JPH0624789B2 - Double packaging bag manufacturing method - Google Patents

Double packaging bag manufacturing method

Info

Publication number
JPH0624789B2
JPH0624789B2 JP60178224A JP17822485A JPH0624789B2 JP H0624789 B2 JPH0624789 B2 JP H0624789B2 JP 60178224 A JP60178224 A JP 60178224A JP 17822485 A JP17822485 A JP 17822485A JP H0624789 B2 JPH0624789 B2 JP H0624789B2
Authority
JP
Japan
Prior art keywords
film
bag
density polyethylene
heat
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60178224A
Other languages
Japanese (ja)
Other versions
JPS6239226A (en
Inventor
良雄 松本
敏雄 藤井
和広 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60178224A priority Critical patent/JPH0624789B2/en
Publication of JPS6239226A publication Critical patent/JPS6239226A/en
Publication of JPH0624789B2 publication Critical patent/JPH0624789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bag Frames (AREA)
  • Making Paper Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重包装袋の製造法に関するものである。詳し
くは、米穀類、肥料等の比較的重い物品を包装するのに
適した、二重包装袋の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a double packaging bag. More specifically, the present invention relates to a method for producing a double packaging bag suitable for packaging relatively heavy items such as rice grains and fertilizers.

〔従来技術〕[Prior art]

近年、開発された線状低密度ポリエチレン(以下LLD
と称す)は、従来製造されていた、分岐状(高圧法)低
密度ポリエチレン(以下HPLDと称す)に比べ、引張り強
さ、衝撃強度、剛性等の機械的強度に優れ、しかも容易
に熱シールできることからして、包装用資材、例えば、
硫安や尿素等の肥料類、カプロラクタムや界面活性剤等
の工業薬品類、或いは米穀類等の重包装用袋等に用いら
れるようになつてきた。
Recently developed linear low density polyethylene (hereinafter LLD
Is superior in mechanical strength such as tensile strength, impact strength and rigidity to the conventional (manufactured) branched (high pressure method) low density polyethylene (hereinafter referred to as HPLD), and is easily heat-sealed. From what can be done, packaging materials, for example,
It has come to be used in fertilizers such as ammonium sulfate and urea, industrial chemicals such as caprolactam and a surfactant, and heavy packaging bags such as rice grains.

上記LLDを用いて作られた包装袋は、従来のHPLD
の袋よりも薄肉で、高強度のものが得られるが、反面、
袋のフイルム肉厚の薄肉化により、袋の胴部における破
断抗張力が低下し、輸送中、突起物等で破れたり、袋に
内容物を入れて手で持ち運ぶ際、袋を持つた指先が袋に
突きささる現象、いわゆる「指抜け」を生じるという実
用上の問題があつた。
The packaging bag made using the above LLD is a conventional HPLD
Although it is thinner than the bag and has high strength,
Due to the thin film thickness of the bag, the breaking strength at the body of the bag is reduced, and the bag may be torn by protrusions or the like during transportation, or when the contents are put in the bag and carried by hand, the fingertips holding the bag are bags. There was a problem in practical use that a phenomenon of sticking to the skin, a so-called "finger omission", occurred.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者はこのような現状に鑑み、線状低密度ポリエチ
レンを用いた包装袋の胴部における、破断抗張力を改良
すべく、鋭意検討した結果、特定の線状低密度ポリエチ
レンを用いて、特定の条件下で、未延伸フイルムを成形
し、次いで、これを特定の条件下で延伸処理して、得ら
れた延伸フイルムを二重にして、包装袋を製造すること
により、上記目的が達成されることを見出し、本発明を
完成した。
In view of such a situation, the present inventor, in the body portion of the packaging bag using the linear low-density polyethylene, in order to improve the breaking tensile strength, as a result of diligent study, using a specific linear low-density polyethylene, specific The above-mentioned object is achieved by molding an unstretched film under the conditions of, and then subjecting this to a stretching treatment under specific conditions to make the resulting stretched film double and produce a packaging bag. That is, the present invention has been completed.

すなわち、本発明の要旨はメルトインデツクスが2g/
10分以下で、且つ流動比が35以下の線状低密度ポリ
エチレン75〜100重量部と、メルトインデツクスが
2g/10分以下、流動比が50以下の分岐状低密度ポ
リエチレン0〜25重量部とからなるポリエチレン組成
物を、ドラフト率2〜50の条件下でインフレーシヨン
成形、またはTダイ成形し、得られたフイルムまたはシ
ートを少なくとも一方方向に面積倍率1.2〜9倍に延伸
し、次いで該延伸フイルムを二重にして袋を製造するこ
とを特徴とする二重袋の製造法に存する。
That is, the gist of the present invention is that the melt index is 2 g /
75 to 100 parts by weight of linear low-density polyethylene having a flow ratio of 35 or less and 10 minutes or less, and 0 to 25 parts by weight of branched low-density polyethylene having a melt index of 2 g / 10 minutes or less and a flow ratio of 50 or less. The polyethylene composition consisting of and is subjected to inflation molding or T-die molding under the condition of a draft rate of 2 to 50, and the obtained film or sheet is stretched in at least one direction to have an area ratio of 1.2 to 9 times, and then stretched. A method for producing a double bag is characterized in that the stretched film is doubled to produce a bag.

本発明を詳細に説明するに、本発明に用いられる線状低
密度ポリエチレンとは、エチレンと他のα−オレフイン
との共重合物であり、従来の高圧法により製造された低
密度ポリエチレン樹脂とは異なる。線状低密度ポリエチ
レンは、例えばエチレンと、他のα−オレフインとして
ブテン、ヘキセン、オクテン、デセン、4−メチルペン
テン−1等を4〜17重量%程度、好ましくは5〜15
重量%程度共重合したものであり中低圧法高密度ポリエ
チレン製造に用いられるチーグラー型触媒又はフイリツ
プス型触媒を用いて製造されたものであり、従来の高密
度ポリエチレンを共重合成分により短い枝分かれ構造と
し、密度もこの短鎖枝分かれを利用して適当に低下させ
0.91〜0.95g/cm3程度としたものであり、従来の低密
度ポリエチレンより直鎖性があり、高密度ポリエチレン
より枝分かれが多い構造のポリエチレンである。
To explain the present invention in detail, the linear low-density polyethylene used in the present invention is a copolymer of ethylene and other α-olefin, and is a low-density polyethylene resin produced by a conventional high-pressure method. Is different. The linear low-density polyethylene includes, for example, ethylene and other α-olefins such as butene, hexene, octene, decene, and 4-methylpentene-1 at about 4 to 17% by weight, preferably 5 to 15%.
It is a copolymer of about% by weight and is produced by using a Ziegler type catalyst or a Phillips type catalyst used in the production of medium- and low-pressure method high-density polyethylene.The conventional high-density polyethylene is made into a short branched structure by a copolymerization component. , The density is also appropriately reduced by utilizing this short chain branching
It is about 0.91 to 0.95 g / cm 3, which is a polyethylene having a structure more linear than conventional low density polyethylene and more branched than high density polyethylene.

上記の線状低密度ポリエチレンはメルトインデツクスが
2g/10分以下、好ましくは0.2〜1.5g/10分の範
囲、流動比が35以下、好ましくは15〜30の範囲の
ものが用いられる。メルトインデツクスが上記範囲以上
では、包装袋とした際のヒートシール強度及び胴部強度
が低下するので好ましくない。また、流動比が上記範囲
以上では、包装袋とした際の胴部強度が低下するので好
ましくない。さらに、上記の線状低密度ポリエチレン
は、密度が0.915〜0.935Kg/cm3の範囲であるのが包装
袋とした際の剛性及び耐衝撃性の点から望ましい。
The linear low density polyethylene used has a melt index of 2 g / 10 minutes or less, preferably 0.2 to 1.5 g / 10 minutes, and a flow ratio of 35 or less, preferably 15 to 30. When the melt index is more than the above range, the heat-sealing strength and the body strength of the packaging bag are reduced, which is not preferable. Further, if the flow ratio is more than the above range, the strength of the body portion of the packaging bag is reduced, which is not preferable. Further, the linear low-density polyethylene described above preferably has a density in the range of 0.915 to 0.935 Kg / cm 3 from the viewpoint of rigidity and impact resistance when used as a packaging bag.

本発明方法においてメルトインデツクスとはJIS K 6760
に準拠し190℃で測定した値であり、流動比とは、上
記メルトインデツクス測定器を用い、せん断力106
イン/cm2(荷重11131g)と103ダイン/cm2(荷重11
13g)の押出量(g/10分)であり、 で算出される。また、密度はJIS K 6760に準拠して測定
した値である。
In the method of the present invention, the melt index is JIS K 6760.
Is a value measured at 190 ° C. in accordance with the above, and the flow ratio is a shear force of 10 6 dyne / cm 2 (load 11131 g) and 10 3 dyne / cm 2 (load 11
13 g) extrusion rate (g / 10 minutes), It is calculated by. The density is a value measured according to JIS K 6760.

流動比は用いられる樹脂の分子量分布の目安であり、流
動比の値が小さければ分子量分布は狭く、流動比の値が
大きければ分子量分布は広いことを表わしている。
The flow ratio is a measure of the molecular weight distribution of the resin used, and the smaller the flow ratio value, the narrower the molecular weight distribution, and the larger the flow ratio value, the wider the molecular weight distribution.

本発明においては、上述した線状低密度ポリエチレンの
みを用いてもよいが、線状低密度ポリエチレンを主成分
とし、これに分岐状低密度ポリエチレンを特定量配合す
ることにより、フイルム成形性及び延伸性が向上するの
で望ましい。
In the present invention, although only the linear low-density polyethylene described above may be used, the linear low-density polyethylene is the main component, and by blending a specific amount of the branched low-density polyethylene, film formability and stretching It is desirable because it improves the property.

上記線状低密度ポリエチレンに配合される分岐状低密度
ポリエチレンとは、エチレンホモポリマー及びエチレン
と他の共重合成分との共重合体を含むものである。
The branched low-density polyethylene to be blended with the linear low-density polyethylene includes an ethylene homopolymer and a copolymer of ethylene and another copolymerization component.

共重合成分としては酢酸ビニル、エチルアクリレート、
メチルアクリレート等のビニル化合物、ヘキセン、プロ
ピレン、オクテン、4−メチルペンテン−1等の炭素数
3以上のオレフイン類等が挙げられる。共重合成分の共
重合量としては0.5〜18重量%、好ましくは2〜10
重量%程度である。これらの低密度ポリエチレンは通常
の高圧法(1000〜3000Kg/cm2)により、酸素、有機過
酸化物等のラジカル発生剤を用いラジカル重合により得
たものであるのが望ましい。
As a copolymerization component, vinyl acetate, ethyl acrylate,
Examples thereof include vinyl compounds such as methyl acrylate, and olefins having 3 or more carbon atoms such as hexene, propylene, octene, and 4-methylpentene-1. The copolymerization amount of the copolymerization component is 0.5 to 18% by weight, preferably 2 to 10%.
It is about% by weight. It is desirable that these low-density polyethylenes are obtained by radical polymerization by a normal high-pressure method (1000 to 3000 kg / cm 2 ) using a radical generator such as oxygen or organic peroxide.

上記分岐状低密度ポリエチレンはメルトインデツクスが
2g/10分以下、好ましくは0.1〜1g/10分の範
囲、流動比が50以下、好ましくは30〜50の範囲の
ものが用いられる。メルトインデツクスが上記範囲以上
では、包装袋とした際に袋の胴部強度が低下するので好
ましくない。また、流動比が上記範囲以上では、包装袋
とした際に袋の胴部強度が低下するので好ましくない。
さらに上記の分岐状低密度ポリエチレンは密度が0.930
以下、特に0.915〜0.925の範囲であるのが、包装袋とし
た際の袋の胴部強度及びヒートシール強度の向上の点か
ら望ましい。
The branched low density polyethylene having a melt index of 2 g / 10 min or less, preferably 0.1 to 1 g / 10 min, and a flow ratio of 50 or less, preferably 30 to 50 is used. When the melt index is more than the above range, the strength of the body of the bag is reduced when it is formed into a packaging bag, which is not preferable. Further, if the flow ratio is more than the above range, the strength of the body of the bag is reduced when the bag is formed into a packaging bag, which is not preferable.
Furthermore, the above branched low-density polyethylene has a density of 0.930.
In the following, the range of 0.915 to 0.925 is particularly preferable from the viewpoint of improving the strength of the body of the bag and the heat sealing strength of the bag.

上記線状低密度ポリエチレンと分岐状低密度ポリエチレ
ンとの配合量は、線状低密度ポリエチレン100〜75
重量部、好ましくは95〜85重量部に対し、分岐状低
密度ポリエチレン0〜25重量部、好ましくは5〜15
重量部の範囲内で用いられる。
The blending amount of the linear low-density polyethylene and the branched low-density polyethylene is 100 to 75 for the linear low-density polyethylene.
0 to 25 parts by weight of branched low-density polyethylene, preferably 5 to 15 parts by weight with respect to parts by weight, preferably 95 to 85 parts by weight.
Used within the range of parts by weight.

なお、上記の線状低密度ポリエチレンまたは線状低密度
ポリエチレンと分岐状低密度ポリエチレンとの配合物に
は、必要に応じて抗酸化剤、紫外線吸収剤、帯電防止
剤、滑剤等通常ポリエチレンに使用される公知の添加剤
を添加してもよい。
The linear low-density polyethylene or the blend of the linear low-density polyethylene and the branched low-density polyethylene may be used in ordinary polyethylene such as an antioxidant, an ultraviolet absorber, an antistatic agent, and a lubricant, if necessary. Known additives may be added.

本発明においては、上記の線状低密度ポリエチレン、ま
たは線状低密度ポリエチレンと分岐状低密度ポリエチレ
ンとの配合物を用いて、未延伸フイルムまたはシートを
成形し、次いで該未延伸フイルムまたはシートを少なく
とも一方方向に面積倍率1.2〜9倍に延伸して延伸フイ
ルムを製造する。
In the present invention, the linear low-density polyethylene or a blend of linear low-density polyethylene and branched low-density polyethylene is used to form an unstretched film or sheet, and then the unstretched film or sheet is molded. A stretched film is manufactured by stretching the film at an area ratio of 1.2 to 9 in at least one direction.

未延伸フイルムまたはシートの成形は、通常のフイルム
またはシートの成形装置及び成形方法、例えば円形ダイ
によるイソフレーシヨン成形法、TダイによるTダイ成
形法等を採用し、上記のポリエチレンを樹脂温度150
〜250℃、ドラフト率2〜50の範囲の成形条件で成
形する。
The unstretched film or sheet is molded by using an ordinary film or sheet molding apparatus and molding method, for example, an isoflasion molding method using a circular die, a T die molding method using a T die, and the like.
Molding is carried out under molding conditions of ˜250 ° C. and draft ratio of 2-50.

インフレーシヨン成形する場合には、ブローアツプ比を
0.9〜2、ドラフト率を2〜50の範囲の条件で行なう
のが望ましい。
When molding by inflation, set the blow up ratio to
It is desirable to carry out under conditions of 0.9 to 2 and draft ratio of 2 to 50.

なお、本発明においてドラフト率とは下記表によつて得
られる。
In the present invention, the draft rate is obtained according to the table below.

式中、記号は下記の通り。 In the formula, the symbols are as follows.

なお、Tダイ成形の場合にはBUR=1として表わされ
る。
In the case of T-die molding, it is represented as BUR = 1.

ドラフト率が2未満ではフイルム成形性が不良となり、
また50より大きいと延伸時に縦裂けし易くなるので好
ましくない。
If the draft rate is less than 2, the film formability becomes poor,
On the other hand, if it is greater than 50, longitudinal tearing tends to occur during stretching, which is not preferable.

上記のようにして得られた未延伸フイルムは次いで延伸
処理される。本発明における延伸とは、延伸の前後にお
いてフイルム厚さを低減せしめ且つその表面積が1.2〜
9倍になるように少くとも一方方向に延ばすことを意味
している。該延伸はフイルムの縦方向(製膜機械のフイ
ルムの引取り方向)または横方向(フイルムの引取り方
向と直交する方向)に1軸延伸するか、または縦方向お
よび横方向に2軸延伸することにより行なわれる。
The unstretched film obtained as described above is then stretched. Stretching in the present invention is to reduce the film thickness before and after stretching and its surface area is 1.2 ~
It means extending in at least one direction so that it becomes 9 times. The stretching is uniaxially stretched in the machine direction of the film (the film take-up direction of the film forming machine) or in the transverse direction (direction orthogonal to the film take-up direction), or biaxially stretched in the machine direction and the transverse direction. It is done by

1軸延伸の場合には、T−ダイ法またはインフレーシヨ
ン法により得られた未延伸フイルムをそのまま或は所定
の幅にスリツトしたものを加熱し、例えば延伸ロールの
周速度を変化させることにより、引取方向すなわち縦方
向に延伸させる方法、または未延伸フイルムの端部を固
定したものを加熱し、この間隔を広げることにより横方
向に延伸させる方法等により行なわれる。
In the case of uniaxial stretching, the unstretched film obtained by the T-die method or the inflation method is heated as it is or after being slit into a predetermined width, for example, by changing the peripheral speed of the stretching roll. It is carried out by a method of stretching in the take-up direction, that is, a longitudinal direction, or a method of heating an unstretched film with its end portions fixed and stretching it in the transverse direction by widening this interval.

2軸延伸の場合には、T−ダイ法またはインフレーシヨ
ン法により得られた未延伸フイルムをそのまま或は所定
の幅にスリツトしたものを、逐次2軸延伸または同時2
軸延伸することにより行なわれる。逐次2軸延伸は縦方
向延伸後に横方向の延伸を行なうか、またはその逆の順
序のいずれかで行なわれる。また同時2軸延伸は縦方向
と横方向の延伸の時間的配分は任意であり、例えば横方
向の延伸が完了するまで縦方向も徐々に延伸を継続する
か、或は延伸開始は縦方向と横方向を同時にさせるか、
縦方向を先に完成させるなどの方法で行なわれる。
In the case of biaxial stretching, an unstretched film obtained by the T-die method or the inflation method as it is or slit into a predetermined width is successively biaxially stretched or simultaneously stretched.
It is carried out by axial stretching. Sequential biaxial stretching is performed either in the longitudinal direction and then in the transverse direction, or vice versa. In the simultaneous biaxial stretching, the time distribution of the stretching in the machine direction and the stretching in the transverse direction is arbitrary. For example, the stretching is gradually continued in the machine direction until the stretching in the machine direction is completed, or the stretching is started in the machine direction. You can make the horizontal direction at the same time,
It is done by a method such as completing the vertical direction first.

二軸延伸を行なう場合には、テンター法逐次二軸延伸
法、チーユーブラー法同時二軸延伸法が好適に採用され
る。延伸温度は上記線状低密度ポリエチレンまたはこれ
と分岐状低密度ポリエチレンとの配合物の融点−20℃
〜融点−5℃の範囲、特に融点−20℃〜融点−15℃
の範囲であるのが望ましい。融点−20℃未満の温度で
は分子鎖の運動性が乏しいため、延伸時に切断しやす
く、たとえ延伸できても延伸倍率があがらず、物性のす
ぐれた延伸フイルムが得にくく、また融点−5℃より高
い温度では該樹脂が一部溶けかかり、延伸配向を起こす
ことができず、物性のすぐれた延伸フイルムが得にくい
ので望ましくない。
When biaxial stretching is carried out, a tenter method sequential biaxial stretching method and a Cheebler method simultaneous biaxial stretching method are suitably adopted. The stretching temperature is the melting point of the linear low-density polyethylene or a blend of the linear low-density polyethylene and the branched low-density polyethylene-20 ° C.
To melting point -5 ° C, especially melting point -20 ° C to melting point -15 ° C
It is desirable that the range is. At a temperature below the melting point of −20 ° C., the mobility of the molecular chain is poor, so that it is easy to cut during stretching, and even if it can be stretched, the stretching ratio does not increase, and it is difficult to obtain a stretched film with excellent physical properties. At a high temperature, the resin partly melts and cannot be stretched and oriented, which makes it difficult to obtain a stretched film having excellent physical properties, which is not desirable.

延伸速度は2〜40%/秒の範囲、好ましくは10〜2
0%/秒の範囲である。延伸速度が2%/秒より遅いと
延伸途中の配向結晶化により延伸性が阻害されやすく、
また40%/秒より速いとポリマーの変形が延伸速度に
追随しきれなくなつて延伸切れを起こすようになる。
The stretching speed is in the range of 2 to 40% / sec, preferably 10 to 2
It is in the range of 0% / sec. If the stretching speed is slower than 2% / sec, the stretchability is likely to be hindered by oriented crystallization during stretching,
On the other hand, if it is higher than 40% / sec, the deformation of the polymer cannot keep up with the stretching speed and the stretch breakage occurs.

延伸倍率は延伸操作性(延伸しやすさ)および得られた
延伸フイルムの物性の点から少なくとも一方方向に面積
倍率で1.2〜9倍、好ましくは1.2〜5倍、さらに好まし
くは1.5〜5倍の範囲である。二軸延伸する場合には、
フイルムの縦方向に1.2〜3倍、好ましくは1.2〜2倍の
範囲であつて、且つ横方向に3〜9倍、好ましくは4〜
7倍の範囲である。上記延伸倍率が1.2倍未満の場合に
はフイルムの強度特性及び破断抗張力の改良効果が小さ
いので好ましくない。また9倍より大きいと延伸操作性
が悪化し、満足した延伸フイルムが得られない。
The stretching ratio is 1.2 to 9 times, preferably 1.2 to 5 times, more preferably 1.5 to 5 times in terms of area ratio in at least one direction from the viewpoints of stretching operability (stretchability) and physical properties of the obtained stretched film. It is a range. When biaxially stretching,
The length of the film is 1.2 to 3 times, preferably 1.2 to 2 times, and the width is 3 to 9 times, preferably 4 to
The range is 7 times. If the draw ratio is less than 1.2 times, the effect of improving the strength property and breaking strength of the film is small, which is not preferable. On the other hand, if it is more than 9 times, the stretching operability is deteriorated and a satisfactory stretched film cannot be obtained.

本発明においては、上記で得られた延伸フイルムから二
重袋を製造する。二重袋を製造する方法としては、従来
から知られている周知の方法を採用することができる。
In the present invention, a double bag is produced from the stretched film obtained above. As a method of manufacturing the double bag, a well-known method which has been conventionally known can be adopted.

例えば、 (1)2枚の延伸フイルムシートを重ね合わせ、次いで該
シートの左右両端部を重ねて、その両端部側面を熱シー
ル(ヒートシール)または接着剤塗布による接着シール
(以下接着シールと称す)によつて、筒状二重フイルム
としたのち、該筒状二重フイルムの上部または下部をそ
れぞれ熱シールまたは接着シールして二重袋を製造する
方法、 (2)筒状延伸フイルムの上下両端部を重ね、その両端部
を熱シールまたは接着シールしたのち、左右側面のいず
れかを熱シールまたは接着シールして二重製袋する方
法、 (3)1枚筒状延伸フイルムの中に他の筒状延伸フイルム
を入れ、該二重筒状フイルムの上部、または下部を熱シ
ールまたは接着シールとして二重袋を製造する方法、 等が挙げられる。
For example, (1) two stretched film sheets are superposed on each other, then the left and right end portions of the sheets are superposed, and the side faces of both end portions are heat-sealed (heat-sealed) or adhesive seal by applying an adhesive (hereinafter referred to as an adhesive seal) ), A tubular double film is formed, and then a double bag is produced by heat-sealing or adhesively sealing the upper portion or the lower portion of the tubular double film, respectively, (2) the upper and lower portions of the tubular stretched film. A method in which both ends are overlapped and both ends are heat-sealed or adhesive-sealed, then either the left or right side is heat-sealed or adhesive-sealed to form a double bag. (3) Others in a single tubular stretched film And a method of producing a double bag in which the upper portion or the lower portion of the double tubular film is heat-sealed or adhesive-sealed.

なお、上記二重袋の製造時におけるヒートシール方向と
しては、延伸フイルムの熱収縮率の小さい方向がヒート
シール方向となるようにして行なうのが望ましい。ヒー
トシールに当つてはヒートバーやヒートベルト等を用い
るが、これらの加熱機によりヒートシール部を長時間に
渡つて押圧すると熱弛緩を起しヒートシール部の強度が
出ないので、230〜280℃程度の温度でなるべくヒ
ートシール部に押圧力を加えないようにして迅速に加熱
した後、ヒートシール部を自由状態とすることによりヒ
ートシール部に収縮を起させるようなヒートシール方法
を用いるのが望ましい。
The heat-sealing direction during the production of the double bag is preferably such that the direction in which the heat shrinkage rate of the stretched film is small is the heat-sealing direction. A heat bar, a heat belt, or the like is used for heat sealing, but if the heat sealing portion is pressed for a long time by these heaters, heat relaxation occurs and the strength of the heat sealing portion does not appear, so 230 to 280 ° C. It is recommended to use a heat-sealing method in which the heat-sealing portion is heated rapidly at a temperature as low as possible without applying a pressing force, and then the heat-sealing portion is allowed to contract by causing the heat-sealing portion to be in a free state. desirable.

〔実施例〕〔Example〕

以下に実施例を示し本発明を更に詳細に説明するが、本
発明はその要旨を越えない限り以下の実施例に限定され
るものではない。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

実施例1 (1)延伸フイルムの製造 線状低密度ポリエチレン{メルトインデツクス(MI):
0.5g/10分、流動比20、密度:0.921g/cm3、共
重合成分:ブテン−1、共重合量:10重量%}90重
量部に高圧法分岐状低密度ポリエチレン(メルトインデ
ツクス:0.4g/10分、流動比:20、密度:0.922g
/cm3)10重量部をドライブレンドしたもの(融点1
18℃)を原料とし、これをモダンマシナリー社製、デ
ルサ65φ型押出機に環状スリツト径250mmφ、スリ
ツト幅4mmのインフレーシヨンダイ及び冷却用エアーリ
ングを取付けたインフレーシヨン成形機を用い、押出量
50Kg/hr、ブローアツプ比(B.U.R.)2、ドラフト率
6.7の条件下にエアーリングからの空気吹出量を変化さ
せ、冷却速度指数28として300μのインフレーシヨ
ンフイルムを得た。このフイルム原反をフイルムの引取
方向にスリツトしたものをテンター法逐次二軸延伸装置
を用いて延伸温度105℃、延伸速度10%/秒、延伸
倍率(縦方向1.2倍及び横方向5倍)の条件下で、50
μの厚さの二軸延伸フイルムを製造した。得られた二軸
延伸フイルムより二重袋を製造するに当り、袋のヒート
シール方向を決めるためにフイルムの熱収縮率を下記の
方法により測定した。
Example 1 (1) Production of stretched film Linear low-density polyethylene {melt index (MI):
0.5 g / 10 minutes, flow ratio 20, density: 0.921 g / cm 3 , copolymerization component: butene-1, copolymerization amount: 10 wt%} 90 parts by weight of high-pressure branched low-density polyethylene (melt index: 0.4 g / 10 minutes, flow ratio: 20, density: 0.922 g
/ Cm 3 ) 10 parts by weight dry blended (melting point 1
(18 ° C.) as a raw material, and extruded from a modern machinery, Delsa 65φ type extruder using an inflation molding machine equipped with an inflation die having an annular slit diameter of 250 mmφ and a slit width of 4 mm and a cooling air ring. Quantity 50Kg / hr, blow up ratio (BUR) 2, draft rate
The amount of air blown from the air ring was changed under the conditions of 6.7 to obtain an inflation film having a cooling rate index of 28 and 300μ. A film obtained by slitting this film original in the film take-up direction was drawn at a drawing temperature of 105 ° C., a drawing speed of 10% / sec, and a draw ratio (longitudinal direction 1.2 times and transverse direction 5 times) using a tenter sequential biaxial drawing device. 50 under conditions
A biaxially oriented film having a thickness of μ was manufactured. In producing a double bag from the obtained biaxially stretched film, the heat shrinkage rate of the film was measured by the following method in order to determine the heat sealing direction of the bag.

(2)熱収縮率の測定 熱収縮率の測定はフイルムの任意の位置から直径6mmの
円形試験片を切り出し、これを表面温度200℃のホツ
トプレート上に20秒間置き、縦方向(フイルム引取方
向)、及び横方向(フイルム幅方向)の長さの変化を元
の長さに対する百分率で表わした。結果を第1表に示
す。
(2) Measurement of heat shrinkage The heat shrinkage was measured by cutting a circular test piece with a diameter of 6 mm from an arbitrary position on the film, placing it on a hot plate with a surface temperature of 200 ° C for 20 seconds, and setting it in the longitudinal direction (film take-up direction). ), And the change in length in the lateral direction (film width direction) are expressed as a percentage of the original length. The results are shown in Table 1.

得られた熱収縮率の結果より、熱収縮率の小さい方向を
ヒートシール方向(袋にした場合の上下の開口部)と
し、熱収縮率の大きい方向を接着剤による背貼り方向
(袋にした場合の胴部方向)になるようにして二重袋を
製造した。
From the results of the heat shrinkage obtained, the direction with the smaller heat shrinkage was taken as the heat-sealing direction (upper and lower openings when made into a bag), and the direction with the larger heat shrinkage was given with the adhesive backing direction (made into the bag). The double bag was manufactured so that it would be the case body direction).

(3)二重袋の製造 上記(1)で得られた二軸延伸フイルムを熱収縮率の小さ
い方向、すなわち縦方向(フイルムの引取方向)に89
0mm、熱収縮率の大きい方向、すなわち横方向(フイル
ムの幅方向)に670mmに切断し、2枚のフイルムを重
ねて上部と下部をまるめ重ね部分が100mmとなるよう
にし、該重ね部分にホツトメルト接着剤(新田ゼラチン
社製 グレードHX-960)を塗布して重ね部分をホツトガ
ンにて加熱接着させて、筒状体とし、該筒状体の左右側
面のいずれかをニユーロング社製HS 22B−2型ヒートシ
ーラー(加熱部長さ150mm、加熱部クリアランス0.3m
m、冷却部長さ:150mm、冷却部クリアランス1mm)
を用いてヒートシール温度(加熱部表面温度)250
℃、冷却部温度30℃、フイルム送り速度15m/秒の
条件下に筒状フイルムの開口部の一方を端部から1.5cm
の位置でヒートシールした、ヒートシール部はフイルム
の引取方向(縦方向)に収縮を起して、元のフイルム厚
さより厚くなつていた。
(3) Manufacture of double bag The biaxially stretched film obtained in (1) above is used in a direction with a small heat shrinkage ratio, that is, in the longitudinal direction (film take-up direction).
0 mm, cut in a direction with a large heat shrinkage, that is, 670 mm in the lateral direction (width direction of the film), stack two films and round the upper and lower parts so that the overlapping part is 100 mm, and the hot melt to the overlapping part. An adhesive (Grade HX-960 manufactured by Nitta Gelatin Co., Ltd.) is applied, and the overlapped portion is heated and bonded with a hot gun to form a tubular body, and either of the left and right side surfaces of the tubular body is manufactured by Nyurong HS22B- Type 2 heat sealer (Heating section length 150mm, Heating section clearance 0.3m
m, cooling section length: 150 mm, cooling section clearance 1 mm)
Heat seal temperature (heating part surface temperature) 250
℃, the temperature of the cooling part 30 ℃, the film feed rate of 15m / s, 1.5cm from one end of the opening of the tubular film
The heat-sealed portion, which was heat-sealed at the position, contracted in the film take-up direction (longitudinal direction) and was thicker than the original film thickness.

得られた袋に20Kgの肥料を充填し、開口部を前記と同
様の条件でヒートシールし落袋試験用の包装袋を得た。
The obtained bag was filled with 20 kg of fertilizer, and the opening was heat-sealed under the same conditions as above to obtain a packaging bag for drop bag test.

(4)包装袋の性能試験 (A)落下試験 上記(3)で得られた包装袋について、横落袋試験及び縦
落袋試験を下記方法によつて行なつた。
(4) Performance test of packaging bag (A) Drop test The packaging bag obtained in (3) above was subjected to a lateral drop bag test and a vertical drop bag test by the following methods.

落下条件は室温を横落袋試験は−10℃とし、また縦落
袋試験は−5℃とし落下高さ1.5m、1袋当り落下回数
5回とした。破袋率は試験に用いた包装袋の破袋した袋
の百分率で求めた。その結果を表1に示す。
The dropping conditions were room temperature, −10 ° C. for the horizontal falling bag test, −5 ° C. for the vertical falling bag test, a drop height of 1.5 m, and 5 drops per bag. The bag breakage rate was obtained as a percentage of the broken bags of the packaging bags used in the test. The results are shown in Table 1.

(イ)横落袋試験 包装袋の胴部が床面と平行でヒートシール部が床面と略
垂直となるようにして20袋を落下させる(横落下)こ
とにより試験を行ない、破袋率を求めた。なお、横落袋
試験は袋のヒートシール部の強度測定のために行なつた
ものである。
(B) Side-dropping bag test A test is conducted by dropping 20 bags (side-down) so that the body of the packaging bag is parallel to the floor surface and the heat-sealed portion is substantially vertical to the floor surface, and the bag-breaking rate is determined. I asked. The falling bag test was conducted to measure the strength of the heat-sealed portion of the bag.

(ロ)縦落袋試験 包装袋のヒートシール部が床面と平行で胴部が床面と略
垂直となるようにして20袋を落下させる(縦落下)こ
とにより試験を行ない破袋率を求めた。なお、縦落袋試
験は袋の胴部の強度測定のために行なつたものである。
(B) Vertical drop bag test Dropping 20 bags (vertical drop) so that the heat-sealed part of the packaging bag is parallel to the floor surface and the body part is substantially perpendicular to the floor surface, and the test is performed to determine the bag breakage rate. I asked. The vertical drop bag test was performed to measure the strength of the body of the bag.

(B)指抜け強度試験 上記20Kgの肥料を充填した包装袋のヒート・シール部
が床面と平行になるように手で持ち上げ、袋のフイルム
面に指が喰い込む状況を観察した。
(B) Finger pull-out strength test The heat-sealed part of the packaging bag filled with 20 kg of the fertilizer was lifted by hand so that the heat-sealed part was parallel to the floor surface, and the state where the finger bites into the film surface of the bag was observed.

評価 A:全く指が喰い込まず、全く問題なし B:やや指が喰い込むが、特に問題なし C:大きく指が喰い込み、問題あり (C)フイルムパンクチヤー 82.6mmφの開孔を有する筒状の試験具に、上記包装袋に
用いたフイルムを固定し、その中心にその先端部が半球
状で、且つその径が19.05mmφ(3/4インチ)のプランジ
ヤーを500mm/mmの速度で突きさしたときのプランジ
ヤーに加わる破断抗張力(Kg)とその伸び(mm)で表わ
した。
Evaluation A: No finger biting, no problem at all B: Some finger biting, no particular problem C: Large finger biting, problem (C) Film puncture 82.6 mm φ cylindrical shape Fix the film used in the above packaging bag to the test tool, and project a plunger with a hemispherical tip and a diameter of 19.05 mmφ (3/4 inch) at the center of the film at a speed of 500 mm / mm. The tensile strength at break (Kg) applied to the plunger and its elongation (mm) were expressed.

(D)物流テスト 上記20Kgの肥料を充填した袋を500袋用意し、これ
をパレツトに積み付け、次いで貨車により400Km輸送
したのち、到着後の袋のピンホールの発生状況を調査
し、破袋数を求めた。なお、この物流試験は輸送時にお
ける袋の面のこすれにより発生したピンホールを水中に
つけて確認した。
(D) Logistics test Prepare 500 bags of the above 20Kg fertilizer, load them on a pallet, then transport them by 400km by freight car, and then investigate the occurrence of pinholes in the bags after arrival, and break the bags. I asked for the number. In this distribution test, the pinhole generated by rubbing the surface of the bag during transportation was confirmed by placing it in water.

実施例2 実施例1において、ブローアツプ比を4にし、且つドラ
フト率を3に変更して100μのインフレーシヨンフイ
ルムを成形し、これをスリツトしたのち、縦方向に2.0
倍延伸して一軸延伸フイルムを製造したこと以外は実施
例1と同様にして行つた。結果を第1表に示す。
Example 2 In Example 1, a blow-up ratio was set to 4 and a draft ratio was changed to 3 to mold an inflation film of 100 μ, and after slitting this film, the film was slit and then 2.0 in the longitudinal direction.
The same procedure as in Example 1 was carried out except that a uniaxially stretched film was produced by double stretching. The results are shown in Table 1.

比較例1 実施例1において、インフレーシヨン成形機のダイスリ
ツト幅を1.5mmに変更して50μのインフレーシヨンフ
イルムを成形し、これを長さ670mm、幅440mmの筒
状フイルムに切断し、2枚の筒状フイルムを準備し、1
枚の筒状フイルムの中に他の筒状フイルムを入れ、該筒
状フイルムの開口部の一方をヒートシールして二重の包
装袋としたこと以外は実施例1と同様にして行つた。結
果を第1表に示す。
Comparative Example 1 In Example 1, a 50 μm inflation film was formed by changing the die slit width of the inflation molding machine to 1.5 mm and cut into a tubular film having a length of 670 mm and a width of 440 mm. Prepare a sheet of tubular film, 1
The same procedure as in Example 1 was carried out except that another tubular film was placed in one tubular film, and one of the openings of the tubular film was heat-sealed to form a double packaging bag. The results are shown in Table 1.

比較例2 実施例1において、インフレーシヨン成形機のダイスリ
ツト幅を3mmに変更して、100μのインフレーシヨン
フイルムを成形し、得られたフイルムを長さ670mm、
幅440mmの筒状フイルムに切断し、そのままヒートシ
ールして一重の包装袋としたこと以外は実施例1と同様
にして行なつた。その結果を第1表に示す。
Comparative Example 2 In Example 1, the inflation slitting machine of the inflation molding machine was changed to 3 mm to mold an inflation film of 100 μ, and the obtained film had a length of 670 mm.
The procedure of Example 1 was repeated, except that a tubular film having a width of 440 mm was cut and heat-sealed as it was to form a single packaging bag. The results are shown in Table 1.

比較例3〜7 実施例1において、線状低密度ポリエチレンと分岐状低
密度ポリエチレンとの配合量、それぞれの物性、または
成形条件を第1表のように変えたこと以外は実施例1と
同様に行なつた。その結果を第1表に示す。
Comparative Examples 3 to 7 Same as Example 1 except that the compounding amounts of the linear low-density polyethylene and the branched low-density polyethylene, the respective physical properties, or the molding conditions were changed as shown in Table 1. I went to The results are shown in Table 1.

〔発明の効果〕 本発明の二重包装袋は胴部における破断抗張力が高く、
従つて袋に内容物を収容し、手作業で持ち運びする際等
において袋に指が突きささる、所謂「指抜け」等を起す
ことがない。従つて作業効率が良く実用上大変効果的な
ものである。
[Effect of the invention] The double packaging bag of the present invention has a high breaking strength in the body,
Therefore, when the contents are accommodated in the bag and the bag is manually carried, a finger does not hit the bag, so-called "finger dropout" or the like does not occur. Therefore, the work efficiency is good and it is very effective in practice.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】メルトインデツクスが2g/10分以下
で、且つ流動比が35以下の線状低密度ポリエチレン7
5〜100重量部と、メルトインデツクスが2g/10
分以下、流動比が50以下の分岐状低密度ポリエチレン
0〜25重量部とからなるポリエチレン組成物を、ドラ
フト率2〜50の条件下でインフレーシヨン成形、また
はTダイ成形し、得られたフイルムまたはシートを少な
くとも一方方向に面積倍率1.2〜9倍に延伸し、次いで
該延伸フイルムを二重にして袋を製造することを特徴と
する二重袋の製造法。
1. A linear low density polyethylene 7 having a melt index of 2 g / 10 minutes or less and a flow ratio of 35 or less.
5 to 100 parts by weight and melt index of 2 g / 10
Obtained by subjecting a polyethylene composition consisting of 0 to 25 parts by weight of branched low-density polyethylene having a flow ratio of 50 or less to inflation molding or T-die molding under a draft ratio of 2 to 50. A method for producing a double bag, comprising: stretching a film or a sheet in at least one direction at an area ratio of 1.2 to 9 times, and then making the stretched film double to produce a bag.
JP60178224A 1985-08-13 1985-08-13 Double packaging bag manufacturing method Expired - Fee Related JPH0624789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60178224A JPH0624789B2 (en) 1985-08-13 1985-08-13 Double packaging bag manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60178224A JPH0624789B2 (en) 1985-08-13 1985-08-13 Double packaging bag manufacturing method

Publications (2)

Publication Number Publication Date
JPS6239226A JPS6239226A (en) 1987-02-20
JPH0624789B2 true JPH0624789B2 (en) 1994-04-06

Family

ID=16044757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60178224A Expired - Fee Related JPH0624789B2 (en) 1985-08-13 1985-08-13 Double packaging bag manufacturing method

Country Status (1)

Country Link
JP (1) JPH0624789B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458668A (en) * 1987-08-18 1989-03-06 Mitsubishi Chem Ind Packing bag
JPS6458669A (en) * 1987-08-19 1989-03-06 Mitsubishi Chem Ind Production of packing bag
EP0299750B1 (en) * 1987-07-13 1994-09-28 Mitsubishi Kasei Corporation Linear polyethylene film and process for producing the same

Also Published As

Publication number Publication date
JPS6239226A (en) 1987-02-20

Similar Documents

Publication Publication Date Title
KR960007297B1 (en) Linear polyethylene film and process for producing the same
KR0173114B1 (en) Bioriented blown film
EP0090380A1 (en) Method and apparatus for preparing a high strength sheet material
KR20200098580A (en) Polyolefin resin film
CN100465203C (en) shrink film
US5702784A (en) Polypropylene heat shrinkable film
EP1332868B1 (en) Multilayer film
JP2974198B2 (en) Polyolefin-based shrink laminated film and method for producing the same
JPH0624789B2 (en) Double packaging bag manufacturing method
JP2916853B2 (en) Polyolefin-based heat-shrinkable laminated film
JPH0214898B2 (en)
JPH09274439A (en) Stretch label
JPH0826193B2 (en) Butene-1 Propylene Copolymer Composition Rich in Butene
JPS6020410B2 (en) Polybutene resin composition
JPH07232417A (en) Polyolefoinic heat-shrinkable laminated film and manufacture thereof
JPH03124561A (en) Packaging bag
JP2785403B2 (en) Film production method
JP2615931B2 (en) Film production method
JPH0152175B2 (en)
JPH0724912A (en) Oriented film and packing bag employing it
JP2625813B2 (en) Manufacturing method of packaging bag
JP2951870B2 (en) Heat shrinkable multilayer film
JP2557472B2 (en) Film production method
JPH10119211A (en) Heat-shrinkable film
JPS6222772B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees