JP2625813B2 - Manufacturing method of packaging bag - Google Patents

Manufacturing method of packaging bag

Info

Publication number
JP2625813B2
JP2625813B2 JP63022298A JP2229888A JP2625813B2 JP 2625813 B2 JP2625813 B2 JP 2625813B2 JP 63022298 A JP63022298 A JP 63022298A JP 2229888 A JP2229888 A JP 2229888A JP 2625813 B2 JP2625813 B2 JP 2625813B2
Authority
JP
Japan
Prior art keywords
density polyethylene
less
heat
weight
linear low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63022298A
Other languages
Japanese (ja)
Other versions
JPH01196333A (en
Inventor
敏雄 藤井
義尚 篠原
信之 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP63022298A priority Critical patent/JP2625813B2/en
Publication of JPH01196333A publication Critical patent/JPH01196333A/en
Application granted granted Critical
Publication of JP2625813B2 publication Critical patent/JP2625813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7312Rheological properties
    • B29C66/73121Viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0625LLDPE, i.e. linear low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Making Paper Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は包装袋の製造方法に関するものである。詳し
くは線状低密度ポリエチレンを用いたヒートシール強度
の大きい包装袋を製造する方法に関するものである。
The present invention relates to a method for manufacturing a packaging bag. More specifically, the present invention relates to a method for producing a packaging bag having high heat sealing strength using linear low-density polyethylene.

〔従来の技術及びその課題〕[Conventional technology and its problems]

通常、線状低密度ポリエチレンを用いてインフレーシ
ョン成形し、ヒートシールにより包装用の袋を製造した
場合、袋の胴部強度は強いが、ヒートシール部の強度が
極めて低くなり実用上問題があった。
Normally, when inflation molding is performed using linear low-density polyethylene and a packaging bag is manufactured by heat sealing, although the body strength of the bag is strong, the strength of the heat sealing portion is extremely low, and there is a practical problem. .

これは後述する線状低密度ポリエチレンの分子構造
上、線状低密度ポリエチレンは溶融延伸等により分子配
向を付与して熱収縮性を持たせようとしても強い収縮性
を持たせることができないため、ヒートシートを行なっ
た際ヒートシール部が熱収縮を起さず、フィルム肉厚が
減少してしまい、ヒートシール強度が出ないものであ
る。
This is because on the molecular structure of the linear low-density polyethylene described below, since the linear low-density polyethylene can not have strong shrinkage even if it attempts to have heat shrinkage by imparting molecular orientation by melt drawing or the like, When a heat sheet is applied, the heat seal portion does not undergo heat shrinkage, the film thickness is reduced, and the heat seal strength is not obtained.

