶバイパス管路に、前記一対の主
管路の圧力とパイロット圧との差に基づいて当該バイパ
ス管路を開閉する親バルブ部と、前記一対の主管路のい
ずれか一方の圧力を前記親バルブ部のパイロット圧とし
て選択するパイロット圧制御部とを備えるロジック弁を
設けたことを特徴とするHST油圧走行駆動装置。
1. A variable displacement hydraulic pump driven by a prime mover, and a hydraulic motor which is closed circuit connected to the variable displacement hydraulic pump by a pair of main pipes and is driven by oil discharged from the variable displacement hydraulic pump. In a HST hydraulic traveling drive device including: a parent valve unit that opens and closes a bypass pipeline connecting the pair of main pipelines based on the difference between the pressure of the main pipeline and the pilot pressure. An HST hydraulic traveling drive device comprising a logic valve including: a pilot pressure control unit that selects a pressure of one of the pair of main pipelines as a pilot pressure of the parent valve unit.
JP5033292A 1993-02-23 1993-02-23 Hst hydraulic traveling driving device Pending JPH06249339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033292A JPH06249339A (en) 1993-02-23 1993-02-23 Hst hydraulic traveling driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033292A JPH06249339A (en) 1993-02-23 1993-02-23 Hst hydraulic traveling driving device

Publications (1)

Publication Number Publication Date
JPH06249339A true JPH06249339A (en) 1994-09-06

Family

ID=12382470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033292A Pending JPH06249339A (en) 1993-02-23 1993-02-23 Hst hydraulic traveling driving device

Country Status (1)

Country Link
JP (1) JPH06249339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019707B4 (en) * 2005-04-28 2007-08-30 Audi Ag Method for cooling extruded profiles and apparatus for carrying out the method
JP2012052581A (en) * 2010-08-31 2012-03-15 Hitachi Constr Mach Co Ltd Hydraulic travel driving device
JP2016095018A (en) * 2014-11-17 2016-05-26 三菱重工業株式会社 Hydraulic transmission, wind power generator and method for operating hydraulic transmission
WO2019159607A1 (en) * 2018-02-14 2019-08-22 株式会社小松製作所 Work vehicle, and work vehicle control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019707B4 (en) * 2005-04-28 2007-08-30 Audi Ag Method for cooling extruded profiles and apparatus for carrying out the method
JP2012052581A (en) * 2010-08-31 2012-03-15 Hitachi Constr Mach Co Ltd Hydraulic travel driving device
JP2016095018A (en) * 2014-11-17 2016-05-26 三菱重工業株式会社 Hydraulic transmission, wind power generator and method for operating hydraulic transmission
WO2019159607A1 (en) * 2018-02-14 2019-08-22 株式会社小松製作所 Work vehicle, and work vehicle control method
US10829909B2 (en) 2018-02-14 2020-11-10 Komatsu Ltd. Work vehicle and control method for work vehicle

Similar Documents

Publication Publication Date Title
JPH0882367A (en) Gear shifter for hydraulic type drive device and gear shift control method therefor
JPH0243063B2 (en)
EP1321340B1 (en) Parking brake device of working vehicle
JP2010025179A (en) Hydraulic drive system of traveling utility machine
JP2001336602A (en) Hydraulic driving system for plurality of motors
JPH06249339A (en) Hst hydraulic traveling driving device
JPH0658411A (en) Hst hydraulic pressure running driving device
JP2790744B2 (en) HST hydraulic traveling drive
JPH06265013A (en) Hst hydraulic travel driving device
JPH062767A (en) Hst hydraulic traveling driving device
JPS62204052A (en) Speed-change control method for continuously variable transmission for vehicle
JPH05306768A (en) Hst hydraulic traveling driving device
KR100579242B1 (en) Hydraulic control system of continuously variable transmission for vehicle
KR0160864B1 (en) Changing method and apparatus of hydraulic retarder for power transmission device
JPH05248511A (en) Hydraulic traveling vehicle
KR100293662B1 (en) Hydraulic control system of continuously variable transmission for vehicle
JP2000337490A (en) Working vehicle and speed control method
JP2003161305A (en) Hydraulic retarder device of power transmission equipment
JP2737118B2 (en) Control device for vehicle transmission
JPH05306767A (en) Hst hydraulic traveling driving device
JPH0658413A (en) Hst hydraulic pressure running driving device
JPH09209410A (en) Speed controller of construction vehicle
KR100386347B1 (en) 1st Gear stop shock reducing system of wheel excavators
KR0168101B1 (en) Hydraulic control system of 4-shifts a/t
KR100293660B1 (en) Control system for forward and backward movement of continuously variable transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080621

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110621

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10