JPH0624758B2 - How to make polyester containers for beverages - Google Patents

How to make polyester containers for beverages

Info

Publication number
JPH0624758B2
JPH0624758B2 JP1159429A JP15942989A JPH0624758B2 JP H0624758 B2 JPH0624758 B2 JP H0624758B2 JP 1159429 A JP1159429 A JP 1159429A JP 15942989 A JP15942989 A JP 15942989A JP H0624758 B2 JPH0624758 B2 JP H0624758B2
Authority
JP
Japan
Prior art keywords
preform
surface side
stretching
temperature
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1159429A
Other languages
Japanese (ja)
Other versions
JPH0324934A (en
Inventor
吉次 丸橋
勢津子 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP1159429A priority Critical patent/JPH0624758B2/en
Priority to US07/542,143 priority patent/US5250335A/en
Priority to DE69031514T priority patent/DE69031514T2/en
Priority to EP90111898A priority patent/EP0404187B1/en
Publication of JPH0324934A publication Critical patent/JPH0324934A/en
Publication of JPH0624758B2 publication Critical patent/JPH0624758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • B29C49/6454Thermal conditioning of preforms characterised by temperature differential through the preform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • B29C2049/7861Temperature of the preform
    • B29C2049/7862Temperature of the preform characterised by temperature values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2667/00Use of polyesters or derivatives thereof for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • B29K2995/0043Crystalline non-uniform

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、飲料用ポリエステル製容器の製法に関するも
ので、より詳細には経時収縮が小さく且つ耐圧強度等の
機械的強度に優れた延伸プロー成形容器の製法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a polyester container for beverages, and more specifically, to a stretcher having a small shrinkage with time and an excellent mechanical strength such as compressive strength. The present invention relates to a method of manufacturing a molded container.

(従来の技術) ポリエチレンテレフタレート(PET)の如き熱可塑性
ポリエステルの二軸延伸ブロー成形容器は、優れた透明
性や表面光沢を有すると共に、びんに必要な耐衝撃性、
剛性、ガスバリヤー性をも有しており、各種飲料等のび
ん詰容器として広く利用されている。
(Prior Art) A biaxially stretch blow-molded container made of a thermoplastic polyester such as polyethylene terephthalate (PET) has excellent transparency and surface gloss, and also has impact resistance required for a bottle.
It has rigidity and gas barrier properties, and is widely used as a bottled container for various beverages.

一般に、延伸ブロー成形PET容器の製造に際しては、
PET樹脂を射出成形して実質上非晶質の有底プリフォ
ームを製造し、この有底プリフォームを延伸温度に予備
加熱した後、これを割金型で保持して延伸ロッドにより
軸方向に引張延伸すると共に、流体吹込みにより周方向
に膨張延伸させる。プリフォームの予備加熱は、マンド
レル等によりプリフォームを支持し、プリフォームの外
面側から赤外線を照射することにより一般に行われてい
るが、この場合には、プリフォームの外面側が内面側よ
りも高温となり、これを防止するためには、著しく長い
加熱時間をかけて均一な加熱を行うか、或いは内外面の
温度差を均一化するための格別の均一化領域を設けるこ
とが必要となる。
Generally, in the production of stretch blow molded PET containers,
A PET resin is injection-molded to produce a substantially amorphous bottomed preform, and this bottomed preform is preheated to a stretching temperature, then held by a split mold and axially moved by a stretching rod. Along with the tensile stretching, the fluid is blown to expand and stretch in the circumferential direction. Preheating of the preform is generally performed by supporting the preform with a mandrel or the like and irradiating infrared rays from the outer surface side of the preform, but in this case, the outer surface side of the preform has a higher temperature than the inner surface side. Therefore, in order to prevent this, it is necessary to carry out uniform heating over a significantly long heating time, or to provide a special uniformization region for uniformizing the temperature difference between the inner and outer surfaces.

このような欠点を防止するために、プリフォームを内面
側と外面側とから加熱して、温度を均一化すると共に加
熱時間を短縮することも既に知られており、例えば特公
昭62−42852号公報には、プリフォームの内部に
挿入されるコアシャフトの外周に、遠赤外線によって発
熱する保温材層を設けることによって、プリフォームを
内部より加熱することが記載されている。また、特開昭
62−77919号公報には、パリソン内部に挿入する
棒状ヒーターの端部に径大部を設けることにより、パリ
ソン加熱に適合した輻射強度分布が得られるようにする
ことが記載されている。更に、特開昭61−16382
8号公報には、プリフォームを加熱炉で外部から加熱す
ると共に、プリフォーム内に挿入したヒートパイプによ
り内部から加熱することが記載されている。
In order to prevent such a defect, it is already known that the preform is heated from the inner surface side and the outer surface side to make the temperature uniform and shorten the heating time, for example, Japanese Patent Publication No. 62-42852. The publication describes that the preform is heated from the inside by providing a heat insulating material layer that generates heat with far infrared rays on the outer periphery of the core shaft that is inserted inside the preform. Further, Japanese Patent Laid-Open No. 62-77919 describes that a large-diameter portion is provided at the end of a rod-shaped heater inserted inside the parison so that a radiation intensity distribution suitable for parison heating can be obtained. ing. Furthermore, JP-A-61-16382
No. 8 discloses that the preform is heated from the outside in a heating furnace and is also heated from the inside by a heat pipe inserted in the preform.

(発明が解決しようとする問題点) 上記先行技術に示された、プリフォームを外面側と内面
側との両方から加熱する方式では、プリフォームの内外
面の温度を均一化し且つ加熱時間を短縮するという目的
に対しては十分に満足し得るものではあるが、この方法
で実際に形成される延伸ブロー成形容器は、経時収縮性
は良好であるものの、クリープが大きくなり、耐圧強度
がかなり低下するという欠点が認められる。
(Problems to be Solved by the Invention) In the method shown in the above prior art in which the preform is heated from both the outer surface side and the inner surface side, the temperature of the inner and outer surfaces of the preform is made uniform and the heating time is shortened. Although the stretch blow-molded container actually formed by this method has good shrinkability over time, it has a large creep and a considerable decrease in pressure strength. The drawback is that it does.