本発明者等は、線状低密度ポリエチレンを用いて良好
なヒートシール強度を有する包装袋を得るべく種々検討
の結果、特定の線状低密度ポリエチレンに特定の分岐状
低密度ポリエチレンを特定量配合し、特定の条件下にイ
ンフレーション成形及びヒートシールを行なうことによ
り良好なヒートシール強度を有する包装袋が得られるこ
とを見出し、先に出願(特開昭59−178221及び特開昭60
−245541)したが、更に検討を重ねた結果、上記の線状
低密度ポリエチレンに特定の高密度ポリエチレンと特定
のエチレン−αオレフィン共重合体を特定量配合したも
のを特定の条件下にインフレーション成形及びヒートシ
ールを行なうことによりヒートシール強度がさらに改善
された包装袋が得られることを見出し、本発明を完成し
た。
The present inventors have conducted various studies to obtain a packaging bag having good heat sealing strength using linear low-density polyethylene, and as a result, mixed a specific linear low-density polyethylene with a specific branched low-density polyethylene in a specific amount. However, they have found that a packaging bag having good heat seal strength can be obtained by performing inflation molding and heat sealing under specific conditions, and have previously filed applications (JP-A-59-178221 and JP-A-60-178221).
However, as a result of further study, the above-mentioned linear low-density polyethylene was blended with a specific amount of a specific high-density polyethylene and a specific ethylene-α-olefin copolymer in a specific amount under inflation molding under specific conditions. Further, the present inventors have found that a packaging bag having further improved heat sealing strength can be obtained by performing heat sealing, and thus completed the present invention.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の要旨はメルトインデックスが10g/10分以下
で、密度が0.910〜0.945g/cm3で、且つ、流動比が70以
下の線状低密度ポリエチレン70〜99重量部、メルトイン
デックスが0.1g/10分以下で、且つ、流動比が70以上の
高密度ポリエチレン0.5〜10重量部及びメルトインデッ
クスが20g/10分以下で、且つ、密度が0.910g/cm3以下の
エチレン−αオレフィン共重合体0.5〜20重量部からな
る組成物を用い、ブローアップ比0.9〜2.0、ドラフト率
10〜40、冷却速度指数30秒以下の条件下にインフレーシ
ョン成形し、得られた筒状フィルムを引取方向に対して
交差する方向を長手方向してヒートシール及び切断する
ことを特徴する包装袋の製造方法に存する。
The gist of the present invention is that the melt index is 10 g / 10 min or less, the density is 0.910 to 0.945 g / cm 3 , and the flow ratio is 70 to 99 parts by weight of a linear low-density polyethylene having a melt index of 0.1 g or less. / 10 min or less, and, in high-density polyethylene 0.5 to 10 parts by weight and the melt index of the flow ratio of 70 or higher 20 g / 10 min or less, and a density of 0.910 g / cm 3 or less ethylene -α-olefin copolymerization Using a composition consisting of 0.5 to 20 parts by weight, blow-up ratio 0.9 to 2.0, draft rate
10-40, inflation molding under the condition of a cooling rate index of 30 seconds or less, the obtained tubular film is heat sealed and cut in a longitudinal direction in a direction intersecting the take-off direction of the packaging bag. Lies in the manufacturing method.

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明に用いられる線状低密度ポリエチレンとは、エ
チレンと他のα−オレフィンとの共重合物であり、従来
の高圧法により製造された分岐状低密度ポリエチレン樹
脂とは異なる。線状低密度ポリエチレンは、例えばエチ
レンと、他のα−オレフィンとしてブテン、ヘキセン、
オクテン、デセン、4メチルペンテン−1等を4〜17重
量%程度、好ましくは5〜15重量%程度共重合したもの
であり中低圧法高密度ポリエチレン製造に用いられるチ
ーグラー型触媒又はフィリップス型触媒を用いて製造さ
れたものであり、従来の高密度ポリエチレンを共重合成
分により短い枝分かれ構造とし、密度もこの短鎖枝分か
れを利用して適当に低下させ0.91〜0.945g/cm3程度とし
たものであり、従来の分岐状低密度ポリエチレンより直
鎖性があり、高密度ポリエチレンより枝分かれが多い構
造のポリエチレンである。
The linear low-density polyethylene used in the present invention is a copolymer of ethylene and another α-olefin, and is different from a branched low-density polyethylene resin produced by a conventional high-pressure method. Linear low-density polyethylene is, for example, ethylene, butene, hexene, and other α-olefins.
It is obtained by copolymerizing octene, decene, 4-methylpentene-1 or the like in an amount of about 4 to 17% by weight, preferably about 5 to 15% by weight. used has been produced, a conventional high-density polyethylene and short branched structure by the copolymerization component, density obtained by this use of short chain branching suitably reduced by 0.91~0.945g / cm 3 approximately It is a polyethylene having a structure that is more linear than conventional branched low-density polyethylene and has more branches than high-density polyethylene.

このような線状低密度ポリエチレンをヒートシールし
た際ヒートシール部の収縮が少ないのは線状低密度ポリ
エチレンの分子構造は上述のように短鎖枝分かれである
ため、ヒートシールの際に分子間に熱弛緩が起こるため
と考えられる。
When heat-sealing such a linear low-density polyethylene, the heat-shrinkable portion is less shrunk because the molecular structure of the linear low-density polyethylene is short-chain branched as described above, It is considered that thermal relaxation occurs.

本発明においては特定の線状低密度ポリエチレンに特
定の高密度ポリエチレン及び特定のエチレン−αオレフ
ィン共重合体を特定量配合したものを特定の条件下でイ
ンフレーション成形することにより線状低密度ポリエチ
レンのヒートシール強度を向上させ、且つフィルム成形
性をさらに安定化させるものである。
In the present invention, a specific low-density polyethylene is mixed with a specific high-density polyethylene and a specific ethylene-α-olefin copolymer in a specific amount to form a linear low-density polyethylene by inflation molding under specific conditions. The purpose is to improve the heat seal strength and further stabilize the film formability.

すなわち、本発明で用いられる線状低密度ポリエチレ
ンはメルトインデックスが10g/10分以下、好ましくは0.
2〜1.5g/10分の範囲のものである。メルトインデックス
が10g/10分より大きいと包装袋とした際、胴部の強度が
低下し好ましくない。
That is, the linear low density polyethylene used in the present invention has a melt index of 10 g / 10 minutes or less, preferably 0.
It is in the range of 2 to 1.5 g / 10 minutes. If the melt index is greater than 10 g / 10 minutes, the strength of the trunk is undesirably reduced when the bag is used as a packaging bag.

また、該線状低密度ポリエチレンの流動比は70以下、
好ましくは15〜70、さらに好ましくは15〜35の範囲であ
る。流動比が70より大きいとヒートシール強度が低下す
るので好ましくない。
Also, the flow ratio of the linear low-density polyethylene is 70 or less,
It is preferably in the range of 15 to 70, more preferably 15 to 35. If the flow ratio is larger than 70, the heat seal strength is undesirably reduced.

本発明方法においてメルトインデックスとはJIS K676
0に準拠し190℃で測定した値であり、流動比とは、上記
メルトインデックス測定器を用い、せん断力106ダイン/
cm2(荷重11131g)と105ダイン/cm2(荷重1113g)の押
出量(g/10分)の比であり、 で算出される。
In the method of the present invention, the melt index is JIS K676
It is a value measured at 190 ° C. according to 0, and the flow ratio is a shear force of 10 6 dynes /
the ratio of cm 2 (load 11131G) 10 5 extrusion rate of dynes / cm 2 (load 1113 g) (g / 10 min), Is calculated.

流動比は用いられる樹脂の分子量分布の目安であり、
流動比の値が小さければ分子量分布は狭く、流動比の値
が大きければ分子量分布は広いことを表わしている。
The flow ratio is a measure of the molecular weight distribution of the resin used,
If the value of the flow ratio is small, the molecular weight distribution is narrow, and if the value of the flow ratio is large, the molecular weight distribution is wide.

本発明における第2成分として用いられる高密度ポリ
エチレンとは前述の線状低密度ポリエチレンと同様、中
低圧法のプロセスによりエチレンのホモポリマー又はエ
チレンと若干量のα−オレフィンとの共重合体として製
造されるものであって、通常、その密度が0.945以上の
ものを言う。
The high-density polyethylene used as the second component in the present invention is manufactured as a homopolymer of ethylene or a copolymer of ethylene and a small amount of α-olefin by a medium-low pressure process in the same manner as the linear low-density polyethylene described above. Usually having a density of 0.945 or more.

本発明で用いる高密度ポリエチレンはそのメルトイン
デックスが0.1g/10分以下 流動比が70以上である必要
がある。この様な高密度ポリエチレンはその成分中にか
なり分子量の高い(例えば100万以上のフラクションを
適当量含んでおり、この高分子量成分はその分子構造が
前述の線状低密度ポリエチレンと類似していることから
線状低密度ポリエチレンと相溶性が良く、その結果とし
て前述した線状低密度ポリエチレンの欠点である分子配
向のしにくさが改良されるものと推定される。
The high-density polyethylene used in the present invention must have a melt index of 0.1 g / 10 min or less and a flow ratio of 70 or more. Such high-density polyethylenes have a fairly high molecular weight in their components (for example, contain an appropriate amount of more than one million fractions, and this high-molecular-weight component is similar in molecular structure to the linear low-density polyethylene described above. From these facts, it is presumed that the compatibility with the linear low-density polyethylene is good, and as a result, the difficulty in molecular orientation, which is a disadvantage of the linear low-density polyethylene described above, is improved.

従って、使用する高密度ポリエチレンのメルトインデ
ックスと流量比が上記以外のものではその改良効果が不
充分である。
Therefore, if the high-density polyethylene used has a melt index and a flow rate ratio other than those described above, the improvement effect is insufficient.

本発明における第3成分として用いられるエチレン−
αオレフィン共重合体は前述の線状低密度ポリエチレン
と同様の共重合体であるが、本発明の第3成分として用
いるものとしては、共重合体中のα−オレフィン含有量
が10%以上、好ましくは15重量%から50重量%の間にあ
りその密度が0.910g/10分以下の軟質のものである必要
がある。
Ethylene used as the third component in the present invention
The α-olefin copolymer is a copolymer similar to the linear low-density polyethylene described above, but as the third component used in the present invention, the α-olefin content in the copolymer is 10% or more, It should preferably be between 15% by weight and 50% by weight and have a density of 0.910 g / 10 minutes or less.

この様なエチレン−αオレフィン共重合体を配合する
ことは前述の高密度ポリエチレンの配合により生起され
る分子配向の異方性を適度に緩和させることに有効であ
り、その結果として例えば最終的に得られる包装袋のタ
テ方向への裂け易さや耐衝撃性が改良される。
The incorporation of such an ethylene-α-olefin copolymer is effective in appropriately reducing the anisotropy of the molecular orientation caused by the incorporation of the high-density polyethylene described above. The resulting packaging bag has improved vertical tear resistance and impact resistance.

エチレン−αオレフィン共重合体のメルトインデック
スは20以下である必要があり、20以上であるとフィルム
のブロッキング性などが悪化して好ましくない。
The melt index of the ethylene-α-olefin copolymer needs to be 20 or less, and if it is 20 or more, the blocking properties of the film are undesirably deteriorated.

上記線状低密度ポリエチレン、高密度ポリエチレン及
びエチレン−αオレフィン共重合体の配合比は、線状低
密度ポリエチレンが70〜99重量部、好ましくは85〜97重
量部、高密度ポリエチレンが0.5〜10重量部、好ましく
は1〜5重量部、エチレン−αオレフィン共重合体が0.
5〜20重量部、好ましくは2〜10重量部の範囲内で用い
られる。
The mixing ratio of the linear low-density polyethylene, high-density polyethylene and ethylene-α-olefin copolymer is 70 to 99 parts by weight of linear low-density polyethylene, preferably 85 to 97 parts by weight, and 0.5 to 10 parts by weight of high-density polyethylene. Parts by weight, preferably 1 to 5 parts by weight, the ethylene-α-olefin copolymer is 0.1 part by weight.
It is used in the range of 5 to 20 parts by weight, preferably 2 to 10 parts by weight.

この範囲をはずれるとフィルムの成形性、ヒートシー
ル強度、フィルムの耐衝撃性、フィルムの腰強度等のバ
ランスが悪くなるので好ましくない。
Outside of this range, the balance of the film formability, heat seal strength, film impact resistance, film stiffness, etc. is unfavorably deteriorated.

この様な配合に調整することにより組成物中に高分子
量成分とエラストマー的な成分が導入され従来の線状低
密度ポリエチレンと分岐状低密度ポリエチレンとの配合
物に比べ、インフレーション成形時に縦方向の配向がか
かりやすく、このようにして得たフィルムはヒートシー
ル時に配向を受けた方向に収縮し、ヒートシール部がフ
ィルムの元の厚さより厚くなりヒートシール部の強度が
向上するものと推定される。
By adjusting to such a composition, a high molecular weight component and an elastomeric component are introduced into the composition, and compared to a conventional linear low density polyethylene and a branched low density polyethylene blend, the longitudinal direction during inflation molding is longer. It is presumed that the film thus obtained tends to be oriented, and the film obtained in this way shrinks in the direction of the orientation during heat sealing, the heat-sealed portion becomes thicker than the original thickness of the film, and the strength of the heat-sealed portion is improved. .

また、この様な組成物を用いて成形されたフィルム
は、例えば線状低密度ポリエチレンを有機過酸化物で変
性せしめることによって高分子量成分を生成させた組成
物を用いて成形されたフィルムと比較して、有機過酸化
物に由来する異臭やゲルなどの問題が解消され、またフ
ィルムの表面光沢が抑制され商品性の優れたフィルムと
なる。
In addition, a film molded using such a composition is compared with a film molded using a composition in which, for example, a linear low-density polyethylene is modified with an organic peroxide to produce a high molecular weight component. Thus, problems such as off-flavors and gels derived from organic peroxides are eliminated, and the surface gloss of the film is suppressed, resulting in a film having excellent commercial properties.

また、上述のポリエチレン組成物をただ単にインフレ
ーション成型してもヒートシール部強度の良好なものは
得られず、成形に当っては特定の成形条件を必要とす
る。
Further, even if the above-mentioned polyethylene composition is simply blown-molded, a product having good heat-sealed portion strength cannot be obtained, and specific molding conditions are required for molding.

その特定の成形条件とは、ブローアップ比を0.9〜2
とし、ドラフト率を10〜40とし、冷却速度指数を30秒以
下としてインフレーション成形することである。
The specific molding conditions include a blow-up ratio of 0.9 to 2
The draft rate is set to 10 to 40, and the cooling rate index is set to 30 seconds or less to perform inflation molding.

ここで、ドラフト率とは下記式によって得られる。 Here, the draft rate is obtained by the following equation.

式中、記号は下記の通り。 In the formula, the symbols are as follows.

また、冷却速度指数とは溶融樹脂がダイから押出され
フロストラインに達するまでの時間(秒)であり、下記
式によって得られる。
Further, the cooling rate index is a time (second) until the molten resin is extruded from the die and reaches the frost line, and is obtained by the following equation.

τ:冷却速度指数(秒) FLH:フロストライン高さ(cm) V0:溶融樹脂がリップ部を通過する時の線速度(cm/se
c) V1:引取速度(cm/sec) ブローアップ比を2.0以上とするとヒートシール時に
ヒートシールの長手方向の収縮が生起し袋胴部の配向と
逆方向の歪が発生するため得られた袋のヒートシール端
部の強度が低下し、破袋の原因となる。
τ: Cooling rate index (second) FLH: Frost line height (cm) V 0 : Linear velocity when the molten resin passes through the lip (cm / se)
c) V 1 : Take-off speed (cm / sec) When the blow-up ratio was 2.0 or more, shrinkage occurred in the longitudinal direction of the heat seal during heat sealing, and distortion was generated in the direction opposite to the orientation of the bag body. The strength of the heat-sealed end of the bag is reduced, causing the bag to break.

ドラフト率は10以下ではヒートシール時良好な収縮が
生起せず40以上とすれば袋の胴部自体の分子配向が一方
向に大きくなりすぎ胴部自体の引裂けの生起する原因と
なる。
If the draft rate is 10 or less, good shrinkage does not occur during heat sealing, and if it is 40 or more, the molecular orientation of the body of the bag itself becomes too large in one direction, which causes the body itself to tear.

冷却速度指数が30秒以上となるとフィルム成形時にド
ラフトによりフィルム中に生起した分子配向が熱弛緩に
より緩和してしまいヒートシール時に収縮が起らずヒー
トシール部の強度がでない。
When the cooling rate index is 30 seconds or more, the molecular orientation generated in the film by drafting during film forming is relaxed by thermal relaxation, so that shrinkage does not occur at the time of heat sealing, and the strength of the heat seal portion is not high.

なお、ヒートシールに当ってはヒートバーやヒートベ
ルト等を用いるが、これらの加熱機によりヒートシール
部を長時間に渡って押圧すると熱弛緩を起しヒートシー
ル部の強度が出ないので、230〜280℃程度の温度でなる
べくヒートシール部に押圧力を加えないようにして迅速
に加熱した後、ヒートシール部を自由状態とすることに
よりヒートシール部に収縮を起させるようなヒートシー
ル方法を用いるのが望ましい。
For heat sealing, a heat bar or a heat belt is used.However, when the heat seal portion is pressed for a long time by these heaters, thermal relaxation occurs and the strength of the heat seal portion does not appear, so that the heat seal portion is not heated. Use a heat-sealing method that quickly heats the heat-sealed part at a temperature of about 280 ° C without applying a pressing force as much as possible, and then causes the heat-sealed part to contract by causing the heat-sealed part to be in a free state. It is desirable.

〔実施例〕〔Example〕

以下に実施例を示し本発明を更に詳細に説明するが、
本発明はその要旨を越えない限り以下の実施例に限定さ
れるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples,
The present invention is not limited to the following examples unless it exceeds the gist.

実施例1 メルトインデックスが0.5g/10分、流動比が20、密度
が0.921g/cm3共重合体中のブテン−1含量が8重量%の
線状低密度ポリエチレンを9.3重量部、メルトインデッ
クスが0.06g/10分、流動比が120、密度が0.953g/cm3
高密度ポリエチレンを2重量部、メルトインデックスが
4g/10分、密度が0.88g/cm3のエチレン−ブテン−/共重
合体を5重量部ドライブレンドして原料とした。これを
モダンマシナリー社製デルサ65φ型押出機に環状スリッ
ト径250mmφのインフレーションダイ及び冷却用エアー
リングを取付けたインフレーション成形機を用い、押出
量100kg/hr、ブローアップ比(B.U.R.)1.1,ドラフト類
14の条件下にエアーリングからの空気吹出量を変化さ
せ、冷却速度指数を28として150μのインフレーション
フィルムを得た。
Example 1 9.3 parts by weight of a linear low-density polyethylene having a melt index of 0.5 g / 10 minutes, a flow ratio of 20, and a density of 0.921 g / cm 3 butene-1 content of 8% by weight in a copolymer was melt-indexed. Is 0.06 g / 10 min, the flow ratio is 120, the density is 0.953 g / cm 3 , 2 parts by weight of high-density polyethylene, and the melt index is
5 parts by weight of an ethylene-butene- / copolymer having a density of 0.88 g / cm 3 at 4 g / 10 minutes was dry-blended as a raw material. Using an inflation molding machine equipped with a modern machine Delsa 65φ type extruder equipped with an inflation die with an annular slit diameter of 250mmφ and a cooling air ring, extrusion rate 100kg / hr, blow-up ratio (BUR) 1.1, drafts
The amount of air blown from the air ring was changed under the conditions of 14, and a cooling rate index of 28 was used to obtain a 150 μm blown film.

得られたインフレーションフィルムを長さ670cm、幅4
40cmの筒状フィルムに切断し、ニューロング社製HS 22B
−2型ヒートシーラー(加熱部長さ150mm、加熱部クリ
アランス0.3mm、冷却部長さ:150mm,冷却部クリアランス
1mm)を用いてヒートシール温度(加熱部表面温度)250
℃、冷却部温度30℃、フィルム送り速度15m/秒の条件下
に筒状フィルムの開口部の一方を端部から1.5cmの位置
でヒートシールした、ヒートシール部はフィルムの引取
方向(縦方向)に収縮を起して、元のフィルム厚さより
厚くなっていた。
The obtained blown film is 670 cm long and 4 width wide.
Cut into a 40 cm cylindrical film, HS 22B manufactured by Neuron
-2 type heat sealer (heating section length 150mm, heating section clearance 0.3mm, cooling section length: 150mm, cooling section clearance
Heat sealing temperature (heating part surface temperature) 250
One of the openings of the tubular film was heat-sealed at a position 1.5 cm from the end under the conditions of ℃, cooling unit temperature of 30 ℃, and film feeding speed of 15 m / sec. ) Caused shrinkage, and the film was thicker than the original film thickness.

得られた袋に20kgの肥料を充填し、開口部を前記と同
様の条件でヒートシールし落袋試験用の包装袋を得た。
The obtained bag was filled with 20 kg of fertilizer, and the opening was heat-sealed under the same conditions as above to obtain a packaging bag for a bag drop test.

落袋試験は、上記20kgの肥料を充填した袋をヒートシ
ール後18〜24時間堆積して放置した後、包装袋の胴部が
床面と平行でヒートシール部が床面と略垂直となるよう
にして20袋を落下させる(横落下)ことにより試験を行
ない破袋率を求めた。
The bag drop test is that the bag filled with the above 20 kg of fertilizer is deposited for 18 to 24 hours after heat sealing and left to stand, and then the body of the packaging bag is parallel to the floor surface and the heat sealing portion is substantially perpendicular to the floor surface As described above, a test was performed by dropping 20 bags (lateral drop), and the bag breaking ratio was obtained.

落下条件は室温を−10℃とし落下高さ1.5m、1袋当り
落下回数5回とした。破袋率は試験に用いた包装袋の破
袋した袋の百分率で求めた。
The drop conditions were a room temperature of -10 ° C., a drop height of 1.5 m, and five drops per bag. The bag breaking ratio was determined as the percentage of the bags that were broken in the packaging bags used in the test.

偏肉状態は得られた筒状フィルムを円周方向、等間隔
に36点、その厚みをダイヤルゲージで測定し、得られた
測定値が、測定値の平均値の±10%以内である場合を
○、±10%より大きく平均値の±15%以内にある場合を
△、±15%より大きい場合を×とした。
The uneven thickness state is obtained by measuring the thickness of the obtained cylindrical film at 36 points at equal intervals in the circumferential direction with a dial gauge, and the obtained measured value is within ± 10% of the average of the measured values. Was evaluated as ○, Δ when the value was greater than ± 10% and within ± 15% of the average value, and X when the value was greater than ± 15%.

結果を第1表に示した。 The results are shown in Table 1.

実施例2 実施例1において、ブローアップ比1.4とし、冷却速
度指数を16としたほかは実施例1と同様にして150μの
インフレーションフィルムを得た。次いで、実施例1と
同様にして破袋率及び偏肉状態を測定した。
Example 2 An inflation film of 150 μm was obtained in the same manner as in Example 1 except that the blow-up ratio was 1.4 and the cooling rate index was 16. Next, the bag breaking ratio and the uneven thickness state were measured in the same manner as in Example 1.

結果を第1表に示した。 The results are shown in Table 1.

実施例3 実施例1において原料樹脂の配合量及び成形条件を表
1のように変更した以外は同様にして行った。結果を第
1表に示す。
Example 3 Example 3 was carried out in the same manner as in Example 1 except that the amount of the raw material resin and the molding conditions were changed as shown in Table 1. The results are shown in Table 1.

比較例1〜4 原料の配合及び成形条件を表1の様に変更した以外、
実施例−1と同様に行った。
Comparative Examples 1-4 Except for changing the blending of the raw materials and the molding conditions as shown in Table 1,
It carried out like Example-1.

結果を第1表に示す。 The results are shown in Table 1.

〔発明の効果〕 本発明の方法によれば、胴部強度に優れ、ヒートシー
ル部の強度にも優れた袋が得られ、肥料、合成樹脂ペレ
ット等の重量物を包装する袋として用いて好適である。
[Effects of the Invention] According to the method of the present invention, a bag excellent in the strength of the trunk portion and in the strength of the heat seal portion is obtained, and is suitable for use as a bag for packing heavy materials such as fertilizers and synthetic resin pellets. It is.

フロントページの続き (56)参考文献 特開 昭60−183132(JP,A) 特開 昭62−39226(JP,A) 特開 昭63−77957(JP,A) 特開 昭60−257232(JP,A)Continuation of front page (56) References JP-A-60-183132 (JP, A) JP-A-62-39226 (JP, A) JP-A-63-77957 (JP, A) JP-A-60-257232 (JP) , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】メルトインデックスが10g/10分以下で密度
が0.910〜0.945g/cm3で、且つ、流動比が70以下の線状
低密度ポリエチレン70〜99重量部、メルトインデックス
が0.1g/10分以下で、且つ、流動比が70以下の高密度ポ
リエチレン0.5〜10重量部及びメルトインデックスが20g
/10分以下で、且つ、密度が0.910g/cm3以下のエチレン
−αオレフィン共重合体0.5〜20重量部からなる組成物
を用い、ブローアップ比0.9〜2.0、ドラフト率10〜40、
冷却速度指数30秒以下の条件下にインフレーション成形
し、得られた筒状フィルムを引取方向に対して交差する
方向を長手方向としてヒートシール及び切断することを
特徴とする包装袋の製造方法。
A linear low-density polyethylene having a melt index of 10 g / 10 min or less, a density of 0.910 to 0.945 g / cm 3 and a flow ratio of 70 or less, 70 to 99 parts by weight, and a melt index of 0.1 g / min. 10 minutes or less, and the flow ratio is 70 or less high-density polyethylene 0.5 to 10 parts by weight and the melt index is 20 g
/ 10 minutes or less, and using a composition consisting of 0.5 to 20 parts by weight of ethylene-α olefin copolymer having a density of 0.910 g / cm 3 or less, a blow-up ratio of 0.9 to 2.0, a draft rate of 10 to 40,
A method for producing a packaging bag, comprising inflation molding under a condition of a cooling rate index of 30 seconds or less, and heat-sealing and cutting the obtained tubular film with a direction intersecting a take-off direction as a longitudinal direction.
JP63022298A 1988-02-02 1988-02-02 Manufacturing method of packaging bag Expired - Fee Related JP2625813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022298A JP2625813B2 (en) 1988-02-02 1988-02-02 Manufacturing method of packaging bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022298A JP2625813B2 (en) 1988-02-02 1988-02-02 Manufacturing method of packaging bag

Publications (2)

Publication Number Publication Date
JPH01196333A JPH01196333A (en) 1989-08-08
JP2625813B2 true JP2625813B2 (en) 1997-07-02

Family

ID=12078836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022298A Expired - Fee Related JP2625813B2 (en) 1988-02-02 1988-02-02 Manufacturing method of packaging bag

Country Status (1)

Country Link
JP (1) JP2625813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568425A (en) * 2013-09-26 2014-02-12 浙江诚信包装材料有限公司 Tensile covering film with weight-bearing capacity and preparation method for tensile covering film with weight-bearing capacity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104582931B (en) * 2012-06-26 2017-03-08 陶氏环球技术有限责任公司 It is suitable for the polyethylene blend compositions of blown film and film prepared therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103568425A (en) * 2013-09-26 2014-02-12 浙江诚信包装材料有限公司 Tensile covering film with weight-bearing capacity and preparation method for tensile covering film with weight-bearing capacity

Also Published As

Publication number Publication date
JPH01196333A (en) 1989-08-08

Similar Documents

Publication Publication Date Title
JP2936493B2 (en) Biaxially oriented film
CA1304187C (en) Butene-rich butene-1 propylene copolymer shrink film
JPS5867739A (en) Film manufacturing composition
EP0045455B1 (en) Blends of butene-1-ethylene copolymer and polypropylene
JP3703846B2 (en) LLDPE-based stretchable multilayer film
JP2625813B2 (en) Manufacturing method of packaging bag
EP1332868A1 (en) Multilayer film
EP0404368A2 (en) Blends of linear low density polyethylene and low density polyethylene and films for shrink-wrapping therefrom
JPH0152175B2 (en)
JPH0724926A (en) Manufacture of packing bag
JPH0753792A (en) Polyethylene resin composition for packaging bag and production of packaging bag therefrom
JPH0450887B2 (en)
JP2785403B2 (en) Film production method
EP0671431A1 (en) Films or sheets made of olefin polymers
JPH0353930A (en) Manufacture of packing bag
JP3044557B2 (en) Ethylene polymer composition
JP2836156B2 (en) Method for producing stretched polyethylene film
JPH0564173B2 (en)
JP2615931B2 (en) Film production method
JPH0624789B2 (en) Double packaging bag manufacturing method
JPH0549459B2 (en)
JPH0517021B2 (en)
JPS60245541A (en) Manufacture of packaging bag
JP2784217B2 (en) Manufacturing method of packaging bag
JPH0355233A (en) Preparation of bag for packaging

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees