JPH0624751A - Production of iron oxide for ferrite - Google Patents

Production of iron oxide for ferrite

Info

Publication number
JPH0624751A
JPH0624751A JP7731192A JP7731192A JPH0624751A JP H0624751 A JPH0624751 A JP H0624751A JP 7731192 A JP7731192 A JP 7731192A JP 7731192 A JP7731192 A JP 7731192A JP H0624751 A JPH0624751 A JP H0624751A
Authority
JP
Japan
Prior art keywords
iron oxide
magnetite
ferrite
roasting
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7731192A
Other languages
Japanese (ja)
Other versions
JP2505344B2 (en
Inventor
Shozo Hirose
省三 広瀬
Michiaki Yamauchi
道章 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4077311A priority Critical patent/JP2505344B2/en
Publication of JPH0624751A publication Critical patent/JPH0624751A/en
Application granted granted Critical
Publication of JP2505344B2 publication Critical patent/JP2505344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for producing iron oxide for ferrite capable of affording the iron oxide, having a certain level of magnetism with hardly any content of the remaining SOX. CONSTITUTION:In the objective method for producing iron oxide for ferrite by depositing magnetite from an aqueous solution of a ferrous salt according to hydrothermal reaction and roasting the deposited magnetite, the magnetite deposited according to the hydrothermal reaction is washed with water and filtered to regulate the content of the remaining SO3 within the range of 1.2-2.0wt.%. The regulated magnetite is then roasted at 500-600 deg.C in a rotary tubular furnace in the air while feeding air thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固相反応による単結晶
フェライトを製造する際に好適に使用される多結晶フェ
ライト用の酸化鉄の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing iron oxide for polycrystalline ferrite, which is preferably used when producing single crystal ferrite by solid-state reaction.

【0002】[0002]

【従来の技術】従来から、例えば特開昭56ー1551
00号公報において、多結晶フェライトと単結晶フェラ
イトとを接合させた状態で所定の温度に保持し、固相反
応により単結晶フェライトを多結晶フェライト中に成長
させて、単結晶フェライトを得る方法が知られている。
また、この固相反応に使用する多結晶フェライトの原料
としての酸化鉄の製造方法が、例えば特開昭62ー22
3023号公報において知られている。
2. Description of the Related Art Conventionally, for example, JP-A-56-1551.
In JP-A-00-00, there is a method of obtaining a single crystal ferrite by maintaining a predetermined temperature in a state where the polycrystalline ferrite and the single crystal ferrite are bonded and growing the single crystal ferrite in the polycrystalline ferrite by a solid phase reaction. Are known.
A method for producing iron oxide as a raw material for polycrystalline ferrite used in this solid-phase reaction is disclosed in, for example, JP-A-62-22.
No. 3023 is known.

【0003】上述した特開昭62ー223023号公報
に記載の製造方法では、異方性結晶の発生が少なく、単
結晶の成長性の良好な多結晶母材を有利に製造できる酸
化鉄を、例えば図3にその概略図を示すように、水熱反
応により得られたスピネル構造を有するマグネタイト1
1を焼成炉12内にセットし、焼成炉12内に酸素濃度
1%以下の窒素ガスを流した中性ガス雰囲気中で、45
0〜750℃の温度で焙焼して、酸化鉄を製造してい
る。本来、マグネタイトは、この温度域で焙焼すること
によって、ヘマタイト(α−Fe2O3)に転化するが、その
転化の度合いを磁性度によって評価している。すなわ
ち、マグネタイトは磁性を有するが、ヘマタイトは磁性
を有せず、固相反応法によるフェライト単結晶製造用の
酸化鉄原料の製造法としては、この磁性度を管理するこ
とがポイントとなる。
In the production method described in the above-mentioned Japanese Patent Laid-Open No. 62-223023, iron oxide is produced, which is advantageous in producing a polycrystalline base material in which generation of anisotropic crystals is small and good single crystal growth is achieved. For example, as shown in the schematic view of FIG. 3, magnetite 1 having a spinel structure obtained by hydrothermal reaction 1
No. 1 was set in the firing furnace 12, and the firing furnace 12 was operated in a neutral gas atmosphere in which a nitrogen gas having an oxygen concentration of 1% or less was flowed at 45
It is roasted at a temperature of 0 to 750 ° C. to produce iron oxide. Originally, magnetite is converted to hematite (α-Fe 2 O 3 ) by roasting in this temperature range, and the degree of conversion is evaluated by the magnetic degree. That is, magnetite has magnetism, but hematite does not have magnetism, and it is important to control the magnetism as a method for producing an iron oxide raw material for producing a ferrite single crystal by the solid-state reaction method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の酸化鉄の製造方法では、酸素濃度1%以下の窒
素ガス雰囲気中で焙焼する必要があるため、装置が大が
かりとなる問題がある。焙焼後の酸化鉄に不純物として
残存するSOx の量を低くすることが難しく、また、残
存SOx 量を低くするためには焙焼温度を相当高くする
必要があり、その場合スピネル構造がこわされてしま
う、すなわち磁性がなくなってしまう場合のある問題が
あった。そのため、製造コストがかかるとともに、得ら
れた酸化鉄から多結晶フェライトを製造すると、固相反
応に使用する多結晶フェライトとして好ましくない場合
がある問題があった。
However, in the above-mentioned conventional method for producing iron oxide, since it is necessary to roast in a nitrogen gas atmosphere having an oxygen concentration of 1% or less, there is a problem that the apparatus becomes large. It is difficult to reduce the amount of SO x remaining as impurities in the iron oxide after roasting, and in order to reduce the amount of remaining SO x, it is necessary to raise the roasting temperature considerably, in which case the spinel structure There was a problem in that it would be broken, that is, the magnetism would disappear. Therefore, there is a problem that the production cost is high and that the production of the polycrystalline ferrite from the obtained iron oxide may not be preferable as the polycrystalline ferrite used in the solid phase reaction.

【0005】本発明の目的は上述した課題を解消して、
磁性度がある程度あり、残存するSOx の量が少ない酸
化鉄を得ることのできるフェライト用酸化鉄の製造方法
を提供しようとするものである。
The object of the present invention is to solve the above problems,
An object of the present invention is to provide a method for producing iron oxide for ferrite, which is capable of obtaining iron oxide having a certain degree of magnetism and a small amount of remaining SO x .

【0006】[0006]

【課題を解決するための手段】本発明のフェライト用酸
化鉄の製造方法は、硫酸第一鉄水溶液より水熱反応でマ
グネタイトを生成せしめた後、これを焙焼するフェライ
ト用酸化鉄の製造方法において、水熱反応により析出し
たマグネタイトを水洗濾過して、残存するSO 3 を1.
2〜2.0wt%の範囲に調整した後、調整後のマグネタ
イトを大気中にて回転式管状炉で空気を送りながら50
0〜600℃の温度で焙焼することを特徴とするもので
ある。
Means for Solving the Problems Acid for Ferrite of the Present Invention
The manufacturing method of ferric oxide is based on the hydrothermal reaction of ferrous sulfate aqueous solution.
A ferai that roasts this after producing it.
In the method for producing iron oxide for aluminum,
The remaining magnetite is washed with water and filtered to remove residual SO 3 1.
After adjusting to the range of 2 to 2.0 wt%, the adjusted magneta
Ito in the air while sending air in a rotary tubular furnace to 50
Characterized by roasting at a temperature of 0 to 600 ° C
is there.

【0007】[0007]

【作用】上述した構成において、水洗濾過の段階でマグ
ネタイト中のSO3 の量を1.2〜2.0wt%と適切に
制御することにより、焙焼時に窒素等の中性ガス雰囲気
に保持する必要がなく、簡易な設備で経済的に酸化鉄を
得ることができる。また、残存するSO3 分の作る雰囲
気によって、焙焼して得られた酸化鉄の磁性度を維持す
ることができるとともに、製造工程においてマグネタイ
トのスピネル構造を破壊することもなく、良好な酸化鉄
を得ることができる。そのため、得られた酸化鉄を原料
として多結晶フェライトを母材を製造し、これを使用し
て固相反応により単結晶フェライトを得れば、成長距離
が長く、特性も良好な単結晶フェライトを低コストで得
ることができる。
With the above-mentioned structure, the amount of SO 3 in magnetite is appropriately controlled to 1.2 to 2.0 wt% in the step of washing and filtering, so that it is maintained in a neutral gas atmosphere such as nitrogen during roasting. There is no need, and iron oxide can be obtained economically with simple equipment. In addition, the atmosphere for making the remaining SO 3 can maintain the magnetism of the iron oxide obtained by roasting, and does not destroy the spinel structure of magnetite in the manufacturing process, thus making it possible to obtain good iron oxide. Can be obtained. Therefore, if you use the obtained iron oxide as a raw material to produce a polycrystalline ferrite base material and use this to obtain a single crystal ferrite by a solid-phase reaction, a single crystal ferrite with a long growth distance and good characteristics can be obtained. It can be obtained at low cost.

【0008】[0008]

【実施例】図1は本発明のフェライト用酸化鉄の製造方
法の一例の工程を示すフローチャートである。図1に従
って本発明を説明すると、まず、従来から公知の水熱反
応によりマグネタイト(Fe34 )を得る。その一例
を示すと、純度99.99%の電解鉄を硫酸に溶かして
硫酸第一鉄の水溶液を得、この硫酸第一鉄の水溶液とア
ンモニア水とからなる液中に純酸素を吹き込み酸化し
て、マグネタイトを得ることができる。
FIG. 1 is a flow chart showing the steps of an example of the method for producing iron oxide for ferrite of the present invention. The present invention will be described with reference to FIG. 1. First, magnetite (Fe 3 O 4 ) is obtained by a conventionally known hydrothermal reaction. As an example, electrolytic iron having a purity of 99.99% is dissolved in sulfuric acid to obtain an aqueous solution of ferrous sulfate, and pure oxygen is blown into a solution composed of the aqueous solution of ferrous sulfate and ammonia water to oxidize the solution. Then, magnetite can be obtained.

【0009】次に、得られたスピネル構造のマグネタイ
トを、水洗濾過して、SO3 およびその他の不純物を除
去するとともに安定化させ、この段階で少なくともマグ
ネタイト中のSO3 を1.2〜2.0wt%にコントロー
ルする。水洗濾過は従来から高知の種々の方法を利用す
ることができる。また、水洗濾過では、SO3 以外の他
のSOx 成分も除去することができる。
Next, the obtained magnetite having a spinel structure is washed and filtered with water to remove SO 3 and other impurities and to be stabilized, and at this stage, at least SO 3 in the magnetite is 1.2 to 2. Control to 0 wt%. For washing and filtering, various Kochi methods can be used conventionally. In addition, water washing filtration can remove other SO x components other than SO 3 .

【0010】次に、回転式管状炉で、大気中、空気を送
りながら500〜600℃の温度において焙焼する。す
なわち、図2に概略図を示すように、ロータリーキルン
1内に上記マグネタイト2をセットし、炉内に空気を流
し込みながら、500〜600℃の温度に保持すること
により、以下の実施例からもわかるように、磁性度が5
〜40mmでSO3 含有量が1.0〜1.5wt%で、フ
ェライト単結晶育成に適した特性の酸化鉄原料を得るこ
とができる。ここで、磁性度とは、磁性を有するマグネ
タイトと磁性を有さないαヘマタイト(Fe23 )と
の含有量を測定するための一手法であり、例えば実開昭
62−150682号公報に開示がある。
Next, in a rotary tubular furnace, it is roasted in the atmosphere at a temperature of 500 to 600 ° C. while sending air. That is, as shown in the schematic view of FIG. 2, by setting the magnetite 2 in the rotary kiln 1 and maintaining the temperature at 500 to 600 ° C. while pouring air into the furnace, it can be seen from the following examples. So that the magnetic degree is 5
It is possible to obtain an iron oxide raw material having a SO 3 content of 1.0 to 1.5 wt% at a thickness of -40 mm and a characteristic suitable for ferrite single crystal growth. Here, the magnetic degree is a method for measuring the contents of magnetite having magnetism and α-hematite (Fe 2 O 3 ) having no magnetism, and is disclosed in, for example, Japanese Utility Model Laid-Open No. 62-150682. There is disclosure.

【0011】以下、実際の例について説明する。実施例 上述した製造方法に従って水熱反応により生成したマグ
ネタイトを水洗濾過し、以下の表1に示すように焙焼前
のSO3 濃度を変化させた試料を準備し、図2に示した
ロータリーキルンにより、空気の流し込み量を12.5
l/mmと一定にした状態で表1に示す焙焼温度で焙焼
して酸化鉄を得た。また、比較のため、マグネタイトを
図3に示すような焼成炉内で、残存酸素1000ppm
程度の窒素雰囲気中で表1に示す焙焼温度で焙焼して酸
化鉄を得た。得られた酸化鉄について、上述した酸化度
を測定するとともに、酸化鉄中に残存するSO3 量を測
定した。結果を表1に示す。
An actual example will be described below. Example The magnetite produced by the hydrothermal reaction according to the above-mentioned production method was washed with water and filtered to prepare samples having different SO 3 concentrations before roasting as shown in Table 1 below, and the samples were prepared by the rotary kiln shown in FIG. , The flow rate of air is 12.5
Iron oxide was obtained by roasting at a roasting temperature shown in Table 1 in a constant l / mm state. In addition, for comparison, the residual oxygen is 1000 ppm in the firing furnace as shown in FIG.
Iron oxide was obtained by roasting at a roasting temperature shown in Table 1 in a moderate nitrogen atmosphere. With respect to the obtained iron oxide, the above-mentioned degree of oxidation was measured, and the amount of SO 3 remaining in the iron oxide was measured. The results are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】表1の結果から、ロータリーキルンで空気
を流すという簡単な方法で焙焼して得た本発明の酸化鉄
は、従来の所定の酸素を含む窒素雰囲気で焙焼した従来
例の酸化鉄と比べて、優るとも劣らない磁性度を有する
とともに、酸化鉄中に残存するSO3 量はかえって少な
く、良好な特性の酸化鉄が得られることがわかった。ま
た、ロータリーキルンを使用した例の中でも、焙焼前の
SO3 量を1.2〜2.0wt%とし、焙焼温度を500
〜600℃とした本発明例は、それ以外の比較例とと比
べて良好な特性が得られることがわかった。
From the results shown in Table 1, the iron oxide of the present invention obtained by roasting by a simple method of flowing air in a rotary kiln is the iron oxide of the conventional example roasted in a conventional nitrogen atmosphere containing predetermined oxygen. It was found that the iron oxide has good magnetic properties as well as excellent magnetic properties, and the amount of SO 3 remaining in the iron oxide is rather small, and iron oxide having good characteristics can be obtained. Further, among the examples using the rotary kiln, the amount of SO 3 before roasting is 1.2 to 2.0 wt% and the roasting temperature is 500.
It was found that the examples of the present invention in which the temperature was set to ˜600 ° C. had better characteristics than the other comparative examples.

【0014】[0014]

【発明の効果】以上の説明から明かなように、本発明に
よれば、焙焼前に水洗濾過してマグネタイト中のSO3
を適切にコントロールしているため、焙焼時に中性ガス
雰囲気を保持する必要がなく、簡易な設備で経済的に酸
化鉄を製造することができる。また、残存SO3 分の作
る雰囲気によって、焙焼された酸化鉄の磁性度を維持す
ることができるとともに、中性ガスの焙焼に比べて酸化
鉄中のSO3 分を低減することができ、その結果得られ
た酸化鉄から多結晶フェライト母材を製造して固相反応
による単結晶フェライトの製造に使用すれば、良好な特
性の単結晶フェライトを得ることができる。
As is apparent from the above description, according to the present invention, SO 3 in magnetite is filtered by washing with water before roasting.
Is appropriately controlled, it is not necessary to maintain a neutral gas atmosphere during roasting, and iron oxide can be economically produced with simple equipment. In addition, the atmosphere for producing the remaining SO 3 content can maintain the magnetism of the roasted iron oxide and reduce the SO 3 content in the iron oxide as compared with the roasting of neutral gas. If a polycrystalline ferrite base material is produced from the iron oxide obtained as a result and is used for producing a single crystal ferrite by a solid state reaction, a single crystal ferrite having good characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフェライト用酸化鉄の製造方法の一例
の工程を示すフローチャートである。
FIG. 1 is a flowchart showing steps of an example of a method for producing iron oxide for ferrite of the present invention.

【図2】本発明のフェライト用酸化鉄の製造方法におけ
る焙焼法の一例を説明するための概念図である。
FIG. 2 is a conceptual diagram for explaining an example of a roasting method in the method for producing iron oxide for ferrite of the present invention.

【図3】従来のフェライト用酸化鉄の製造方法における
焙焼法の一例を説明するための概念図である。
FIG. 3 is a conceptual diagram for explaining an example of a roasting method in a conventional method for producing iron oxide for ferrite.

【符号の説明】[Explanation of symbols]

1 ロータリーキルン 2 マグネタイト 1 rotary kiln 2 magnetite

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月15日[Submission date] June 15, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】上述した特開昭62ー223023号公報
に記載の製造方法では、異方性結晶の発生が少なく、単
結晶の成長性の良好な多結晶母材を有利に製造できる酸
化鉄を、例えば図3にその概略図を示すように、水熱反
応により得られたスピネル構造を有するマグネタイト1
2を焼成炉11内にセットし、焼成炉12内に酸素濃度
1%以下の窒素ガスを流した中性ガス雰囲気中で、45
0〜750℃の温度で焙焼して、酸化鉄を製造してい
る。本来、マグネタイトは、この温度域で焙焼すること
によって、ヘマタイト(α−Fe2O3)に転化するが、その
転化の度合いを磁性度によって評価している。すなわ
ち、マグネタイトは磁性を有するが、ヘマタイトは磁性
を有せず、固相反応法によるフェライト単結晶製造用の
酸化鉄原料の製造法としては、この磁性度を管理するこ
とがポイントとなる。
In the production method described in the above-mentioned Japanese Patent Laid-Open No. 62-223023, iron oxide is produced, which is advantageous in producing a polycrystalline base material in which generation of anisotropic crystals is small and good single crystal growth is achieved. For example, as shown in the schematic view of FIG. 3, magnetite 1 having a spinel structure obtained by hydrothermal reaction 1
No. 2 was set in the firing furnace 11, and the firing furnace 12 was operated in a neutral gas atmosphere in which a nitrogen gas having an oxygen concentration of 1% or less was flowed at 45
It is roasted at a temperature of 0 to 750 ° C. to produce iron oxide. Originally, magnetite is converted to hematite (α-Fe 2 O 3 ) by roasting in this temperature range, and the degree of conversion is evaluated by the magnetic degree. That is, magnetite has magnetism, but hematite does not have magnetism, and it is important to control the magnetism as a method for producing an iron oxide raw material for producing a ferrite single crystal by the solid-state reaction method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【作用】上述した構成において、水洗濾過の段階でマグ
ネタイト中のSO3 の量を1.2〜2.0wt%と適切に
制御することにより、焙焼時に窒素等の中性ガス雰囲気
に保持する必要がなく、簡易な設備で経済的に酸化鉄を
得ることができる。また、残存するSO3 分の作る雰囲
気によって、焙焼して得られた酸化鉄の磁性度を維持す
ることができるとともに、製造工程においてマグネタイ
トのスピネル構造を破壊することもなく、良好な酸化鉄
を得ることができる。そのため、得られた酸化鉄を原料
として多結晶フェライトの母材を製造し、これを使用し
て固相反応により単結晶フェライトを得れば、成長距離
が長く、特性も良好な単結晶フェライトを低コストで得
ることができる。
With the above-mentioned structure, the amount of SO 3 in magnetite is appropriately controlled to 1.2 to 2.0 wt% in the step of washing and filtering, so that it is maintained in a neutral gas atmosphere such as nitrogen during roasting. There is no need, and iron oxide can be obtained economically with simple equipment. In addition, the atmosphere for making the remaining SO 3 can maintain the magnetism of the iron oxide obtained by roasting, and does not destroy the spinel structure of magnetite in the manufacturing process, thus making it possible to obtain good iron oxide. Can be obtained. Therefore, if the obtained iron oxide is used as a raw material to produce a base material of polycrystalline ferrite and a single crystal ferrite is obtained by solid-phase reaction using this, a single crystal ferrite with a long growth distance and good characteristics can be obtained. It can be obtained at low cost.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】次に、得られたスピネル構造のマグネタイ
トを、水洗濾過して、SO3 およびその他の不純物を除
去するとともに安定化させ、この段階で少なくともマグ
ネタイト中のSO3 を1.2〜2.0wt%にコントロー
ルする。水洗濾過は従来から公知の種々の方法を利用す
ることができる。また、水洗濾過では、SO3 以外の他
のSOx 成分も除去することができる。
Next, the obtained magnetite having a spinel structure is washed and filtered with water to remove SO 3 and other impurities and to be stabilized, and at this stage, at least SO 3 in the magnetite is 1.2 to 2. Control to 0 wt%. For washing filtration with water, various conventionally known methods can be used. In addition, water washing filtration can remove other SO x components other than SO 3 .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】以下、実際の例について説明する。実施例 上述した製造方法に従って水熱反応により生成したマグ
ネタイトを水洗濾過し、以下の表1に示すように焙焼前
のSO3 濃度を変化させた試料を準備し、図2に示した
ロータリーキルンにより、空気の流し込み量を12.5
l/minと一定にした状態で表1に示す焙焼温度で焙
焼して酸化鉄を得た。また、比較のため、マグネタイト
を図3に示すような焼成炉内で、残存酸素1000pp
m程度の窒素雰囲気中で表1に示す焙焼温度で焙焼して
酸化鉄を得た。得られた酸化鉄について、上述した酸化
度を測定するとともに、酸化鉄中に残存するSO3 量を
測定した。結果を表1に示す。
An actual example will be described below. Example The magnetite produced by the hydrothermal reaction according to the above-mentioned production method was washed with water and filtered to prepare samples having different SO 3 concentrations before roasting as shown in Table 1 below, and the samples were prepared by the rotary kiln shown in FIG. , The flow rate of air is 12.5
Iron oxide was obtained by roasting at the roasting temperature shown in Table 1 in a constant l / min. In addition, for comparison, the residual oxygen is 1000 pp in the firing furnace as shown in FIG.
Iron oxide was obtained by roasting at a roasting temperature shown in Table 1 in a nitrogen atmosphere of about m. With respect to the obtained iron oxide, the above-mentioned degree of oxidation was measured, and the amount of SO 3 remaining in the iron oxide was measured. The results are shown in Table 1.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】表1の結果から、ロータリーキルンで空気
を流すという簡単な方法で焙焼して得た本発明の酸化鉄
は、従来の所定の酸素を含む窒素雰囲気で焙焼した従来
例の酸化鉄と比べて、優るとも劣らない磁性度を有する
とともに、酸化鉄中に残存するSO3 量はかえって少な
く、良好な特性の酸化鉄が得られることがわかった。ま
た、ロータリーキルンを使用した例の中でも、焙焼前の
SO3 量を1.2〜2.0wt%とし、焙焼温度を500
〜600℃とした本発明例は、それ以外の比較例と比べ
て良好な特性が得られることがわかった。
From the results shown in Table 1, the iron oxide of the present invention obtained by roasting by a simple method of flowing air in a rotary kiln is the iron oxide of the conventional example roasted in a conventional nitrogen atmosphere containing predetermined oxygen. It was found that the iron oxide has good magnetic properties as well as excellent magnetic properties, and the amount of SO 3 remaining in the iron oxide is rather small, and iron oxide having good characteristics can be obtained. Further, among the examples using the rotary kiln, the amount of SO 3 before roasting is 1.2 to 2.0 wt% and the roasting temperature is 500.
It was found that the examples of the present invention, which were set to ˜600 ° C., had better characteristics than the other comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硫酸第一鉄水溶液より水熱反応でマグネ
タイトを生成せしめた後、これを焙焼するフェライト用
酸化鉄の製造方法において、水熱反応により析出したマ
グネタイトを水洗濾過して、残存するSO3 を1.2〜
2.0wt%の範囲に調整した後、調整後のマグネタイト
を大気中にて回転式管状炉で空気を送りながら500〜
600℃の温度で焙焼することを特徴とするフェライト
用酸化鉄の製造方法。
1. A method for producing iron oxide for ferrite, which comprises producing magnetite from a ferrous sulfate aqueous solution by hydrothermal reaction and then roasting it to wash and filter the magnetite deposited by hydrothermal reaction to leave SO 3 1.2 to
After adjusting to the range of 2.0 wt%, the adjusted magnetite is sent to 500 to 500 in air while sending air in a rotary tubular furnace.
A method for producing iron oxide for ferrite, which comprises roasting at a temperature of 600 ° C.
JP4077311A 1992-03-31 1992-03-31 Method for producing iron oxide for ferrite Expired - Lifetime JP2505344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077311A JP2505344B2 (en) 1992-03-31 1992-03-31 Method for producing iron oxide for ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077311A JP2505344B2 (en) 1992-03-31 1992-03-31 Method for producing iron oxide for ferrite

Publications (2)

Publication Number Publication Date
JPH0624751A true JPH0624751A (en) 1994-02-01
JP2505344B2 JP2505344B2 (en) 1996-06-05

Family

ID=13630373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077311A Expired - Lifetime JP2505344B2 (en) 1992-03-31 1992-03-31 Method for producing iron oxide for ferrite

Country Status (1)

Country Link
JP (1) JP2505344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860383A (en) * 2021-11-01 2021-12-31 南通大学 Preparation method of ferroferric oxide nanoparticles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124867A (en) * 1974-02-25 1975-10-01
JPS60235726A (en) * 1984-05-09 1985-11-22 Kawasaki Steel Corp Preparation of ferric oxide for ferrite
JPS62223023A (en) * 1986-03-20 1987-10-01 Ngk Insulators Ltd Iron oxide for ferrite and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124867A (en) * 1974-02-25 1975-10-01
JPS60235726A (en) * 1984-05-09 1985-11-22 Kawasaki Steel Corp Preparation of ferric oxide for ferrite
JPS62223023A (en) * 1986-03-20 1987-10-01 Ngk Insulators Ltd Iron oxide for ferrite and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860383A (en) * 2021-11-01 2021-12-31 南通大学 Preparation method of ferroferric oxide nanoparticles

Also Published As

Publication number Publication date
JP2505344B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JPS6018608B2 (en) Method for producing polycrystalline garnet and corresponding single crystal
JPS5988398A (en) Manufacture of gallium-garnet single crystal
JP2505344B2 (en) Method for producing iron oxide for ferrite
JPS6236021A (en) Production of calcium carbonate having low strontium content
JP2672985B2 (en) Purified solution containing iron and manganese and method for producing the same
JP2004051477A (en) Method for manufacturing iron hydroxide, iron oxide hydrate or iron oxide from filtered salt of recovered diluted acid
JPS608980B2 (en) Method for producing iron chloride solution
JP2862875B2 (en) Iron oxide for ferrite
JP2776423B2 (en) Manufacturing method of iron oxide powder
JPH101315A (en) Production of high purity iron oxide powder
JPH0450251B2 (en)
JP3208746B2 (en) Arsenic removal method for nickel electrolyte
JPH0310578B2 (en)
JP2669010B2 (en) Desiliconization method in metal salt solution
RU1790997C (en) Method of preparing ferromagnetic sorption reagent
JPS60161328A (en) Preparation of magnesia powder having high purity
SU1479540A1 (en) Method of processing manganese-containing initial material
JPH02160625A (en) Production of high-purity manganese oxide
SU1752521A1 (en) Method of manganese-zinc ferrite powder preparation
JP2939213B2 (en) Mn-Zn ferrite
JP2016190765A (en) Method for producing scorodite
JPH0431323A (en) Purification of manganese sulfate solution
JP3417615B2 (en) Production method of ternary roasting liquid
JP2004067395A (en) Process for preparing tetravalent vanadium compound
JPS5815100A (en) Production of gallium substitution type yig single crystal for microwave