従って、本発明の目的は、小さい経時収縮性と大きな耐
圧強度との組合せ特性を有するポリエステル製延伸ブロ
ー成形容器の製法を提供するにある。
Therefore, it is an object of the present invention to provide a method for producing a polyester stretch-blow molding container having a combination of a small shrinkage property over time and a large compressive strength.

本発明の他の目的は、プリフォームの予備加熱に必要な
時間を著しく短縮し得ると共に全体としての生産性を著
しく高めることが可能なポリエステル製延伸ブロー成形
容器の製法を提供するにある。
Another object of the present invention is to provide a method for producing a stretch-blow molded polyester container capable of significantly shortening the time required for preheating a preform and significantly improving the overall productivity.

本発明の更に他の目的は、飲料、特に、炭酸飲料充填の
用途に有利に適用し得るポリエステル製延伸ブロー成形
容器の製法を提供するにある。
Still another object of the present invention is to provide a method for producing a stretch-blow molded container made of polyester, which can be advantageously applied to the use of filling beverages, especially carbonated beverages.

(問題点を解決するための手段) 本発明によれば、熱可塑性ポリエステルから成るプリフ
ォームを、内面温度(T)及び外面温度(T)が式 T≧ 85℃ …(1) T≦105℃ …(2) 且つ 10℃≧T−T>0℃ …(3) を満足するように加熱し、加熱プリフォームを中空金型
内で、周方向の延伸速度が350%/秒以上となり且つ
式中、Dはプリフォーム内面の面積延伸比、Dはプ
リフォーム外面の面積延伸比である。
(Means for Solving the Problems) According to the present invention, a preform made of a thermoplastic polyester having a temperature (T I ) of the inner surface and a temperature (T O ) of the outer surface represented by the formula T I ≧ 85 ° C. (1) T The heating preform is heated so as to satisfy O ≤ 105 ° C (2) and 10 ° C ≥ T O -T I > 0 ° C (3), and the heating preform is stretched in the hollow mold at a circumferential stretching speed of 350%. / Sec or more and expression In the formula, D I is the area stretch ratio of the inner surface of the preform, and D O is the area stretch ratio of the outer surface of the preform.

で定義される延伸偏倚率(D)が20乃至40%となる
ように軸方向引張延伸と周方向膨張延伸とを行うことを
特徴とするポリエステル製容器の製法が提供される。
There is provided a method for producing a polyester container, characterized in that the axial tensile stretching and the circumferential expansion stretching are performed so that the stretching deviation ratio (D) defined in (3) is 20 to 40%.

本発明においては、熱可塑性ポリエステルから成るプリ
フォームを内部ヒーターと外部ヒーターとにより加熱す
ることが好ましい。
In the present invention, it is preferable to heat the preform made of thermoplastic polyester with an internal heater and an external heater.

(作 用) 本発明においては、熱可塑性ポリエステルのプリフォー
ムを内部ヒーターと外部ヒーターとにより両面側から加
熱するが、この際、前記式(1) 、(2) 及び(3) が同時に
満足されるように、外面温度(T)が内面温度
(T)より一定範囲だけ高くなるように加熱すること
が第一の特徴である。先ず、内面温度(T)を式(1)
を満足するように定めているのは、Tが85℃を下廻
ると最終容器にマイクロクラックが発生し、透明性が低
下すると共に、容器の強度が低下するためである。一
方、外面温度(T)を式(2) を満足するように定めて
いるのはTが105℃を越えると、予備加熱時或いは
その後の延伸成形操作時にポリエステルの熱結晶化が生
じ、透明性が損なわれると共に、分子配向の緩和が生じ
て延伸による強度の向上が望めなくなる。次に、外面温
度及び内面温度間に前記式(3) の温度差を設けるのは、
次に行われる延伸成形操作にも関連して経時収縮性と耐
圧強度とが共に最大となるようなバランスをとるためで
ある。
(Operation) In the present invention, a thermoplastic polyester preform is heated from both sides by an internal heater and an external heater. At this time, the above formulas (1), (2) and (3) are simultaneously satisfied. As described above, the first feature is to heat the outer surface temperature (T O ) to be higher than the inner surface temperature (T I ) by a certain range. First, the inner surface temperature (T I ) is calculated by the formula (1)
The reason for satisfying is that when T I is lower than 85 ° C., microcracks are generated in the final container, the transparency is lowered, and the strength of the container is lowered. On the other hand, the outer surface temperature (T 2 O ) is set so as to satisfy the formula (2) because when T 2 O exceeds 105 ° C., thermal crystallization of the polyester occurs during preheating or during the subsequent stretch molding operation. The transparency is impaired and the molecular orientation is relaxed, so that the strength cannot be expected to be improved by stretching. Next, providing the temperature difference of the above formula (3) between the outer surface temperature and the inner surface temperature is
This is for the purpose of achieving a balance that maximizes both the time-dependent shrinkability and the pressure resistance in connection with the subsequent stretch-molding operation.

従来、プラスチックのプリフォームの延伸ブロー成形で
は、内面側の延伸比率が外面側のそれに比して大きいこ
とから、両者の分子配向の程度を一様なものとするため
に、プルフォームの内表面の温度(T)を外表面の温
度(T)よりも高くなるような温度勾配を与えるのが
一般的である(例えば特開昭49−103956号公報
第4頁左下欄及び特開昭58−167127号公報第5
頁右上欄)。
Conventionally, in stretch blow molding of plastic preforms, since the stretch ratio on the inner surface side is larger than that on the outer surface side, in order to make the degree of molecular orientation of the both uniform, (T I ) of the outer surface is generally higher than the temperature (T O ) of the outer surface (for example, JP-A-49-103956, page 4, lower left column, and JP-A-SHO). No. 58-167127, No. 5
Top right column).

これに対して、本発明では、かかる一般的常識とは逆
に、外面温度(T)が内面温度(T)よりも高くな
る温度勾配をプリフォームに与えるのである。これは本
発明で採用する延伸プロー成形条件ではプリフォーム内
面側で内部発熱があり、歪を緩和させながら、適度の分
子配向と結晶化とを与えることが可能になるのである。
On the other hand, in the present invention, contrary to this general common sense, the preform is provided with a temperature gradient such that the outer surface temperature (T O ) becomes higher than the inner surface temperature (T I ). This is because under the stretch-plow molding conditions adopted in the present invention, internal heat is generated on the inner surface side of the preform, and it becomes possible to impart appropriate molecular orientation and crystallization while relaxing strain.

外面温度(T)が内面温度(T)と等しいか、或い
はこれよりも低い場合には、延伸ブロー成形時の内部発
熱の影響により、内面側樹脂の分子配向が過度に緩和さ
れて、クリープが大となり、耐圧強度が著しく低下す
る。
When the outer surface temperature (T O ) is equal to or lower than the inner surface temperature (T I ), the molecular orientation of the inner surface side resin is excessively relaxed due to the effect of internal heat generation during stretch blow molding, Creep becomes large and the pressure resistance is significantly reduced.

一方、T−Tの値が10℃を越えると、延伸成形時
の発熱にかかわらず内面側樹脂の残留歪が大となって、
経時収縮が大となる。本発明において、T−Tの値
は0乃至10℃の範囲にあるのが好ましい。
On the other hand, when the value of T O -T I exceeds 10 ° C., the residual strain of the inner surface side resin regardless heat generation during stretching becomes large,
Greater shrinkage over time. In the present invention, T O -T value of I is preferably in the range of 0 to 10 ° C..

次に、本発明においては、周方向の延伸強度が350%
/秒以上、特に450%/秒以上となり、且つ前記式
(4) で定義される延伸偏倚率(D)が20乃至40%、
特に25乃至35%となるように軸方向引張延伸と周方
向膨張延伸とを行うことが第二の特徴である。
Next, in the present invention, the stretching strength in the circumferential direction is 350%.
/ Sec or more, particularly 450% / sec or more, and the above formula
The stretching deviation ratio (D) defined by (4) is 20 to 40%,
In particular, the second characteristic is that the axial tensile stretching and the circumferential expansion stretching are performed so as to be 25 to 35%.

一般に、熱可塑性ポリエステルの延伸速度と内部摩擦及
び結晶化による発熱(内部発熱)との間には、延伸速度
がある点を越えると内部発熱による昇温が急激に大きく
なる傾向がある。本発明において、延伸速度を上記範囲
に定めているのは、この範囲で内部発熱による温度上昇
が顕著であり、一般に10〜30℃にも達することによ
る。
In general, between the stretching speed of a thermoplastic polyester and the heat generated by internal friction and crystallization (internal heat generation), when the stretching speed exceeds a certain point, the temperature rise due to the internal heat tends to increase sharply. In the present invention, the reason why the stretching speed is set in the above range is that the temperature rise due to internal heat generation is remarkable in this range and generally reaches 10 to 30 ° C.

前記式(4) で定義される延伸偏倚率(D)とは、一定の
プリフォームとこれから形成される容器とについて、プ
リフォーム内面の面積延伸比(倍)と外面の面積延伸比
(倍)との差を、内面面積延伸比でノーマライズした百
分率であり、一般にゼロより大で100よりも小さい値
をとる。
The stretch deviation ratio (D) defined by the above formula (4) means the area stretch ratio (times) of the inner surface of the preform and the area stretch ratio (times) of the outer surface of a given preform and a container formed therefrom. Is the percentage normalized by the internal surface area stretching ratio, and generally takes a value larger than zero and smaller than 100.

この延伸偏倚率(D)は、内面側樹脂の内部発熱と共に
内面側樹脂の分子配向にも関係があり、このDの値が大
きいほど内部発熱が大で、分子配向の程度も高くなる
が、内部発熱が大きくなると配向の緩和も同時に進行す
ることから、経時収縮性と耐圧強度とに関して一定の最
適範囲がある。
This stretching deviation rate (D) is related to the internal heat generation of the inner surface side resin as well as the molecular orientation of the inner surface side resin. The larger the value of D, the larger the internal heat generation and the higher the degree of molecular orientation. When the internal heat generation becomes large, the relaxation of the orientation also progresses at the same time, so that there is a certain optimum range with respect to the shrinkage property over time and the pressure resistance.

すなわち、延伸偏倚率(D)が上記範囲より小さい場合
には、内面側樹脂の緩和が不十分で結晶化度も向上しな
いことから、経時収縮性が大となる傾向があり、一方上
記範囲よりも大きい場合には、内面側樹脂の緩和が大き
くなりすぎて、容器の耐圧強度が十分に得られない傾向
にある。
That is, when the stretching deviation ratio (D) is smaller than the above range, the relaxation of the inner surface side resin is insufficient and the crystallinity is not improved, so that there is a tendency that the shrinkage with time becomes large. If it is too large, the relaxation of the resin on the inner surface side becomes too large, and the pressure resistance of the container tends to be insufficient.

本発明においては、得られる延伸ブロー成形容器が下記
式を満足するような配向性と結晶性を有するように延伸
ブロー成形することも重要である。
In the present invention, it is also important to perform stretch blow molding so that the obtained stretch blow molded container has orientation and crystallinity that satisfy the following formula.

すなわち、得られる延伸ブロー成形容器の胴部外面側の
厚み方向屈折率(n)、及び胴部内面側の厚み方向屈
折率(n)が、 1.500 ≧n≧1.492 …(5) 0.020 ≧n−n≧0.010 …(6) を満足し、また、胴部外面側の結晶化度(X)及び胴
部内面側の結晶化度(X)が、 35%≧X≧20% …(7) 3%≧X−X>0% …(8) を満足するように延伸ブロー成形することが重要であ
る。
That is, the thickness direction refractive index (n O ) on the outer surface side of the body portion and the thickness direction refractive index (n I ) on the inner surface side of the body portion of the obtained stretch-blow molded container are 1.500 ≧ n I ≧ 1.492 (5) 0.020 ≧ n O −n I ≧ 0.010 (6), and the crystallinity (X O ) on the outer surface side of the body and the crystallinity (X I ) on the inner surface side of the body are 35% ≧ X I ≧ 20% ... (7) 3 % ≧ X I -X O> 0% ... (8) it is important to stretch blow molding to satisfy.

本明細書において、厚み方向屈折率とほ、光源としてN
aD線、屈折計としてアッベの屈折計及び偏光板を使用
し、試料面に平行に光を入射させ、偏光板の偏光方向を
厚み方向として測定される値を意味し、厚み方向屈折率
が大きいほど、試料の面方向(軸方向及び周方向)配向
度が小さいこと、及び逆に厚み方向屈折率が小さいほ
ど、試料の面方向配向度が大きいことを意味する。
In this specification, the refractive index in the thickness direction and N as the light source are used.
aD line, Abbe's refractometer and a polarizing plate are used as a refractometer, light is made to enter in parallel to the sample surface, and the polarization direction of the polarizing plate is measured in the thickness direction. That is, the smaller the degree of orientation in the plane direction (axial direction and circumferential direction) of the sample, and conversely, the smaller the degree of refraction in the thickness direction, the greater the degree of orientation in the plane direction of the sample.

内面側屈折率nが式(5) の上限値を越えて大きい場合
には、容器胴部の面内配向の程度が小さく、容器の強度
の点で十分でない。また内面側屈折率nが式(5) の下
限値をそれぞれ越えて小さい場合には、容器胴部の残留
歪が大となり、経時変形が大きくなる傾向がある。
When the inner surface side refractive index n I is larger than the upper limit of the formula (5), the degree of in-plane orientation of the container body is small, and the strength of the container is not sufficient. Further, when the inner surface side refractive index n I is smaller than the lower limit of the expression (5), the residual strain of the container body becomes large and the time-dependent deformation tends to become large.

式(6) における外面側屈折率と内面側屈折率の差(n
−n)は、内面側樹脂の配向の緩和の程度と密接に関
連していることがわかった。従来のプリフォーム外面加
熱方式のプリフォームから形成される容器では、n
の値は0.020 を大きく越えて、一般的に0.030 乃至
0.060 の値であり、このような容器では、内面側の残留
歪が大きく、3体積%以上にも達する経時収縮を生じ
る。一方、内面側を高温とするプリフォーム内面・外面
加熱方式のプリフォームから形成される容器でn−n
の値は0.010 よりも小さく、一般に0.005 乃至0.000
の値であり、このような容器では、内面側の配向緩和が
大きすぎて、その耐圧強度は前者の3/4以下に低下す
る。本発明においては、n−nの値を上記範囲とす
ることにより、内面側樹脂の配向緩和の程度を、経時収
縮を3体積%以下に抑制しながら、しかも16kg/cm2
上にも達する耐圧強度を得ることが可能となるものであ
る。
The difference between the outer surface side refractive index and the inner surface side refractive index (n O
It has been found that −n I ) is closely related to the degree of relaxation of the orientation of the resin on the inner surface side. In a container formed from a conventional preform external surface heating type preform, n O
The value of n I is much higher than 0.020, generally 0.030 to
The value is 0.060, and in such a container, the residual strain on the inner surface side is large and shrinkage with time reaching 3% by volume or more occurs. On the other hand, n O -n in a container formed from the preform of the preform inside surface, an outer surface heating method to the inner surface side and high temperature
The value of I is less than 0.010, generally 0.005 to 0.000
In such a container, the orientation relaxation on the inner surface side is too large, and the pressure resistance thereof is reduced to 3/4 or less of the former. In the present invention, the value of n O -n I is in the above range, the degree of orientation relaxation of the inner surface side resin while suppressing aging shrinkage to 3% by volume or less, yet 16 kg / cm 2 or more even It is possible to obtain the pressure strength to reach.

本明細書における結晶化度(X)は、密度勾配管を用い
る密度の測定値から式 式中、ρ:試料の密度(g/cm3) ρam:非晶質密度( PET=1.335g/cm3) ρ:結晶質密度( PET=1.455g/cm3) で算出される値である。
The crystallinity (X) in the present specification is calculated from the measured value of density using a density gradient tube. In the formula, ρ: sample density (g / cm 3 ) ρ am : amorphous density (PET = 1.335g / cm 3 ) ρ c : value calculated by crystalline density (PET = 1.455g / cm 3 ). Is.

内面側樹脂の結晶化度Xは、容器の耐圧強度等に密接
に関連する。すなわち、Xが式(7) の上限値を越えて
大きくなる場合、及びその下限値を越えて小さくなる場
合、式(7) を満足する場合に比して耐圧強度が低下す
る。これは前者の場合には非晶質配向部の緩和が大きす
ぎるためであり、また後者の場合にはクリープを阻止す
るに十分な程に結晶が発達していないためと思われる。
更に球晶が生成する程に高い結晶化度を有する場合に
は、落下等に対する耐衝撃性も低下する。
The crystallinity X I of the inner surface side resin is closely related to the pressure resistance of the container. That is, when X I is increased beyond the upper limit of the formula (7), and if smaller beyond its lower limit, pressure resistance decreases as compared with the case of satisfying the formula (7). This is probably because in the former case, the relaxation of the amorphous orientation portion is too large, and in the latter case, the crystal has not developed sufficiently to prevent creep.
Further, when the crystallinity is high enough to generate spherulites, the impact resistance against dropping or the like is also lowered.

内面側樹脂の結晶化度Xは外面側樹脂の結晶化度X
よりも高く、しかも前記式(8) を満足するものでなけれ
ばならない。炭酸飲料容器等の内圧容器において、クリ
ープ防止に役立つのは内面側樹脂であるが、本発明によ
れば内面側樹脂の結晶化度を一定の範囲で高めておくこ
とにより、耐圧性を高めることができる。X−X
値は0乃至3%の範囲にあるのが望ましい。
The crystallinity X I of the resin on the inner surface side is the crystallinity X O of the resin on the outer surface side.
Must be higher than the above and satisfy the above formula (8). In an internal pressure container such as a carbonated beverage container, it is the inner surface side resin that helps prevent creep, but according to the present invention, by increasing the crystallinity of the inner surface side resin within a certain range, it is possible to improve the pressure resistance. You can X I -X value of O is desirably in the range of 0 to 3%.

(発明の好適態様) 本発明において、熱可塑性ポリエステルとしては、エチ
レンテレフタレート単位を主体とする熱可塑性ポリエス
テル、例えばPETやグリコール成分としてヘキサヘド
ロキシレングルコール等の他のグリコール類の少量を含
有せしめ或いは二塩基酸成分としてイソフタル酸やヘキ
サヒドロテレフタル酸等の他の二塩基酸成分の少量を含
有せしめた所謂改質PET等が使用される。これらのポ
リエステルは、単独でも或いはナイロン類、ポリカーボ
ネート或いはポリアリレート等の他の樹脂とのブレンド
物の形でも使用し得る。
(Preferred Embodiment of the Invention) In the present invention, as the thermoplastic polyester, a thermoplastic polyester mainly composed of ethylene terephthalate units, for example, PET or a small amount of other glycols such as hexahedroxylene glycol as a glycol component, or As the dibasic acid component, so-called modified PET containing a small amount of other dibasic acid components such as isophthalic acid and hexahydroterephthalic acid is used. These polyesters may be used alone or in the form of blends with other resins such as nylons, polycarbonates or polyarylates.

用いる熱可塑性ポリエステルの固有粘度が0.67dl/g以上
であり、且つジエチレングルコール単位の含有量が2.0
重量%以下の範囲内にあることが望ましい。
The intrinsic viscosity of the thermoplastic polyester used is 0.67 dl / g or more, and the content of diethylene glycol units is 2.0.
It is desirable to be in the range of not more than wt%.

延伸ブロー成形に使用する有底プリフォームは、それ自
体公知の任意の手法、例えば射出成形法、パイプ押出成
形法等の製造される。前者の方法では、溶融ポリエステ
ルを射出し、最終容器に対応する口頚部を備えた有底プ
リフォームを非晶質の状態で製造する。後者の方法はエ
チレン−ビニルアルコール共重合体等のガスバリヤー性
中間樹脂層を備えた有底プリフォームの製造に有利な方
法であり、押出された非晶質パイプを切断し、一端部に
圧縮成形で口頚部を形成されると共に、他端部を閉じて
有底プリフォームとする。高温下での蓋との係合、密封
状態を良好に維持するために、容器口頚部となる部分の
みを予め熱結晶化させておくことができる。勿論、この
熱結晶化は以後の任意の段階で行うこともできる。
The bottomed preform used for stretch blow molding is manufactured by any method known per se, such as an injection molding method and a pipe extrusion molding method. In the former method, molten polyester is injected to produce a bottomed preform having a mouth and neck corresponding to the final container in an amorphous state. The latter method is an advantageous method for producing a bottomed preform provided with a gas barrier intermediate resin layer such as an ethylene-vinyl alcohol copolymer, which is obtained by cutting an extruded amorphous pipe and compressing it at one end. The mouth and neck are formed by molding, and the other end is closed to form a bottomed preform. In order to maintain good engagement and sealing with the lid at high temperature, only the part that becomes the neck of the container can be preliminarily thermally crystallized. Of course, this thermal crystallization can also be performed at any subsequent stage.

プリフォームの予備加熱は、任意の加熱機構を用いて行
うことができ、例えば内部ヒーターとしては、特開昭6
3−306023号公報記載のものを使用でき、外部ヒ
ーターとしては、赤外線ヒーター等を用いることができ
る。
Preheating of the preform can be carried out by using an arbitrary heating mechanism.
The one described in JP-A-3-306023 can be used, and an infrared heater or the like can be used as the external heater.

プリフォームの延伸ブロー成形は、前述した制限を除け
ばそれ自体公知の条件で行うことができる。プリフォー
ムに吹込む熱風の温度がプリフォーム温度(T)よりも
10℃以上高い温度であることが望ましく、また軸方向
の延伸倍率は、1.3 乃至3.5 倍、特に1.5 乃至3倍と
し、周方向の延伸倍率は胴部で2乃至5.5 倍、特に3乃
至5倍とするのがよい。
Stretch blow molding of the preform can be carried out under conditions known per se except for the above-mentioned restrictions. It is desirable that the temperature of the hot air blown into the preform is 10 ° C or more higher than the preform temperature (T), and the axial draw ratio is 1.3 to 3.5 times, especially 1.5 to 3 times, and the circumferential direction It is preferable that the body has a stretching ratio of 2 to 5.5 times, particularly 3 to 5 times.

(発明の効果) 本発明にれば、プリフォームの内外面に特定の温度勾配
を与えると共に、延伸ブロー成形時に生じる内部発熱を
巧みに且つ有効に利用することにより、経時収縮性が小
さくしかも耐圧強度の大きいポリエステル製延伸ブロー
成形容器を製造することが可能となった。また、この方
法によれば、プリフォームの加熱時間が短くてすみ、し
かも高速での延伸ブロー成形が可能となることから、容
器の生産性を著しく向上させることが可能となった。
(Effects of the Invention) According to the present invention, by giving a specific temperature gradient to the inner and outer surfaces of the preform and skillfully and effectively utilizing the internal heat generated during stretch blow molding, the shrinkage with time is small and the pressure resistance is low. It has become possible to manufacture a stretch-blown polyester container having high strength. Further, according to this method, the heating time of the preform is short and the stretch blow molding can be performed at a high speed, so that the productivity of the container can be remarkably improved.

(実施例) 本発明を以下の実施例で説明する。各評価項目は以下の
方法により測定した。
(Example) The present invention will be described in the following examples. Each evaluation item was measured by the following method.

プリフォーム温度 プリフォームの高さ方向の中央部の内面側と外面側に熱
電対をはりつけて、温度測定を行い、加熱されたプリフ
ォームが中空金型に入る直前の温度を、内外面のプリフ
ォーム温度とした。
Preform temperature Thermocouples are attached to the inner and outer surfaces of the center of the preform in the height direction, temperature is measured, and the temperature immediately before the heated preform enters the hollow mold is measured. The reform temperature was used.

ブローによる円周方向延伸速度 金型内面のボトル胴、中央部付近に、温度センサーを張
り付け、ブロー開始時より温度上昇が起こり始めるまで
の時間を測定した。この時間をΔt、プリフォームの平
均半径をr、ボトルの中心線から温度センサー装着位置
迄の距離をRとすると、円周方向延伸速度は次式で表わ
される。
Circumferential stretching speed by blowing A temperature sensor was attached to the inner surface of the mold, near the center of the bottle body, and the time from the start of blowing until the start of temperature rise was measured. When this time is Δt, the average radius of the preform is r, and the distance from the center line of the bottle to the temperature sensor mounting position is R, the circumferential stretching speed is expressed by the following equation.

結晶化度 ボトル壁面を厚さ方向で約1/3ずつにカッターで剥
ぎ、ボトル外面側と内面側の片をサンプルとした。
Crystallinity The wall surface of the bottle was stripped by a cutter in approximately 1/3 each in the thickness direction, and pieces on the outer surface side and the inner surface side of the bottle were used as samples.

n−ヘプタン−四塩化炭素系密度勾配管(株式会社、池
田理化)を作成し、20℃の条件下でサンプルの密度を
求めた。これにより、以下の式に伴い、結晶化度を算出
した。
An n-heptane-carbon tetrachloride-based density gradient tube (Rika Ikeda, Inc.) was prepared, and the density of the sample was determined under the condition of 20 ° C. Thus, the crystallinity was calculated according to the following formula.

結晶化度 式中、ρ:測定密度(g/cm3) ρam:非晶質密度( PET=1.355g/cm3) ρ:結晶質密度( PET=1.455g/cm3) 屈折率 光源としてNaD線、屈折計としてアッベの屈折計及び
偏光板を使用し、R.J.SAMUELS(Journal) of Applie
d Polymer Science,Vol.26.1383(1981))の方法により、
ボルトより切り出したサンプルの内外面の厚さ方向の屈
折率n,nを測定した。
Crystallinity In the formula, ρ: measured density (g / cm 3 ) ρ am : amorphous density (PET = 1.355g / cm 3 ) ρ c : crystalline density (PET = 1.455g / cm 3 ) Refractive index NaD ray as a light source , Abbe's refractometer and a polarizing plate are used as refractometers. J. SAMUELS (Journal) of Applie
d Polymer Science, Vol.26.1383 (1981))
Refractive indexes n I and n O in the thickness direction of the inner and outer surfaces of the sample cut out from the bolt were measured.

バースト強度 ボルトに水を入れ、圧力を加えてゆく、破裂したときの
圧力を測定した。
Burst strength Water was put in a bolt, pressure was applied, and the pressure at the time of bursting was measured.

収縮率 ボトル外面に歪ゲージ(株式会社、共和電業)をボトル
周方向及び軸方向に張り付けた後、60℃オーブンに1
時間入れ、取り出して放冷10分後の収縮率を静歪測定
器にて測定した。
Shrinkage rate A strain gauge (Kyowa Denki Co., Ltd.) is attached to the outer surface of the bottle in the bottle circumferential direction and axial direction, and then placed in an oven at 60 ° C
The shrinkage rate after 10 minutes of time insertion and removal and cooling was measured with a static strain measuring instrument.

尚、評価ボトルは成形後、30℃、80%RHの雰囲気
下で一日保管したものである。また、屈折率、結晶化
度、収縮率の測定位置はボトルの高さ約3/4のところ
とした。
Incidentally, the evaluation bottle was stored for one day in an atmosphere of 30 ° C. and 80% RH after molding. Further, the measurement position of the refractive index, the crystallinity, and the shrinkage ratio was at the height of the bottle of about 3/4.

本発明は従来公知の種々の形状の容器に適用できる。例
えば、第1図に示す形状のものや、また耐圧性や耐衝撃
性を改良するためには第2図に示すような形状の容器を
用いることが好ましい。
The present invention can be applied to conventionally known containers having various shapes. For example, it is preferable to use a container having a shape shown in FIG. 1 or a container having a shape shown in FIG. 2 in order to improve pressure resistance and impact resistance.

実施例1 射出成形されたポリエチレンテレフタレートプリフォー
ム(重量49g)を、内側及び外側から加熱後、二軸延
伸ブローし、内容量1.5 の第1図に示された形状のボ
トル(胴部平均肉厚300μm)を作成した。使用した
プリフォームの延伸偏倚率(D)は32.3%であり、円周
方向延伸速度は、前述の方法にて測定したところ、45
0%/秒であった。内部ヒーターと外部ヒーターを調節
してプリフォームの内外温度を変化させて得たボトルの
内外の厚さ方向屈折率及び結晶化度の値を表1に示す。
Example 1 An injection-molded polyethylene terephthalate preform (weight: 49 g) was heated from the inside and the outside and then biaxially stretch blown to a bottle having an internal volume of 1.5 and having a shape shown in FIG. 300 μm) was prepared. The stretch deviation (D) of the preform used was 32.3%, and the circumferential stretching speed was 45 when measured by the above-mentioned method.
It was 0% / sec. Table 1 shows the values of the refractive index in the thickness direction and the crystallinity of the inside and outside of the bottle obtained by adjusting the inside and outside temperatures of the preform by adjusting the inside heater and the outside heater.

aにおいては、プリフォーム内面側の温度Tが低過ぎ
たため、過延伸によりマイクロクラックが発生し、薄く
パール色となり透明性が低下してしまった。このためバ
ースト強度も小さい値を示した。
In a, the temperature T I on the inner surface side of the preform was too low, so that microcracking occurred due to overstretching, resulting in a thin pearl color and poor transparency. Therefore, the burst strength also showed a small value.

条件bでは、外側の厚さ方向屈折率nが大きいことか
ら、配向は小さいといえるのに、外側結晶化度は大きな
値を示している。これは外側プリフォームが高温であっ
たために、結晶化は進行したけれども分子配向はむしろ
高温過ぎたために緩和が著しかった、ということを意味
する。強度は分子配向に依存するので、この外側の緩和
によって影響され、小さい値となったのである。
Under the condition b, since the outer refractive index n O in the thickness direction is large, the orientation can be said to be small, but the outer crystallinity shows a large value. This means that the outer preform was at a high temperature, so that crystallization proceeded, but the molecular orientation was rather too high and the relaxation was remarkable. Since the strength depends on the molecular orientation, it is influenced by this outer relaxation and has a small value.

dにおいては、内面側の温度の方が高くなっているが、
これは、周方向の延伸倍率が内面側の方が外面側よりも
大きいことから、一般的には適当の温度勾配として考え
られているが、本成形条件のように、延伸速度が非常に
速い場合には延伸により材料が内部発熱を起こし、延伸
直後には相当高温化するため、延伸倍率の高い内面側に
おいては、更に高温化することが予想される。その結
果、結晶化の促進と分子配向の緩和が起こり、特に後者
が必要以上に大きくなり、耐経時収縮性としては良好な
方向であるが、強度は低下することになる。これに対
し、cやeは、内面温度が自己発熱により高温化するこ
とを見込んで、内側延伸倍率のほうが外側のそれより大
きいにもかかわらず、外面のプリフォーム温度よりも若
干低温としている。そうして得られたボトルは、内面側
の方が外面側より厚さ方向屈折率が小さく、すなわち配
向しており、結晶化度も高いという状態を保ちつつも、
非常に接近した値を示している。つまり、周方向延伸倍
率が内外で非常に異なるにもかかわらず、同じような状
態下にあるということは、適切な延伸が行われたわけで
あり、強度を見てみると、他に比較して大きな値を示し
ていることから、最大限に延伸の効果がでているといえ
る。
At d, the temperature on the inner surface side is higher,
This is generally considered to be an appropriate temperature gradient because the stretching ratio in the circumferential direction on the inner surface side is larger than that on the outer surface side, but the stretching speed is very high as in the main molding conditions. In this case, the material internally heats up due to the stretching, and the temperature rises considerably immediately after the stretching. Therefore, it is expected that the temperature further increases on the inner surface side where the stretching ratio is high. As a result, crystallization is promoted and molecular orientation is relaxed, and the latter in particular becomes unnecessarily large, which is favorable in terms of shrinkage resistance over time, but the strength is reduced. On the other hand, c and e are set to be slightly lower than the preform temperature of the outer surface, even though the inner draw ratio is larger than that of the outer surface, considering that the inner surface temperature is increased by self-heating. The bottle thus obtained, the inner surface side has a smaller thickness direction refractive index than the outer surface side, that is, oriented, while maintaining a state of high crystallinity,
The values are very close. In other words, despite the fact that the stretching ratio in the circumferential direction was very different inside and outside, it was under the same condition, which means that proper stretching was performed. Since it shows a large value, it can be said that the stretching effect is maximized.

実施例2 実施例1のaとeのボトルについて、60℃オーブン中
に1時間入れたことにより起こった収縮率の測定結果を
表2に示す。
Example 2 With respect to the bottles a and e of Example 1, Table 2 shows the measurement results of the shrinkage rate caused by placing them in a 60 ° C. oven for 1 hour.

以上より、eの製法で得たボトルは、耐収縮性にも優れ
ていることがわかる。
From the above, it can be seen that the bottle obtained by the production method of e has excellent shrinkage resistance.

比較例1 実施例1で使用したプリフォームと同様なプリフォーム
を用い、ブロー圧を小さくしてボトル成形を行った。各
測定値を表3に示す。プリフォーム温度は外面102
℃、内面99℃であった。
Comparative Example 1 Using a preform similar to the preform used in Example 1, the blow pressure was reduced and bottle molding was performed. Table 3 shows each measured value. Preform temperature is outside 102
The inner surface was 99 ° C.

これより、延伸速度が遅いと、収縮率が大きくなること
が理解できる。延伸速度が遅いと、延伸による内部発熱
はほとんど起こらなくなることから自己発熱高温化によ
る分子配向の緩和が望めない。そのため、残留歪が大き
くなり、収縮率が大きくなったわけである。
From this, it can be understood that when the stretching speed is slow, the shrinkage ratio increases. If the stretching speed is slow, internal heat generation due to stretching hardly occurs, so that relaxation of molecular orientation due to self-heating and high temperature cannot be expected. Therefore, the residual strain increased and the shrinkage ratio increased.

比較例2 プリフォームの加熱を外部ヒーターのみで行ったボトル
についての各測定値を表4に示す。外部加熱のみを用い
た場合では、プリフォームの内外温度を本特許請求の範
囲で規定した範囲に調節するのは困難であった。そのた
め、内外のプリフォーム温度と延伸倍率の関係が不適当
となり、gではバースト強度と耐収縮性が、hではバー
スト強度が実施例と比べて悪い値を示した。
Comparative Example 2 Table 4 shows the measured values of the bottle in which the preform was heated only by the external heater. When only external heating was used, it was difficult to adjust the inside and outside temperatures of the preform within the range specified in the claims. Therefore, the relationship between the inner and outer preform temperatures and the draw ratio became improper, and the burst strength and shrinkage resistance of g were worse, and the burst strength of h was worse than those of the examples.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例1により作成されたボトルの形状を示
す図である。 第2図は、本発明に適用できる容器の形状を示すもので
ある。
FIG. 1 is a diagram showing the shape of a bottle prepared in Example 1. FIG. 2 shows the shape of the container applicable to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性ポリエステルから成るプリフォー
ムを、内面温度(T)及び外面温度(T)が式 T≧ 85℃ T≦105℃ 且つ 10℃≧T−T>0℃ を満足するように加熱し、 加熱プリフォームを中空金型内で、周方向の延伸速度が
350%/秒以上となり且つ式 式中、Dはプリフォーム内面の面積延伸比、Dはプ
リフォーム外面の面積延伸比である、 で定義される延伸偏倚率(D)が20乃至40%となる
ように軸方向引張延伸と周方向膨張延伸とを行うことを
特徴とするポリエステル製容器の製法。
1. A preform made of a thermoplastic polyester having an inner surface temperature (T I ) and an outer surface temperature (T O ) of the formula T I ≧ 85 ° C. T O ≦ 105 ° C. and 10 ° C. ≧ T O −T I > 0. The heating preform is heated in the hollow mold so that the drawing rate in the circumferential direction is 350% / sec or more and In the formula, D I is the area stretch ratio of the inner surface of the preform, D O is the area stretch ratio of the outer surface of the preform, and the axial stretch stretching is performed so that the stretch deviation ratio (D) is 20 to 40%. And a circumferential expansion / stretching process for producing a polyester container.
【請求項2】前記プリフォームの加熱を内部ヒーターと
外部ヒーターとにより両面側から加熱することを特徴と
する請求項1記載の製法。
2. The method according to claim 1, wherein the preform is heated from both sides by an internal heater and an external heater.
【請求項3】NaD線を用いて測定した胴部外面側の厚
み方向屈折率(n)、及び胴部内面側の厚み方向屈折
率(n)が、 1.500 ≧n≧1.492 0.020 ≧n=n≧0.010 となるように延伸することを特徴とする請求項1記載の
製法。
3. The thickness direction refractive index (n O ) on the outer surface side of the body and the thickness direction refractive index (n I ) on the inner surface side of the body are 1.500 ≧ n I ≧ 1.492 0.020 ≧ The method according to claim 1, wherein the stretching is performed so that n O = n I ≧ 0.010.
【請求項4】密度法により測定した胴部外面側の結晶化
度(X)及び胴部内面側の結晶化度(X)が、 35%≧X≧20% 3%≧X−X>0% となるように延伸することを特徴とする請求項1記載の
製法。
4. The crystallinity (X O ) on the outer surface side of the body and the crystallinity (X I ) on the inner surface side of the body measured by the density method are 35% ≧ X I ≧ 20% 3% ≧ X I The method according to claim 1, wherein the stretching is performed so that -X 2 O > 0%.
JP1159429A 1989-06-23 1989-06-23 How to make polyester containers for beverages Expired - Fee Related JPH0624758B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1159429A JPH0624758B2 (en) 1989-06-23 1989-06-23 How to make polyester containers for beverages
US07/542,143 US5250335A (en) 1989-06-23 1990-06-22 Polyester vessel for drink and process for preparation thereof
DE69031514T DE69031514T2 (en) 1989-06-23 1990-06-22 Drinking vessel made of polyester and process for its production
EP90111898A EP0404187B1 (en) 1989-06-23 1990-06-22 Polyester vessel for drink and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159429A JPH0624758B2 (en) 1989-06-23 1989-06-23 How to make polyester containers for beverages

Publications (2)

Publication Number Publication Date
JPH0324934A JPH0324934A (en) 1991-02-01
JPH0624758B2 true JPH0624758B2 (en) 1994-04-06

Family

ID=15693552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159429A Expired - Fee Related JPH0624758B2 (en) 1989-06-23 1989-06-23 How to make polyester containers for beverages

Country Status (1)

Country Link
JP (1) JPH0624758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635772B2 (en) * 1996-03-22 2005-04-06 東洋製罐株式会社 container
KR100426872B1 (en) * 2001-10-15 2004-04-14 기아자동차주식회사 cargo compartment auxiliary system of large bus
FR2917068B1 (en) * 2007-06-07 2012-10-12 Sidel Participations POLYMER CONTAINER HAVING A CRYSTALLINITE GRADIENT

Also Published As

Publication number Publication date
JPH0324934A (en) 1991-02-01

Similar Documents

Publication Publication Date Title
EP0280742B1 (en) Production of polyester hollow molded article
US4385089A (en) Process for preparing biaxially oriented hollow shaped articles from thermoplastic materials
EP0494098B2 (en) Method of blow moulding container
AU631897B2 (en) Process for the manufacture of containers made of polyethyleneterephthalate intended to be filled with a hot liquid
NZ209211A (en) Blow moulding a container in two moulds with intermould transfer under pressure
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
US4603066A (en) Poly(ethylene terephthalate) articles
JPWO2003008178A1 (en) Stretched heat-set molded article and method for producing the same
JPH0443776B2 (en)
JPS6356104B2 (en)
EP0404187B1 (en) Polyester vessel for drink and process for preparation thereof
JPH0624758B2 (en) How to make polyester containers for beverages
TW587980B (en) Processes for producing PET preforms and containers such as food bottles, containers and intermediate preforms obtained
US6406661B1 (en) Heat set blow molding process
JP2520736B2 (en) Beverage polyester container
EP1986831B1 (en) Preforms for obtaining containers and corresponding container
JPH07309320A (en) One-piece type heat-resistant polyester bottle and manufacture thereof
JP3716510B2 (en) Stretch blow bottle
JPS63185620A (en) Production of thermally set polyester stretched molded container
WO2004096525A1 (en) Method of manufacturing heat-resisting polyester bottles and the products therefrom
JPS5935333B2 (en) Method for manufacturing polyester containers
JPH0443498B2 (en)
JPH0615643A (en) Manufacture of premolded body
WO2000023252A1 (en) Injection stretch blow molding method
KR100671666B1 (en) The method of manufacturing a preform for multi-layered plastic bottle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees