JPH06249034A - Air-fuel ratio measuring deivice, method for evaluating internal combustion engine and judging device - Google Patents

Air-fuel ratio measuring deivice, method for evaluating internal combustion engine and judging device

Info

Publication number
JPH06249034A
JPH06249034A JP3696893A JP3696893A JPH06249034A JP H06249034 A JPH06249034 A JP H06249034A JP 3696893 A JP3696893 A JP 3696893A JP 3696893 A JP3696893 A JP 3696893A JP H06249034 A JPH06249034 A JP H06249034A
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
cylinder
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3696893A
Other languages
Japanese (ja)
Inventor
Seigo Tanaka
誠吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP3696893A priority Critical patent/JPH06249034A/en
Publication of JPH06249034A publication Critical patent/JPH06249034A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide an air-fuel ratio measuring device which calculates the moment-by-moment air-fuel ratio in an internal combustion engine having a fuel injector and can obtain respective air-fuel ratios of a plurality of cylinders with good accuracy. CONSTITUTION:A pressure measuring means 14 to detect the pressure value in a suction tube at the timing of closing an intake valve in synchronisation with the action of the intake valve of a cylinder 12, and a time measuring means 13 to obtain the integrated value of the fuel injection time of a fuel injector 11 during the period from the preceding closing of the intake valve to this time closing in synchronization of the intake valve of the cylinder 12 are provided, and in addition, a computing means 15 to compute the air-fuel ratio in the combustion immediately after this time closing of the intake valve based on the ratio of the pressure value divided by the integrated value is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、(1) 燃料噴射器を備え
た内燃機関における刻々の空燃比を算出する空燃比測定
装置、(2) 燃料噴射器の噴射時間をマイコン制御する内
燃機関の空燃比制御の可否を判定する内燃機関の評価方
法、および、(3) 吸気管内の圧力値を計測して燃料噴射
器を制御する内燃機関に装着されて、この制御状態の可
否を判定する判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to (1) an air-fuel ratio measuring device for calculating the air-fuel ratio in an internal combustion engine equipped with a fuel injector, and (2) an internal combustion engine for controlling the injection time of the fuel injector by a microcomputer. The method of evaluating an internal combustion engine that determines whether the air-fuel ratio control is possible, and (3) is installed in the internal combustion engine that controls the fuel injector by measuring the pressure value in the intake pipe, and determines the availability of this control state. Regarding a determination device.

【0002】[0002]

【従来の技術】従来の気化器を用いたガソリンエンジン
の少なくない用途が、現在、燃料噴射器を用いたガソリ
ンエンジンやディーゼルエンジンに置き換えられてい
る。燃料噴射器を用いた内燃機関は、シリンダ内の1サ
イクルごとの燃料供給量をかなり精密に調節できるか
ら、空燃比の制御が比較的に容易である。従って、内燃
機関の動作状態に燃料供給量を精密に追従させて、出力
状態を安定させると同時に合計の燃料消費量を節約する
ことが可能である。
BACKGROUND OF THE INVENTION Many applications of conventional carburetor gasoline engines are now being replaced by gasoline and diesel engines using fuel injectors. In an internal combustion engine using a fuel injector, the amount of fuel supplied in each cylinder in each cycle can be adjusted very precisely, so that the air-fuel ratio can be controlled relatively easily. Therefore, it is possible to precisely follow the operating state of the internal combustion engine with the fuel supply amount, stabilize the output state, and simultaneously save the total fuel consumption amount.

【0003】また、燃料噴射器を用いたガソリンエンジ
ンは、三元触媒を用いた排気ガス浄化装置と組み合わせ
れば、排気ガス中の炭化水素、一酸化炭素、酸化窒素を
同時に効率的に除去できるため、排気ガス規制のクリア
を目的とした活発な開発研究が行われ、近年大いに実用
化されている。
Further, a gasoline engine using a fuel injector can efficiently remove hydrocarbons, carbon monoxide, and nitrogen oxides in exhaust gas at the same time by combining with an exhaust gas purifying device using a three-way catalyst. Therefore, active development research has been carried out for the purpose of clearing exhaust gas regulations, and has been put to practical use in recent years.

【0004】燃料噴射器を備えた内燃機関、特に、三元
触媒を用いた排気ガス浄化装置と組み合わせたガソリン
エンジンでは、通常、多数のセンサとエンジン制御用マ
イコンとを装備しており、それぞれのセンサの出力に基
づいて燃料噴射器の動作時間を刻々と演算し、演算結果
どおりに燃料噴射器を動作させて、内燃機関の出力状態
にかかわらず空燃比を限られた一定の範囲に制御してい
る。
An internal combustion engine equipped with a fuel injector, especially a gasoline engine combined with an exhaust gas purifying device using a three-way catalyst, is usually equipped with a large number of sensors and an engine control microcomputer. The operating time of the fuel injector is calculated on the basis of the output of the sensor, and the fuel injector is operated according to the calculation result to control the air-fuel ratio within a limited fixed range regardless of the output state of the internal combustion engine. ing.

【0005】図7は、燃料噴射器を備えたガソリンエン
ジンの一例の説明図である。ここでは、吸気管のシリン
ダ側に圧力センサを設けてシリンダの空気吸い込み量を
見積もり、この吸い込み量に基づいて空燃比を一定に保
ち得る燃料噴射器の作動時間を演算する。
FIG. 7 is an illustration of an example of a gasoline engine equipped with a fuel injector. Here, a pressure sensor is provided on the cylinder side of the intake pipe to estimate the air intake amount of the cylinder, and the operating time of the fuel injector capable of keeping the air-fuel ratio constant based on the intake amount is calculated.

【0006】図7において、エンジン本体は、紙面と垂
直な方向に配置された複数のシリンダ51を有し、シリ
ンダ51の外周にはエンジン冷却用の水冷ジャケット5
2が配置される。シリンダ51の上部には、吸気弁54
を介して吸気管56が、排気弁53を介して排気管57
がそれぞれ接続される。吸気管56には、燃料噴射器5
8、スロットルバルブ55が配置される。
In FIG. 7, the engine body has a plurality of cylinders 51 arranged in a direction perpendicular to the plane of the drawing, and a water cooling jacket 5 for cooling the engine is provided on the outer periphery of the cylinders 51.
2 is placed. An intake valve 54 is provided above the cylinder 51.
Through the exhaust valve 53 and the exhaust pipe 57 through the exhaust valve 53.
Are connected respectively. In the intake pipe 56, the fuel injector 5
8. A throttle valve 55 is arranged.

【0007】ECU(Electronic Control Unit )50
は、多数のセンサ61〜67の刻々の出力状態に基づい
て空燃比をほぼ一定に保ち得る燃料噴射時間を演算し
て、リアルタイムに燃料噴射器58を制御する。吸気管
56にはバキュームセンサ62、給気温度センサ63
が、排気管57には酸素センサ64、排気温度センサ6
5が、水冷ジャケット52には水温センサ66が、スロ
ットルバルブ55には開度センサ61がそれぞれ設けら
れる。
ECU (Electronic Control Unit) 50
Controls the fuel injector 58 in real time by calculating the fuel injection time that can keep the air-fuel ratio substantially constant based on the output states of the multiple sensors 61 to 67. The intake pipe 56 has a vacuum sensor 62 and a supply air temperature sensor 63.
However, the exhaust pipe 57 has an oxygen sensor 64 and an exhaust temperature sensor 6
5, the water cooling jacket 52 is provided with a water temperature sensor 66, and the throttle valve 55 is provided with an opening sensor 61.

【0008】ECU50における燃料噴射時間の演算
は、(1) シリンダ51の容積にシリンダ内の圧力値を乗
じた値が空気の重量に比例し、かつ、(2) 吸気弁54を
開いた状態ではスロットルバルブ55の下流の圧力値が
シリンダ内の圧力値にほぼ一致する原理に基づく。すな
わち、バキュームセンサ62により計測した圧力値をシ
リンダ内の圧力値とみなし、この圧力値にシリンダ51
の容積を乗じ、温度や密度で補正して供給空気量を演算
し、この供給空気量に対して空燃比が例えば14.6と
なる燃料必要量を演算し、この燃料必要量を満たす燃料
噴射器58の動作時間を求める。
The fuel injection time in the ECU 50 is calculated as follows: (1) The value obtained by multiplying the volume of the cylinder 51 by the pressure value in the cylinder is proportional to the weight of air, and (2) when the intake valve 54 is opened. It is based on the principle that the pressure value downstream of the throttle valve 55 substantially matches the pressure value in the cylinder. That is, the pressure value measured by the vacuum sensor 62 is regarded as the pressure value in the cylinder, and the cylinder 51 is set to this pressure value.
To calculate the supply air amount by correcting the temperature and the density, and to calculate the fuel required amount for which the air-fuel ratio becomes, for example, 14.6 with respect to this supply air amount, and to perform fuel injection that satisfies this fuel required amount. The operating time of the device 58 is obtained.

【0009】また、スロットルバルブ55を急に開いた
場合、そのままでは、供給空気量の増加に燃料供給量の
増加が追い付かず、エンジンの操作に対するレスポンス
が悪化するから、スロットルバルブ55に開度センサ6
1を設けており、ECU50は、スロットルバルブ55
の開閉動作に連動して、予測的に燃料供給量を増減させ
ている。
Further, if the throttle valve 55 is suddenly opened, the increase in the supply air amount cannot keep up with the increase in the supply air amount, and the response to the engine operation deteriorates. 6
1 is provided, and the ECU 50 uses the throttle valve 55
The fuel supply amount is predicted and increased / decreased in conjunction with the opening / closing operation of.

【0010】ここで、紙面と垂直な方向に配置された複
数のシリンダ51は、それぞれ固有の燃料噴射器58を
有するが、複数の燃料噴射器58は、それぞれの吸気弁
54の開閉状態にかかわらず、クランク軸の2回転につ
いて一回の特定のタイミングにおいて、同時かつ同条件
で作動される(図3参照)。
Here, the plurality of cylinders 51 arranged in the direction perpendicular to the plane of the drawing each have their own fuel injectors 58, but the plurality of fuel injectors 58 are irrespective of whether the intake valves 54 are open or closed. Instead, the crankshafts are operated simultaneously and under the same conditions at one specific timing for two rotations of the crankshaft (see FIG. 3).

【0011】従って、燃料噴射時に吸気弁54が閉じら
れているシリンダ51では吸気弁上や配管内に燃料(の
蒸気)が滞留し、この燃料は、次回の開弁に伴う気流に
よってシリンダ51内に押し流される。
Therefore, in the cylinder 51 in which the intake valve 54 is closed at the time of fuel injection, fuel (steam of the fuel) stays on the intake valve and in the pipe, and this fuel is stored in the cylinder 51 by the air flow accompanying the next valve opening. Is washed away.

【0012】また、ECU50における燃料噴射器の動
作時間の演算は、個々のシリンダ51について空燃比を
それぞれ一定に保とうとする制御ではなく、バキューム
センサ62が短い時間間隔で刻々計測する圧力値に基づ
いて、複数のシリンダ51の全体として好ましい燃料必
要量を求める制御である。換言すれば、複数のシリンダ
51は、ECU50における演算処理を通じて画一的、
平均的に取り扱われている。
Further, the calculation of the operating time of the fuel injector in the ECU 50 is not based on the control for keeping the air-fuel ratio of each cylinder 51 constant, but is based on the pressure value measured by the vacuum sensor 62 at short time intervals. Thus, the control is a control for obtaining a preferable fuel amount as a whole of the plurality of cylinders 51. In other words, the plurality of cylinders 51 are uniform through the arithmetic processing in the ECU 50.
It is handled on average.

【0013】[0013]

【発明が解決しようとする課題】燃料噴射器を用いる内
燃機関では、気化器のような空気供給量に追従した燃料
供給量の自律調整作用が無いから、スロットルバルブの
開閉に応じたシリンダへの空気供給量を正確に見積も
り、空気供給量に応じて燃料供給量をリアルタイムに増
減して、適正な空燃比を強制的に維持させる必要があ
る。
In an internal combustion engine using a fuel injector, since there is no autonomic adjustment function of the fuel supply amount that follows the air supply amount, unlike a carburetor, the cylinders corresponding to the opening and closing of the throttle valve are not operated. It is necessary to accurately estimate the air supply amount and increase or decrease the fuel supply amount in real time according to the air supply amount to forcibly maintain an appropriate air-fuel ratio.

【0014】そして、現在では、燃費向上や公害防止を
目的として、従来にない種々の変数までを加味して燃料
噴射器の作動時間を精密に補正し、空燃比をごく狭い範
囲に制御している。従って、エンジン本体には、水冷ジ
ャケット内の水温や排気ガス中の酸素濃度等、様々な補
正変数を計測するための多数のセンサが配置され、燃料
噴射器の動作時間を制御する演算装置(マイコン)に
は、これらの多数のセンサが接続されることになる。
Now, for the purpose of improving fuel efficiency and preventing pollution, the operating time of the fuel injector is precisely corrected by taking into account various variables that have not been used so far, and the air-fuel ratio is controlled within a very narrow range. There is. Therefore, a large number of sensors for measuring various correction variables such as the water temperature in the water cooling jacket and the oxygen concentration in the exhaust gas are arranged in the engine body, and an arithmetic unit (microcomputer for controlling the operating time of the fuel injector is provided. ) Will be connected to a number of these sensors.

【0015】しかし、精密機械と化したこのような内燃
機関では、多数のセンサの正常な動作を前提として精密
かつ適正な制御が保証されるため、センサが1つでも乱
調をきたせば、空燃比が正常でなくなる。そして、空燃
比が異常をきたせば、燃料の希薄側では出力低下、エン
ジン停止、排気ガス中の酸化窒素濃度の上昇等が起こ
る。一方、燃料の過剰側では、不完全燃焼によるシリン
ダの損耗、燃費劣化、排気ガス中の一酸化炭素濃度の上
昇等が起こる。
However, in such an internal combustion engine which has been made into a precision machine, precise and proper control is guaranteed on the premise of the normal operation of a large number of sensors. The fuel ratio is not normal. If the air-fuel ratio becomes abnormal, the output decreases, the engine stops, the concentration of nitric oxide in the exhaust gas rises, etc. on the lean fuel side. On the other hand, on the excessive fuel side, wear of the cylinder due to incomplete combustion, deterioration of fuel consumption, increase of carbon monoxide concentration in exhaust gas, and the like occur.

【0016】また、センサ配線の接触不良や瞬間的なノ
イズ発生に起因して、車体の振動に追従した形式で一時
的または断続的に空燃比が異常となる場合がある。しか
し、運転者は、軽微な程度に留まる限りこれらの異常発
生を見逃し易く、仮に異常に気付いたとしても、原因を
正確につきとめて、適正な修理を行うのは相当困難であ
る。
Further, the air-fuel ratio may become abnormal temporarily or intermittently in a form following the vibration of the vehicle body due to poor contact of the sensor wiring or instantaneous noise generation. However, as long as the driver stays in a minor degree, it is easy to overlook the occurrence of these abnormalities, and even if he / she notices the abnormalities, it is quite difficult to pinpoint the cause and perform proper repair.

【0017】また、図7のような、燃料噴射器を制御す
る演算処理を通じて、複数のシリンダを画一的、平均的
に取り扱う内燃機関では、個々のシリンダについて正常
な空燃比が保証されている訳ではない。従って、酸素セ
ンサ等の出力から空燃比の異常が検知されても、複数の
シリンダ全体で空燃比が異常であるとは限らず、燃料噴
射装置の動作時間が適当か否かを正確には判定できな
い。
Further, in the internal combustion engine which uniformly treats a plurality of cylinders through the arithmetic processing for controlling the fuel injector as shown in FIG. 7, a normal air-fuel ratio is guaranteed for each cylinder. It doesn't mean that. Therefore, even if the air-fuel ratio abnormality is detected from the output of the oxygen sensor or the like, it is not always the case that the air-fuel ratio is abnormal in the entire plurality of cylinders, and it is possible to accurately determine whether the operating time of the fuel injection device is appropriate. Can not.

【0018】また、図7のような、スロットルバルブの
開閉を検知して、予測的に燃料供給量を増減する内燃機
関では、予測的な燃料供給量の補正を正確に実施するこ
とは困難である。スロットルバルブの開閉速度、補正の
ための噴射のタイミング、噴射の継続時間、補正噴射量
の各シリンダに対する影響等をそれぞれ分離して把握で
きないため、純粋に予想的に補正を行うことになり、一
定回転速度の運転の場合に比較して、加減速時には、一
時的に、かなり粗い空燃比での運転を強要されることに
なる。
Further, in the internal combustion engine which detects the opening / closing of the throttle valve and predictably increases / decreases the fuel supply amount as shown in FIG. 7, it is difficult to accurately perform the predictive correction of the fuel supply amount. is there. Since it is not possible to separately understand the opening / closing speed of the throttle valve, the injection timing for correction, the injection duration, the effect of the corrected injection amount on each cylinder, etc. Compared with the case of operation at the rotational speed, during acceleration / deceleration, operation with a considerably rough air-fuel ratio is temporarily required.

【0019】そして、内燃機関の複数のシリンダのそれ
ぞれについて、空燃比を独立に計測できれば、これらの
問題は解決される。しかし、現在可能な方法は、(1) 複
数のシリンダのそれぞれの排気管を独立させて、それぞ
れに酸素センサおよび炭化水素センサを設け、爆発ごと
に排気ガス量を計測して、排気ガス量と排気組成から空
燃比を演算する方法、また、(2) 内燃機関のシリンダ外
壁に孔を開けてガラスを嵌め込み、爆発時の発光色を観
察する方法、程度に過ぎない。そして、これらの方法
は、実施のために内燃機関の大幅な改造が必要であり、
必要な測定や演算処理の複雑さから、リアルタイムで正
確な空燃比を実用的に計測することは到底不可能であ
る。
If the air-fuel ratio can be independently measured for each of the plurality of cylinders of the internal combustion engine, these problems can be solved. However, currently possible methods are: (1) Separate the exhaust pipes of multiple cylinders, install oxygen sensors and hydrocarbon sensors in each, and measure the exhaust gas amount at each explosion, It is only a method of calculating the air-fuel ratio from the exhaust composition, and (2) observing the emission color at the time of explosion by making a hole in the cylinder outer wall of the internal combustion engine and inserting glass. And these methods require a major modification of the internal combustion engine for implementation,
Due to the complexity of the necessary measurement and arithmetic processing, it is impossible to measure the air-fuel ratio accurately in real time.

【0020】本発明は、(1) 複数のシリンダのそれぞれ
で空燃比を精密に求め得る空燃比測定装置、(2) 内燃機
関の刻々の空燃比制御の可否を精密に判定し得る内燃機
関の評価方法、および、(3) 吸気管に元々設けられた圧
力センサをそのまま利用して空燃比制御の可否を精密に
判定し得る判定装置、をそれぞれ提供することを目的と
する。
The present invention provides (1) an air-fuel ratio measuring device capable of accurately determining the air-fuel ratio in each of a plurality of cylinders, and (2) an internal combustion engine capable of precisely determining whether or not the air-fuel ratio control of the internal combustion engine is accurate. It is an object of the present invention to provide an evaluation method and (3) a determination device that can accurately determine whether or not air-fuel ratio control can be performed by directly using a pressure sensor originally provided in the intake pipe.

【0021】[0021]

【課題を解決するための手段】図1は、本発明の基本的
な構成の説明図である。図1において、請求項1の空燃
比測定装置は、燃料噴射器11を備えた内燃機関10に
接続されて、該内燃機関10の複数のシリンダ12の少
なくとも1つにおける1サイクルの空燃比を算出可能な
空燃比測定装置において、前記シリンダ12の吸気弁の
動作に同期して、該吸気弁の閉弁前のタイミングで吸気
管内の圧力値を検知する圧力計測手段14と、前記シリ
ンダ12の吸気弁の動作に同期して、該吸気弁の前回の
閉弁から今回の閉弁までの期間における前記燃料噴射器
11の燃料噴射時間の積算値を求める時間計測手段13
と、前記圧力値を前記積算値で除した値に基づいて、今
回の閉弁直後の燃焼における空燃比を算出する演算手段
15と、を有するものである。
FIG. 1 is an explanatory diagram of the basic configuration of the present invention. In FIG. 1, the air-fuel ratio measuring apparatus according to claim 1 is connected to an internal combustion engine 10 including a fuel injector 11 to calculate an air-fuel ratio of one cycle in at least one of a plurality of cylinders 12 of the internal combustion engine 10. In a possible air-fuel ratio measuring device, in synchronization with the operation of the intake valve of the cylinder 12, the pressure measuring means 14 for detecting the pressure value in the intake pipe at the timing before the closing of the intake valve, and the intake air of the cylinder 12. In synchronization with the operation of the valve, the time measuring means 13 for obtaining an integrated value of the fuel injection time of the fuel injector 11 in the period from the last closing of the intake valve to the current closing of the intake valve.
And a calculation means 15 for calculating an air-fuel ratio in combustion immediately after the current valve closing based on a value obtained by dividing the pressure value by the integrated value.

【0022】そして、請求項1の発明の限定された態様
は、燃料噴射器11を備えた内燃機関10に接続され
て、該内燃機関10の複数のシリンダ12全体における
刻々の空燃比を算出する空燃比測定装置において、前記
複数のシリンダ12のそれぞれの吸気弁の動作に同期し
て、該それぞれの吸気弁の閉弁前のタイミングで吸気管
内の圧力値を検知する圧力計測手段14と、前記複数の
シリンダ12のそれぞれの吸気弁の動作に同期して、該
それぞれの吸気弁の前回の閉弁から今回の閉弁までの期
間における前記燃料噴射器11の燃料噴射時間の積算値
をそれぞれ求める時間計測手段13と、前記複数のシリ
ンダ12のそれぞれについて、前記圧力値を前記積算値
で除した値に基づいて1サイクルの燃焼における空燃比
を算出して、前記複数のシリンダ12の空燃比の平均値
を求める演算手段と、を有するものである。
The limited aspect of the invention of claim 1 is connected to an internal combustion engine 10 equipped with a fuel injector 11, and calculates the air-fuel ratio in every cylinder 12 of the internal combustion engine 10 every moment. In the air-fuel ratio measuring device, in synchronization with the operation of each intake valve of the plurality of cylinders 12, pressure measuring means 14 for detecting the pressure value in the intake pipe at the timing before the closing of each intake valve, In synchronization with the operation of each intake valve of the plurality of cylinders 12, the integrated value of the fuel injection time of the fuel injector 11 in each period from the previous closing of the intake valve to the present closing is obtained. For each of the time measuring means 13 and the plurality of cylinders 12, an air-fuel ratio in one cycle of combustion is calculated based on a value obtained by dividing the pressure value by the integrated value, A calculating means for calculating the average of the air-fuel ratio of the cylinder 12, and has a.

【0023】請求項2の内燃機関の評価方法は、複数の
シリンダに対する給気経路に設けた燃料噴射器と、該空
気経路を通じたシリンダの吸い込み空気量を計測する計
測手段と、計測された該空気量に基づいて前記燃料噴射
器の動作時間を演算する制御手段と、を有する内燃機関
について、前記演算の適否を判定する内燃機関の評価方
法において、前記給気経路のスロットルバルブよりもシ
リンダ側に配置した圧力センサが出力する圧力値を、そ
れぞれのシリンダの吸気弁における閉弁前のタイミング
で計測し、それぞれのシリンダについて、吸気弁の前回
の閉弁から今回の閉弁までの期間における前記燃料噴射
器の動作時間の積算値を演算し、それぞれのシリンダに
ついて、前記圧力値を前記積算値で除した値に基づいて
1サイクルの燃焼における空燃比を演算し、該空燃比の
時間的な変化が許容範囲を越えた場合に警告信号を発生
させる方法である。
According to a second aspect of the present invention, there is provided a method for evaluating an internal combustion engine, comprising: a fuel injector provided in an air supply path for a plurality of cylinders; a measuring means for measuring the amount of intake air of the cylinder through the air path; An internal combustion engine having a control means for calculating an operating time of the fuel injector based on an air amount, in an internal combustion engine evaluation method for determining adequacy of the calculation, the cylinder side of a throttle valve of the air supply path. The pressure value output by the pressure sensor placed in the cylinder is measured at the timing before closing of the intake valve of each cylinder, and for each cylinder, the above value in the period from the previous closing of the intake valve to the current closing of the intake valve is measured. The integrated value of the operating time of the fuel injector is calculated, and one cycle of combustion is calculated for each cylinder based on the value obtained by dividing the pressure value by the integrated value. It calculates the definitive air, a method of temporal change of the air-fuel ratio to generate a warning signal when exceeding the allowable range.

【0024】請求項3の判定装置は、複数のシリンダに
対する給気経路に設けた燃料噴射器と、該空気経路のス
ロットルバルブよりもシリンダ側に設けた圧力センサ
と、該圧力センサが出力する圧力値から複数のシリンダ
の吸い込み空気量を演算して、該空気量に基づいて前記
燃料噴射器の動作時間を演算する制御手段と、を有する
内燃機関に装着されて、前記演算の適否を判定する判定
装置において、前記圧力センサが出力する圧力値を、そ
れぞれのシリンダの吸気弁における閉弁前のタイミング
で計測する計測手段と、吸気弁の前回の閉弁から今回の
閉弁までの期間における前記燃料噴射器の動作時間の積
算値をそれぞれのシリンダについて求める積算手段と、
前記圧力値を前記積算値で除した値に基づいてそれぞれ
のシリンダにおける1サイクル分の空燃比を演算し、該
空燃比の平均値に対する個々の空燃比の差が許容範囲を
越えた場合に警告信号を発生させる制御手段と、を有す
るものである。
According to a third aspect of the present invention, there is provided a determination device that includes a fuel injector provided in an air supply path for a plurality of cylinders, a pressure sensor provided on a cylinder side of a throttle valve in the air path, and a pressure output by the pressure sensor. Is attached to an internal combustion engine having a control means for calculating the intake air amounts of a plurality of cylinders from the values and calculating the operation time of the fuel injector based on the air amounts, and determining the suitability of the calculation. In the determination device, the pressure value output by the pressure sensor is measured at a timing before closing of the intake valve of each cylinder, and the measuring means for measuring the pressure value in the period from the previous closing of the intake valve to the current closing of the intake valve. Integrating means for obtaining the integrated value of the operating time of the fuel injector for each cylinder,
An air-fuel ratio for one cycle in each cylinder is calculated based on a value obtained by dividing the pressure value by the integrated value, and a warning is issued when the difference between the individual air-fuel ratios with respect to the average value of the air-fuel ratio exceeds an allowable range. And a control means for generating a signal.

【0025】[0025]

【作用】図1において、請求項1の空燃比測定装置で
は、内燃機関10の複数のシリンダ12の少なくとも1
つにおける1サイクルの実際の空燃比を、点火爆発に至
る以前に取り込んだデータに基づいて予測的に算出し得
る。
In FIG. 1, in the air-fuel ratio measuring apparatus according to claim 1, at least one of the plurality of cylinders 12 of the internal combustion engine 10 is
The actual air-fuel ratio for one cycle in one cycle can be calculated predictively based on the data acquired before the ignition explosion.

【0026】燃料噴射器11は、シリンダ12に供給さ
れる空気量に対してほぼ適正な空燃比を与えると事前的
に期待される量だけの液体または気体の燃料を、シリン
ダ12内に直接、または、吸気弁を介した給気経路内に
噴射させる。しかし、この量は、内燃機関10の運転状
態、燃料噴射器11の制御演算の遅れ、センサの誤動作
等によって、事後的には必ずしも適正な空燃比を達成し
得ない。
The fuel injector 11 directly supplies into the cylinder 12 the liquid or gaseous fuel in an amount that is expected in advance to give an air-fuel ratio that is substantially appropriate for the amount of air supplied to the cylinder 12. Alternatively, the fuel is injected into the air supply path via the intake valve. However, this amount cannot always achieve an appropriate air-fuel ratio after the fact due to the operating state of the internal combustion engine 10, the delay in the control calculation of the fuel injector 11, the malfunction of the sensor, and the like.

【0027】また、燃料噴射器11は、複数のシリンダ
12の全部または2〜3本の吸気管グループごとに共用
してもよいが、複数のシリンダ12のそれぞれに1づつ
配置してもよい。
The fuel injector 11 may be shared by all of the plurality of cylinders 12 or by each group of two to three intake pipes, but one fuel injector 11 may be arranged for each of the plurality of cylinders 12.

【0028】演算手段15による空燃比の演算原理は、
図5の場合と同様、(1) 吸気弁を開いた状態では吸気管
内の圧力がシリンダ12内の圧力に一致し、(2) シリン
ダ12内の圧力が1サイクルの空気供給量に比例する、
ことに基づく。しかし、(3)圧力計測手段14が、特定
のシリンダ12の閉弁前のタイミングで圧力値を取り込
んで、特定のシリンダ12内の圧力を単独に求め、(4)
時間計測手段13が、特定のシリンダ12の吸気弁の前
回の閉弁から今回の閉弁までの期間における燃料噴射器
11の動作時間の積算値を単独に求め、(5) 演算手段1
5が、これらの固有の圧力値と積算値とに基づいて単独
に空燃比を算出する、各特徴を組み合わせることによ
り、複数のシリンダ12のそれぞれで平均化されていな
い固有の空燃比を算出することを可能にしている。
The calculation principle of the air-fuel ratio by the calculation means 15 is as follows.
As in the case of FIG. 5, (1) the pressure in the intake pipe matches the pressure in the cylinder 12 when the intake valve is open, and (2) the pressure in the cylinder 12 is proportional to the air supply amount of one cycle,
Based on that. However, (3) the pressure measuring means 14 captures the pressure value at the timing before the valve closing of the specific cylinder 12 to independently obtain the pressure in the specific cylinder 12, and (4)
The time measuring means 13 independently obtains the integrated value of the operating time of the fuel injector 11 in the period from the last closing of the intake valve of the specific cylinder 12 to the present closing, and (5) the calculating means 1
5 independently calculates the air-fuel ratio based on these unique pressure value and integrated value. By combining the respective features, the unique air-fuel ratio which is not averaged in each of the plurality of cylinders 12 is calculated. Makes it possible.

【0029】ここで、固有の空燃比は、複数のシリンダ
12のうちの1以上についてそれぞれ独立に算出され
る。また、吸気弁の動作に同期して圧力値を取り込み、
燃料噴射器11の動作時間を今回分と次回分に区切るた
めの同期信号は、吸気弁自体の動作、駆動カムの動作、
クランク軸の回転位相角度等を検知して発生させればよ
い。
Here, the peculiar air-fuel ratio is independently calculated for one or more of the plurality of cylinders 12. Also, the pressure value is captured in synchronization with the operation of the intake valve,
The synchronization signals for dividing the operating time of the fuel injector 11 into the current time and the next time are the operation of the intake valve itself, the operation of the drive cam,
The rotation phase angle of the crankshaft or the like may be detected and generated.

【0030】図5のように吸気管に圧力センサが予め配
置されている場合、圧力計測手段14は、例えば、クラ
ンク軸の回転位相センサの出力から吸気弁の閉弁動作直
前のタイミングを検知する回路に既存の圧力センサを組
み合わせて構成される。閉弁動作直前のタイミングで取
り込まれた圧力値は、そのシリンダの閉弁直後の1サイ
クルにおける空気供給量を求める基礎となる。
When a pressure sensor is previously arranged in the intake pipe as shown in FIG. 5, the pressure measuring means 14 detects the timing immediately before the closing operation of the intake valve from the output of the rotation phase sensor of the crankshaft, for example. It is configured by combining an existing pressure sensor with the circuit. The pressure value taken at the timing immediately before the valve closing operation serves as a basis for obtaining the air supply amount in one cycle immediately after the valve closing of the cylinder.

【0031】また、空燃比を演算するための1サイクル
分の燃料の量は、燃料の噴射量が燃料噴射器11の動作
時間にほぼ比例していると見なし、前回の閉弁から今回
の閉弁までの動作時間の総和で代表させる。従って、複
数のシリンダ12のうちの1つが燃料噴射器11の動作
中に閉弁次期を迎える場合、閉弁前の噴射分については
今回の閉弁後の1サイクルにおける空燃比の演算に使用
されるが、閉弁後の残りの噴射分は次回の閉弁後の1サ
イクルにおける空燃比の演算に使用される。
The amount of fuel for one cycle for calculating the air-fuel ratio is regarded as the fuel injection amount being substantially proportional to the operating time of the fuel injector 11, and the valve closing time from the previous closing time to the current closing time is considered. It is represented by the total operating time to the valve. Therefore, when one of the plurality of cylinders 12 approaches the valve closing period during the operation of the fuel injector 11, the injection amount before the valve closing is used for the calculation of the air-fuel ratio in one cycle after the valve closing this time. However, the remaining injection amount after the valve is closed is used for calculating the air-fuel ratio in one cycle after the next valve close.

【0032】ここでは、複数のシリンダ12のそれぞれ
における燃焼、または、1つのシリンダ12における各
回の燃焼について、充填される空気量(閉弁前圧力)と
燃料噴射器11の動作時間の比が等しければ、燃焼の空
燃比も等しくなるとみなしているから、その後の要因
(例えば、シリンダ12間の温度差やプラグの異常)は
分離できない。しかし、例えば、排気ガスの酸素濃度を
測定して、空燃比が適正にもかかわらず不完全燃焼が検
知されれば、その原因は、充填される空気量と燃料噴射
器11の動作時間の比が等しくても空燃比を異常とさせ
得るその後の要因へ自動的に絞り込まれることになり、
原因の解明や修理後の再評価を極めて容易に実施でき
る。
Here, the ratio of the amount of air to be charged (pre-valve closing pressure) to the operating time of the fuel injector 11 is equal for combustion in each of the plurality of cylinders 12 or each time combustion in one cylinder 12. For example, since it is considered that the air-fuel ratio of combustion is also equal, the subsequent factors (for example, the temperature difference between the cylinders 12 and the abnormality of the plug) cannot be separated. However, for example, when the oxygen concentration of the exhaust gas is measured and incomplete combustion is detected even though the air-fuel ratio is proper, the cause is the ratio of the amount of air to be filled and the operating time of the fuel injector 11. Will be automatically narrowed down to the subsequent factors that may make the air-fuel ratio abnormal, even if
Elucidation of the cause and re-evaluation after repair can be performed very easily.

【0033】請求項1の発明の限定された態様では、複
数のシリンダ12のそれぞれで固有に求めた空燃比から
平均値を求めている。通常の内燃機関10では、複数の
シリンダ12はそれぞれ同容積であり、点火〜燃焼のプ
ロセスは複数のシリンダ12内でほぼ同様に進行すると
期待されるから、この空燃比の平均値は、内燃機関10
の排気ガスの組成や酸素濃度を反映したものとなる。
In the limited aspect of the invention of claim 1, the average value is obtained from the air-fuel ratio uniquely obtained for each of the plurality of cylinders 12. In the normal internal combustion engine 10, the plurality of cylinders 12 have the same volume, and the ignition-combustion process is expected to proceed in the same manner in the plurality of cylinders 12. Therefore, the average value of the air-fuel ratio is 10
It reflects the exhaust gas composition and oxygen concentration.

【0034】請求項2の内燃機関の評価方法では、複数
のシリンダのそれぞれで固有の空燃比が演算され、演算
された空燃比の時間的な変化が許容範囲を越えて大きく
変化した場合に警告信号が出力される。ここで言う時間
的な変化とは、(1) 内燃機関の1サイクルを構成する順
番の複数回の爆発のうちの異常検知(複数のシリンダの
空燃比の平均値に対する個々の空燃比のばらつきの演
算)、(2) 予め定めた空燃比特性の時間的変化に対する
複数のシリンダの空燃比の平均値(または個々の空燃
比)の差、(3) 現在から溯った一定サイクル数(例え
ば、50サイクル100回転分)について求めた複数の
シリンダの空燃比の平均値(または個々の空燃比)に対
する今回のサイクルの個々の空燃比の差、等の比較を通
じて求めることができる。
In the method for evaluating an internal combustion engine according to the second aspect of the present invention, a unique air-fuel ratio is calculated for each of the plurality of cylinders, and a warning is issued when the temporal change in the calculated air-fuel ratio greatly exceeds the allowable range. The signal is output. The temporal changes referred to here are: (1) Abnormality detection in multiple explosions in the sequence that make up one cycle of the internal combustion engine ( Calculation), (2) difference of the average value (or individual air-fuel ratios) of the air-fuel ratios of a plurality of cylinders with respect to a temporal change of a predetermined air-fuel ratio characteristic, (3) a certain number of cycles from the present (for example, 50 It can be obtained by comparing the average value of the air-fuel ratios of a plurality of cylinders (or the individual air-fuel ratios) obtained for 100 cycles of the cycle) with the difference between the individual air-fuel ratios of this cycle.

【0035】好ましい評価方法では、内燃機関の回転に
伴って、複数のシリンダに関して順番に演算される空燃
比のうち、最新の空燃比を含む直近の連続した複数個
(好ましくはシリンダの数に)の空燃比から平均値を求
め、この平均値に対して最新の空燃比を比較し、その格
差が許容範囲を越える場合に警告信号を発生させる。つ
まり、正常と判断すべき範囲を、内燃機関の運転状態に
追従させて徐々に変化させる。
In a preferred evaluation method, among the air-fuel ratios sequentially calculated for a plurality of cylinders in accordance with the rotation of the internal combustion engine, a plurality of the latest consecutive air-fuel ratios (preferably the number of cylinders) including the latest air-fuel ratio. The average value is obtained from the air-fuel ratio, the latest air-fuel ratio is compared with this average value, and a warning signal is generated when the difference exceeds the allowable range. That is, the range that should be judged to be normal is gradually changed by following the operating state of the internal combustion engine.

【0036】燃料噴射器の制御装置では、起動直後や外
気が極端に低温の場合に、燃料供給を増して低い空燃比
を設定する場合がある。このような場合、低い空燃比を
正常と判断すべきであり、正常と判断すべき範囲を徐々
に変化させる評価方法を採用すれば、誤判断による警告
信号の発生を避け得る。
In the control device for the fuel injector, the fuel supply may be increased to set a low air-fuel ratio immediately after starting or when the outside air is extremely cold. In such a case, a low air-fuel ratio should be judged to be normal, and if an evaluation method that gradually changes the range to be judged to be normal is adopted, the generation of a warning signal due to a wrong judgment can be avoided.

【0037】請求項3の判定装置では、図5のエンジン
のように、給気経路に圧力センサが配置され、圧力セン
サにより求めた圧力値に応じて燃料噴射器の刻々の動作
時間が演算される内燃機関に搭載されて、内燃機関の制
御手段の演算操作の正確さを判定する。例えば、内燃機
関側の圧力センサ、燃料噴射器の駆動コイル、クランク
軸の位相センサからそれぞれ出力を部分的に拝借し、基
本的にはこれら3つに基づいて個々のシリンダにおける
1サイクル分の空燃比を演算して、複数のシリンダの空
燃比の平均値を求め、この平均値に対して個々の空燃比
の少なくとも1つが許容範囲を越えた格差を有する場合
に警告信号を発生させる。
In the determination device of the third aspect, like the engine of FIG. 5, the pressure sensor is arranged in the air supply path, and the operating time of the fuel injector is calculated in accordance with the pressure value obtained by the pressure sensor. It is mounted on an internal combustion engine that determines the accuracy of the arithmetic operation of the control means of the internal combustion engine. For example, the output is partially borrowed from the pressure sensor on the internal combustion engine side, the drive coil of the fuel injector, and the phase sensor of the crankshaft. Basically, based on these three, the empty space for one cycle in each cylinder is calculated. The fuel ratio is calculated to obtain an average value of the air-fuel ratios of the plurality of cylinders, and a warning signal is generated when at least one of the individual air-fuel ratios has a difference exceeding the allowable range with respect to the average value.

【0038】内燃機関に設けたこれらの既存の要素から
信号を得る場合、判定装置は、内燃機関の燃料噴射器を
制御するマイコンそれ自体に収納されたプログラムとし
て構成されてもよい。マイコンは、複数のシリンダを平
均的に取り扱って燃料噴射器の作動時間を演算する一方
で、この作動時間が複数のシリンダのそれぞれで適正な
空燃比を達成しているか否かをリアルタイムに識別す
る。
When signals are obtained from these existing elements provided in the internal combustion engine, the determination device may be configured as a program stored in the microcomputer itself which controls the fuel injector of the internal combustion engine. The microcomputer handles a plurality of cylinders on an average basis to calculate the operating time of the fuel injector, and at the same time identifies in real time whether or not the operating time achieves an appropriate air-fuel ratio in each of the plurality of cylinders. .

【0039】複数のシリンダのそれぞれにおける空燃比
の識別は、通常の燃料噴射器の作動時間の演算に比較し
て、演算に関与するデータ数、演算ステップ数の両方が
かなり少なくて済むから、この新たなプログラムの追加
は、マイコンの演算能力を損なわせることなく実現でき
る。
Identification of the air-fuel ratio in each of the plurality of cylinders requires considerably less both the number of data and the number of calculation steps involved in the calculation, as compared with the normal calculation of the operating time of the fuel injector. New programs can be added without compromising the computing power of the microcomputer.

【0040】[0040]

【実施例】図2は実施例のA/F評価装置の取付け状態
の説明図、図3は図2のガソリンエンジンにおける各シ
リンダのサイクルと燃料噴射タイミングの関係の説明
図、図4は実施例の計算フローの説明図、図5は実施例
のフローチャート、図6は不具合検出フラグ出力の説明
図である。ここでは、各シリンダに燃料噴射器を備えた
4気筒4サイクル・ガソリンエンジンに装着して、各シ
リンダにおける空燃比(A/F:Air /Fuel)を判定す
るA/F評価装置が示される。
FIG. 2 is an explanatory view of a mounting state of the A / F evaluation device of the embodiment, FIG. 3 is an explanatory view of a relationship between a cycle of each cylinder and fuel injection timing in the gasoline engine of FIG. 2, and FIG. 4 is an embodiment. 5 is an explanatory diagram of the calculation flow of FIG. 5, FIG. 5 is a flowchart of the embodiment, and FIG. 6 is an explanatory diagram of the defect detection flag output. Here, an A / F evaluation device is shown which is mounted on a 4-cylinder 4-cycle gasoline engine having a fuel injector in each cylinder and determines the air-fuel ratio (A / F: Air / Fuel) in each cylinder.

【0041】図2において、車載用のガソリンエンジン
21は、4本のシリンダC1〜C4を有し、シリンダC
1〜C4の吸気管26には、それぞれ専用の燃料噴射器
28が設けられる。シリンダC1〜C4の吸気管26
は、1つにまとめられて、スロットルバルブを介して、
図示しないエアクリーナに接続される。一方、シリンダ
C1〜C4の排気管27は、1つにまとめられて、図示
しない排気ガス浄化装置に接続される。
In FIG. 2, a vehicle-mounted gasoline engine 21 has four cylinders C1 to C4.
A dedicated fuel injector 28 is provided in each of the intake pipes 1 to C4. Intake pipe 26 of cylinders C1 to C4
Are grouped together, via the throttle valve,
It is connected to an air cleaner (not shown). On the other hand, the exhaust pipes 27 of the cylinders C1 to C4 are integrated into one and connected to an exhaust gas purification device (not shown).

【0042】ガソリンエンジン21は、図7のガソリン
エンジンと同様、多数のセンサを設けており、これらの
センサは、図示しないECU(Electronic Control Uni
t )に接続される。ECUは、これらのセンサからの刻
々の入力状態に応じて、好ましい空燃比に相当する燃料
供給量を演算して、燃料噴射器28の動作時間(動作回
数)を定める。
Like the gasoline engine of FIG. 7, the gasoline engine 21 is provided with a number of sensors, and these sensors are not shown in an ECU (Electronic Control Uni).
t)). The ECU calculates the fuel supply amount corresponding to the preferable air-fuel ratio according to the input state from these sensors every moment, and determines the operating time (number of operations) of the fuel injector 28.

【0043】A/F評価装置20は、ガソリンエンジン
21に設けられた既存のバキュームセンサ32、クラン
ク角センサ37、および燃料噴射器28の信号ラインか
ら信号を得て、それぞれのシリンダC1〜C4における
空燃比を演算する。
The A / F evaluation device 20 obtains signals from the existing vacuum sensor 32, the crank angle sensor 37, and the signal line of the fuel injector 28 provided in the gasoline engine 21, and receives signals from the respective cylinders C1 to C4. Calculate the air-fuel ratio.

【0044】A/F評価装置20では、クランク角セン
サ37を通じて、それぞれのシリンダC1〜C4の吸気
弁が閉鎖動作を開始する直後のタイミングを抽出し、こ
のタイミングでバキュームセンサ32の圧力値PMを取
り込んで、それぞれのシリンダC1〜C4における空気
供給量を見積もる。また、クランク角センサ37を通じ
て、それぞれのシリンダC1〜C4の吸気弁の前回の閉
鎖タイミングから今回の閉鎖タイミングまでの期間を検
知し、この期間に該当する燃料噴射器28の作動時間の
積算値ΣTi を演算する。そして、圧力値PMを積算値
ΣTi で割算して所定の定数Kを乗じる操作を通じて、
それぞれのシリンダC1〜C4における空燃比A/Fが
演算される。
In the A / F evaluation device 20, the timing immediately after the intake valve of each of the cylinders C1 to C4 starts the closing operation is extracted through the crank angle sensor 37, and the pressure value PM of the vacuum sensor 32 is calculated at this timing. It is taken in and the air supply amount in each cylinder C1-C4 is estimated. Further, the crank angle sensor 37 detects the period from the last closing timing to the current closing timing of the intake valves of the cylinders C1 to C4, and the integrated value ΣT of the operating time of the fuel injector 28 corresponding to this period. Calculate i . Then, through the operation of dividing the pressure value PM by the integrated value ΣT i and multiplying it by a predetermined constant K,
The air-fuel ratio A / F in each of the cylinders C1 to C4 is calculated.

【0045】A/F評価装置20は、ガソリンエンジン
21に設けられたその他のセンサ21からも信号を得て
おり、バキュームセンサ32、クランク角センサ37、
燃料噴射器28の動作信号から演算した空燃比A/Fに
異常が検知された場合に、その他のセンサの入力状態を
識別して異常箇所を突き止めるプログラムへ引き続き移
行する。
The A / F evaluation device 20 also obtains signals from the other sensors 21 provided in the gasoline engine 21, and the vacuum sensor 32, the crank angle sensor 37,
When an abnormality is detected in the air-fuel ratio A / F calculated from the operation signal of the fuel injector 28, the program proceeds to a program for identifying the input states of other sensors and locating the abnormal portion.

【0046】図3において、図2のガソリンエンジン2
1のシリンダC1は、クランク角度0度〜720度の2
回転で、給気、圧縮、膨張、排気の4行程1サイクルを
実行する。シリンダC2、シリンダC3、シリンダC4
は、シリンダC1よりもそれぞれ180度、360度、
540度だけ遅れて給気、圧縮、膨張、排気の4行程1
サイクルを実行する。
Referring to FIG. 3, the gasoline engine 2 of FIG.
Cylinder C1 of 1 has a crank angle of 0 to 720 degrees 2
By rotation, four cycles of intake, compression, expansion and exhaust are executed in one cycle. Cylinder C2, Cylinder C3, Cylinder C4
Are 180 degrees, 360 degrees, and
4 strokes of air supply, compression, expansion and exhaust with a delay of 540 degrees 1
Run the cycle.

【0047】一方、ガソリンエンジン21の4個の燃料
噴射器28は、クランク角度360度のやや手前で一斉
に噴射を開始し、各センサの入力状態に基づいてECU
で演算され、補正された時間だけ噴射を継続する。図中
の燃料噴射時間T1 に引き続いて実行された燃料噴射時
間T2 、T3 は、スロットルバルブの急な開放動作によ
る補正分である。また、燃料噴射時間T4 は、燃料噴射
時間T1 、T2 、T3の属するサイクルの次のサイクル
に属しており、燃料噴射時間T1 、T2 、T3を合計し
たやや長い時間に演算されている。
On the other hand, the four fuel injectors 28 of the gasoline engine 21 start injection all at once slightly before the crank angle of 360 degrees, and the ECU is operated based on the input state of each sensor.
The injection is continued for a corrected time calculated by. The fuel injection times T 2 and T 3 executed subsequent to the fuel injection time T 1 in the figure are the correction amounts due to the sudden opening operation of the throttle valve. Further, the fuel injection time T 4, the fuel injection time T 1, T 2, belongs to a cycle subsequent to a cycle in which belongs T 3, the fuel injection time T 1, the T 2, T 3 time slightly longer which is the sum of It is being calculated.

【0048】それぞれのシリンダC1〜C4の給気行程
でシリンダC1〜C4内に供給される燃料の量は、シリ
ンダC1〜C4のそれぞれにおける前回の閉弁タイミン
グから今回の閉弁タイミングまでの期間の通算の噴射時
間ΣTi として演算される。
The amount of fuel supplied into the cylinders C1 to C4 in the air supply stroke of each of the cylinders C1 to C4 depends on the period from the last valve closing timing of each of the cylinders C1 to C4 to the current valve closing timing. It is calculated as the total injection time ΣT i .

【0049】従って、シリンダC1、C2に関しては、
今回の閉弁タイミングを過ぎているため、今回の燃料噴
射時間T1 、T2 、T3 の合計が、次回のそれぞれの閉
弁直前の圧力値と一緒に、次回のサイクルの空燃比の演
算に使用される。また、シリンダC3に関しては、今回
の燃料噴射時間T1 が今回の閉弁に間に合うため、今回
の燃料噴射時間T2 、T3 と次回の燃料噴射時間T4
点線より前の部分の合計が、次回の閉弁直前の圧力値と
一緒に、次回のサイクルの空燃比の演算に使用される。
シリンダC4に関しては、燃料噴射時間T1 、T2 、T
3 の合計が、今回のそれぞれの閉弁直前の圧力値と一緒
に、今回のサイクルの空燃比の演算に使用される。
Therefore, regarding the cylinders C1 and C2,
Since the current valve closing timing has passed, the total of the fuel injection times T 1 , T 2 , and T 3 of this time, together with the pressure value immediately before each valve closing of the next time, calculates the air-fuel ratio of the next cycle. Used for. Further, regarding the cylinder C3, since the current fuel injection time T 1 is in time for the current valve closing, the total of the current fuel injection times T 2 , T 3 and the portion before the dotted line of the next fuel injection time T 4 is the sum. , Is used for the calculation of the air-fuel ratio in the next cycle together with the pressure value immediately before the next valve closing.
For the cylinder C4, the fuel injection times T 1 , T 2 , T
The sum of 3 is used in the calculation of the air-fuel ratio of this cycle, together with the pressure value immediately before each closing of this cycle.

【0050】図4において、図2のA/F評価装置で
は、クランク角センサ37、バキュームセンサ32、燃
料噴射器28の噴射信号から、それぞれのシリンダC1
〜C4における空燃比A/Fが次々に演算される。そし
て、最新の空燃比A/Fを含む直近の連続した4個の空
燃比A/Fから求めた平均値に対して判定レベルの上限
および下限を設定し、判定レベルの上限および下限に対
して最新の空燃比A/Fを比較し、最新の空燃比A/F
が判定レベルの上限から下限までの範囲を逸脱していれ
ば、不具合トリガ信号が出力される。
Referring to FIG. 4, in the A / F evaluation device of FIG. 2, each cylinder C1 is detected from the injection signals of the crank angle sensor 37, the vacuum sensor 32, and the fuel injector 28.
The air-fuel ratio A / F at C4 is calculated one after another. Then, the upper and lower limits of the judgment level are set for the average value obtained from the latest four consecutive air-fuel ratios A / F including the latest air-fuel ratio A / F, and the upper and lower limits of the judgment level are set. The latest air-fuel ratio A / F is compared and the latest air-fuel ratio A / F is compared.
If is out of the range from the upper limit to the lower limit of the determination level, the malfunction trigger signal is output.

【0051】このようにして、シリンダC1〜C4の空
燃比A/Fは、順番に、それぞれ直近の4個の空燃比A
/Fの平均値との対比で適否が判定され、ガソリンエン
ジン21が回転を続ける限り、空燃比A/Fの演算と適
否の判定がいつまでも繰り返し実行され、結局、4つの
シリンダC1〜C4で連続的に繰り返される全部の爆発
について、空燃比A/Fの演算と適否の判定が実施され
ることになる。
In this way, the air-fuel ratios A / F of the cylinders C1 to C4 are, in order, the four most recent air-fuel ratios A / F.
As long as the gasoline engine 21 continues to rotate, the calculation of the air-fuel ratio A / F and the determination of suitability are repeatedly executed indefinitely, and as a result, the four cylinders C1 to C4 are continuously connected. The air-fuel ratio A / F is calculated and appropriateness is determined for all the explosions that are repeatedly repeated.

【0052】図5において、ステップ41では、それぞ
れのシリンダC1〜C4の吸気弁が閉鎖動作を開始する
直後のタイミングを抽出して、このタイミングについて
のみバキュームセンサ32の圧力値PMを取り込む。従
って、空燃比A/Fの判定プログラムでは、ガソリンエ
ンジン21のクランク軸の2回転につき4個の圧力値P
Mを取り込むに過ぎず、これよりもはるかに短いサンプ
リング間隔でバキュームセンサ32の圧力値を取り込ん
で実行される通常の燃料噴射器の制御プログラムに比較
して取り扱うデータ数が少なく、演算容量の比較的に小
さい演算素子を使用した場合でも、ガソリンエンジン2
1の高速回転に追従可能な高速処理が可能である。
In FIG. 5, at step 41, the timing immediately after the intake valves of the cylinders C1 to C4 start the closing operation is extracted, and the pressure value PM of the vacuum sensor 32 is taken in only at this timing. Therefore, in the air-fuel ratio A / F determination program, four pressure values P per two revolutions of the crankshaft of the gasoline engine 21 are set.
Only M is taken in, and the number of data to be handled is small compared to a normal fuel injector control program executed by taking in the pressure value of the vacuum sensor 32 at a sampling interval much shorter than this. Gasoline engine 2 even if a relatively small arithmetic element is used
High-speed processing capable of following the high-speed rotation of 1 is possible.

【0053】ステップ42では、判定レベルの上限AF
Hおよび下限AFLに対して空燃比A/Fを比較する。
そして、判定レベルの上限AFHから下限AFLまでの
範囲を逸脱していればステップ44で不具合検出フラグ
の出力状態を1とし、範囲内であればステップ43で不
具合検出フラグの出力状態を0とする。
At step 42, the upper limit AF of the determination level is set.
The air-fuel ratio A / F is compared with H and the lower limit AFL.
Then, if the output level of the determination level deviates from the upper limit AFH to the lower limit AFL, the output state of the defect detection flag is set to 1 in step 44, and if it is within the range, the output state of the defect detection flag is set to 0 in step 43. .

【0054】図6において、ガソリンエンジン21のE
CUは、時間0でガソリンエンジン21を始動した直後
はやや濃厚に燃料供給を実施して、低い空燃比A/Fで
の運転を実行するが、冷却水やシリンダC1〜Cの温度
上昇に伴って徐々に燃料供給を絞り込み、通常の空燃比
A/Fでの運転に移行させる。この間、空燃比A/Fの
絶対値は図6のように変化するが、これに伴って上限判
定レベルAFHおよび下限判定レベルAFLも変化する
ので、不具合検出フラグは出力されない。
In FIG. 6, E of the gasoline engine 21
Immediately after starting the gasoline engine 21 at time 0, the CU performs fuel supply in a slightly rich manner and executes the operation at a low air-fuel ratio A / F, but with a rise in the temperature of the cooling water and the cylinders C1 to C. Then, the fuel supply is gradually narrowed down, and the operation is shifted to the normal air-fuel ratio A / F. During this period, the absolute value of the air-fuel ratio A / F changes as shown in FIG. 6, but the upper limit judgment level AFH and the lower limit judgment level AFL also change accordingly, so that no malfunction detection flag is output.

【0055】しかし、ガソリンエンジン21のECUに
何らかの外乱が起こり、異常な燃料噴射時間が演算、実
行されると、少なくとも前後4回の燃焼行程について、
空燃比A/Fが影響を受け、空燃比A/Fの突出45が
発生する。このとき、不具合検出フラグが1を出力す
る。
However, if some disturbance occurs in the ECU of the gasoline engine 21 and an abnormal fuel injection time is calculated and executed, at least four combustion strokes before and after are performed.
The air-fuel ratio A / F is affected, and a protrusion 45 of the air-fuel ratio A / F is generated. At this time, the defect detection flag outputs 1.

【0056】[0056]

【発明の効果】請求項1の空燃比測定装置によれば、内
燃機関の複数のシリンダのそれぞれで独立した空燃比を
正確に求め得る。また、少ないデータ数と簡単な演算操
作で空燃比を演算するから、比較的に低速度の演算装置
でも、内燃機関の全部のシリンダにおける全部のサイク
ルについて、それぞれ空燃比を求めることができ、内燃
機関が高速回転している場合でもリアルタイムに追従で
きる。
According to the air-fuel ratio measuring device of the first aspect, the independent air-fuel ratio can be accurately obtained for each of the plurality of cylinders of the internal combustion engine. Further, since the air-fuel ratio is calculated with a small number of data and a simple arithmetic operation, the air-fuel ratio can be obtained for each cycle of all cylinders of the internal combustion engine even with a relatively low speed arithmetic device. It can follow in real time even when the engine is rotating at high speed.

【0057】さらに、空燃比の状態をリアルタイムに観
察して、各パラメータの空燃比に対する影響を1つ1つ
確認しながら、内燃機関の相互に影響し合うパラメータ
の必要な微調整を実施できるから、経験の浅い操作者で
も短時間で正確な調整が可能である。
Further, since the state of the air-fuel ratio can be observed in real time and the influence of each parameter on the air-fuel ratio can be confirmed one by one, the necessary fine adjustment of the mutually influencing parameters of the internal combustion engine can be carried out. Even an inexperienced operator can make accurate adjustments in a short time.

【0058】図5のガソリンエンジンのECUが行うよ
うに、吸気温度による吸入空気量の補正を行ってもよ
い。しかし、処理すべきデータ数を絞り込んで、複数の
シリンダ全部について、全部の爆発の個々の空燃比を求
め得るとした特徴をより有効に活用するためには、補正
による絶対値の修正よりは、むしろ、実施例で行ったよ
うな相対値の比較を選択して好ましい。
The intake air amount may be corrected by the intake air temperature, as is done by the ECU of the gasoline engine of FIG. However, in order to more effectively utilize the feature that the number of data to be processed is narrowed down and the individual air-fuel ratios of all the explosions can be obtained for all of the plurality of cylinders, rather than correction of the absolute value by correction, Rather, it is preferable to choose a relative value comparison as done in the examples.

【0059】請求項2の内燃機関の評価方法によれば、
内燃機関における燃料噴射器の制御状態の適否をリアル
タイムに識別できる。従って、異常な状態を見逃し、放
置して内燃機関に損害を与える可能性が低くなる。ま
た、多数のセンサが複雑に影響し合う内燃機関でも、異
常な状態の原因解析や修理後の評価を短時間で正確に実
施できる。
According to the internal combustion engine evaluation method of claim 2,
Whether or not the control state of the fuel injector in the internal combustion engine is appropriate can be identified in real time. Therefore, it is less likely that an abnormal state is overlooked and left unattended to damage the internal combustion engine. Further, even in an internal combustion engine in which a large number of sensors are complicatedly affected, the cause analysis of an abnormal state and the evaluation after repair can be accurately performed in a short time.

【0060】請求項3の判定装置によれば、内燃機関に
元々装備された圧力センサを利用して空燃比を判定する
から、装着に伴う内燃機関の改造やセンサの追加を最小
限にできる。
According to the determination device of the third aspect, since the air-fuel ratio is determined by using the pressure sensor originally installed in the internal combustion engine, it is possible to minimize the modification of the internal combustion engine and the addition of the sensor accompanying the mounting.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の基本的な構成の説明図であ
る。
FIG. 1 is an explanatory diagram of a basic configuration of the invention of claim 1.

【図2】実施例のA/F評価装置の取付け状態の説明図FIG. 2 is an explanatory view of a mounted state of the A / F evaluation device of the embodiment.

【図3】各シリンダのサイクルと燃料噴射タイミングの
関係の説明図
FIG. 3 is an explanatory diagram of a relationship between a cycle of each cylinder and fuel injection timing.

【図4】実施例の計算フローの説明図、FIG. 4 is an explanatory diagram of a calculation flow of the embodiment,

【図5】実施例のフローチャートFIG. 5 is a flowchart of an embodiment.

【図6】不具合検出フラグ出力の説明図ある。FIG. 6 is an explanatory diagram of a defect detection flag output.

【図7】燃料噴射器を備えたガソリンエンジンの構成の
説明図である。
FIG. 7 is an explanatory diagram of a configuration of a gasoline engine including a fuel injector.

【符号の説明】[Explanation of symbols]

10 内燃機関 11 燃料噴射器 12 シリンダ 13 時間計測手段 14 圧力計測手段 15 演算手段 10 Internal Combustion Engine 11 Fuel Injector 12 Cylinder 13 Time Measuring Means 14 Pressure Measuring Means 15 Computing Means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/36 A 8011−3G 45/00 368 F 7536−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 41/36 A 8011-3G 45/00 368 F 7536-3G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料噴射器(11)を備えた内燃機関
(10)に接続されて、該内燃機関(10)の複数のシ
リンダ(12)の少なくとも1つにおける1サイクルの
空燃比を算出可能な空燃比測定装置において、 前記シリンダ(12)の吸気弁の動作に同期して、該吸
気弁の閉弁前のタイミングで吸気管内の圧力値を検知す
る圧力計測手段(14)と、 前記シリンダ(12)の吸気弁の動作に同期して、該吸
気弁の前回の閉弁から今回の閉弁までの期間における前
記燃料噴射器(11)の燃料噴射時間の積算値を求める
時間計測手段(13)と、 前記圧力値を前記積算値で除した値に基づいて、今回の
閉弁直後の燃焼における空燃比を算出する演算手段(1
5)と、を有することを特徴とする空燃比測定装置。
1. An air-fuel ratio for one cycle in at least one of a plurality of cylinders (12) of an internal combustion engine (10) connected to an internal combustion engine (10) having a fuel injector (11) can be calculated. In another air-fuel ratio measuring device, a pressure measuring unit (14) for detecting a pressure value in an intake pipe at a timing before closing of the intake valve in synchronization with the operation of the intake valve of the cylinder (12); In synchronization with the operation of the intake valve of (12), a time measuring means for obtaining an integrated value of the fuel injection time of the fuel injector (11) in the period from the previous closing of the intake valve to the current closing of the intake valve ( 13) and a value obtained by dividing the pressure value by the integrated value, the calculating means (1) for calculating the air-fuel ratio in the combustion immediately after the current valve closing.
5) An air-fuel ratio measuring device comprising:
【請求項2】 複数のシリンダに対する給気経路に設け
た燃料噴射器と、 該空気経路を通じたシリンダの吸い込み空気量を計測す
る計測手段と、 計測された該空気量に基づいて前記燃料噴射器の動作時
間を演算する制御手段と、を有する内燃機関について、 前記演算の適否を判定する内燃機関の評価方法におい
て、 前記給気経路のスロットルバルブよりもシリンダ側に配
置した圧力センサが出力する圧力値を、それぞれのシリ
ンダの吸気弁における閉弁前のタイミングで計測し、 それぞれのシリンダについて、吸気弁の前回の閉弁から
今回の閉弁までの期間における前記燃料噴射器の動作時
間の積算値を演算し、 それぞれのシリンダについて、前記圧力値を前記積算値
で除した値に基づいて1サイクルの燃焼における空燃比
を演算し、 該空燃比の時間的な変化が許容範囲を越えた場合に警告
信号を発生させることを特徴とする内燃機関の評価方
法。
2. A fuel injector provided in an air supply path for a plurality of cylinders, measuring means for measuring the amount of air sucked into the cylinder through the air path, and the fuel injector based on the measured air quantity. An internal combustion engine having a control means for calculating the operation time of, a method for evaluating the internal combustion engine for determining the suitability of the calculation, wherein the pressure output by a pressure sensor arranged on the cylinder side of the throttle valve in the air supply path is output. The value is measured at the timing before closing the intake valve of each cylinder, and for each cylinder, the cumulative value of the operating time of the fuel injector in the period from the previous closing of the intake valve to the current closing For each cylinder, the air-fuel ratio in one cycle of combustion is calculated based on a value obtained by dividing the pressure value by the integrated value, Evaluation method for an internal combustion engine, characterized in that temporal variation of the ratio is to generate a warning signal when exceeding the allowable range.
【請求項3】 複数のシリンダに対する給気経路に設け
た燃料噴射器と、 該空気経路のスロットルバルブよりもシリンダ側に設け
た圧力センサと、 該圧力センサが出力する圧力値から複数のシリンダの吸
い込み空気量を演算して、該空気量に基づいて前記燃料
噴射器の動作時間を演算する制御手段と、を有する内燃
機関に装着されて、前記演算の適否を判定する判定装置
において、 前記圧力センサが出力する圧力値を、それぞれのシリン
ダの吸気弁における閉弁前のタイミングで計測する計測
手段と、 吸気弁の前回の閉弁から今回の閉弁までの期間における
前記燃料噴射器の動作時間の積算値をそれぞれのシリン
ダについて求める積算手段と、 前記圧力値を前記積算値で除した値に基づいてそれぞれ
のシリンダにおける1サイクル分の空燃比を演算し、該
空燃比の平均値に対する個々の空燃比の差が許容範囲を
越えた場合に警告信号を発生させる制御手段と、を有す
ることを特徴とする判定装置。
3. A fuel injector provided in an air supply path for a plurality of cylinders, a pressure sensor provided on a cylinder side of a throttle valve in the air path, and a plurality of cylinders based on a pressure value output by the pressure sensor. A determination device that is mounted on an internal combustion engine having a control unit that calculates an intake air amount and calculates an operation time of the fuel injector based on the air amount, and determines whether the calculation is appropriate. Measuring means for measuring the pressure value output by the sensor at the timing before closing the intake valve of each cylinder, and the operating time of the fuel injector in the period from the previous closing of the intake valve to the current closing Of the air-fuel for one cycle based on the value obtained by dividing the pressure value by the integrated value. Calculates a, and having a control means for generating a warning signal when the difference between the individual air-fuel ratio to the average value of the air-fuel ratio has exceeded the allowable range determining unit.
JP3696893A 1993-02-25 1993-02-25 Air-fuel ratio measuring deivice, method for evaluating internal combustion engine and judging device Withdrawn JPH06249034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3696893A JPH06249034A (en) 1993-02-25 1993-02-25 Air-fuel ratio measuring deivice, method for evaluating internal combustion engine and judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3696893A JPH06249034A (en) 1993-02-25 1993-02-25 Air-fuel ratio measuring deivice, method for evaluating internal combustion engine and judging device

Publications (1)

Publication Number Publication Date
JPH06249034A true JPH06249034A (en) 1994-09-06

Family

ID=12484544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3696893A Withdrawn JPH06249034A (en) 1993-02-25 1993-02-25 Air-fuel ratio measuring deivice, method for evaluating internal combustion engine and judging device

Country Status (1)

Country Link
JP (1) JPH06249034A (en)

Similar Documents

Publication Publication Date Title
JP4152588B2 (en) Internal combustion engine misfire detection method and apparatus for carrying out the method
US6763707B2 (en) Failure determination system and method for internal combustion engine and engine control unit
JPH01253543A (en) Air-fuel ratio control device for engine
US6196197B1 (en) Engine control apparatus and method having cylinder-charged air quantity correction by intake/exhaust valve operation
JP4577211B2 (en) Method and apparatus for determining Wiebe function parameters
US6415656B1 (en) Onboard diagnostic misfire detection monitor for internal combustion engines
KR940001682Y1 (en) Fuel injection device
JPH09195826A (en) Air-fuel ratio control method of multicylinder engine
US5129228A (en) Electronic engine control system
US20040211168A1 (en) Deterioration detecting device for oxygen concentration sensor
JPH0996238A (en) Engine combustion control device
JPWO2004013479A1 (en) Engine control device
US6975934B2 (en) Control system for correcting a torque variation of an engine
JP6420915B2 (en) Internal combustion engine control device
JP4365671B2 (en) Engine control device
JP3961745B2 (en) Misfire detection device for internal combustion engine
JPH06249034A (en) Air-fuel ratio measuring deivice, method for evaluating internal combustion engine and judging device
JPH0510168A (en) Multicylinder type fuel injection two-cycle internal combustion engine
JP2006233781A (en) Catalyst diagnostic device for internal combustion engine
JP4115677B2 (en) Atmospheric pressure detection device for internal combustion engine
JP6350591B2 (en) Control device for internal combustion engine
JPH07139437A (en) Diagnostic device for engine control device and method thereof
JP2657713B2 (en) Fuel leak diagnosis system for electronically controlled fuel injection type internal combustion engine
JP4186350B2 (en) Combustion state detection device for internal combustion engine
JPH07279739A (en) Fuel property detecting device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509