JPH06244458A - Blue-color-light emitting diode - Google Patents

Blue-color-light emitting diode

Info

Publication number
JPH06244458A
JPH06244458A JP5507493A JP5507493A JPH06244458A JP H06244458 A JPH06244458 A JP H06244458A JP 5507493 A JP5507493 A JP 5507493A JP 5507493 A JP5507493 A JP 5507493A JP H06244458 A JPH06244458 A JP H06244458A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
blue
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5507493A
Other languages
Japanese (ja)
Other versions
JP2964822B2 (en
Inventor
Masanobu Tanaka
政信 田中
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP5507493A priority Critical patent/JP2964822B2/en
Publication of JPH06244458A publication Critical patent/JPH06244458A/en
Application granted granted Critical
Publication of JP2964822B2 publication Critical patent/JP2964822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the light emitting efficiency of a blue-color LED without a reflecting plate such as a cup by effectively utilizing the light emitted from the side surface of a light emitting element utilizing a gallium-nitride-based compound semiconductor, and taking out the light to the side of the observing surface. CONSTITUTION:A light emitting element comprises at least a light transmitting substrate 1 and a gallium-nitride-based compound semiconductor 2, which is formed on the light transmitting substrate. With the light transmitting substrate 1 of the light emitting element up, the element is mounted on a lead frame 4. The entire light emitting element is sealed with a resin mold 5. In this blue- color-light emitting diode, the side surface of the light emitting element is cut at an acute angle theta downward from the upper surface of the light transmitting substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透光性基板上に窒化ガ
リウム系化合物半導体が積層された発光素子を有する青
色発光ダイオード(以下、青色LEDという。)に係
り、特に該発光素子の細部の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue light emitting diode (hereinafter referred to as a blue LED) having a light emitting element in which a gallium nitride compound semiconductor is laminated on a translucent substrate, and more particularly to details of the light emitting element. Concerning the structure of.

【0002】[0002]

【従来の技術】一般に、青色LEDの発光素子の材料と
して、GaN、InGaN、GaAlN、InAlGa
N等の窒化ガリウム系化合物半導体が知られている。こ
れら窒化ガリウム系化合物半導体を用いた発光素子を有
する従来の青色LEDの構造を図2に示す。1は透光性
基板、2は透光性基板1上に積層された窒化ガリウム系
化合物半導体(以下、本明細書においては、1と2とを
合わせて発光素子という。)3は窒化ガリウム系化合物
半導体2上の適切な位置に設けられた電極、4は発光素
子を載置するリードフレーム、5は発光素子全体を封止
し、窒化ガリウム系化合物半導体2からの発光を集光す
る樹脂モールドである。透光性基板1の材料にはサファ
イア、酸化亜鉛、酸化マグネシウム等の酸化物系単結晶
を使用することができ、一般的にはサファイアが用いら
れている。また樹脂モールド5には、エポキシ樹脂、ユ
リア樹脂等、耐候性に優れた透明樹脂が用いられる。こ
の図に示すように、従来の青色LEDはそのほとんど
が、発光素子の端面が垂直になるようにチップ状にカッ
トされ、透光性基板1側が上面、即ち発光観測面となる
ようにしてリードフレームに載置された構造を有してい
る。
2. Description of the Related Art Generally, GaN, InGaN, GaAlN, InAlGa are used as materials for light emitting elements of blue LEDs.
Gallium nitride-based compound semiconductors such as N are known. The structure of a conventional blue LED having a light emitting element using these gallium nitride compound semiconductors is shown in FIG. Reference numeral 1 is a transparent substrate, 2 is a gallium nitride-based compound semiconductor (hereinafter, in the present specification, 1 and 2 are collectively referred to as a light emitting element) laminated on the transparent substrate 1, and 3 is a gallium nitride-based compound semiconductor. An electrode provided at an appropriate position on the compound semiconductor 2, 4 is a lead frame on which a light emitting element is mounted, 5 is a resin mold that seals the entire light emitting element and collects light emitted from the gallium nitride compound semiconductor 2. Is. As the material of the transparent substrate 1, oxide-based single crystals such as sapphire, zinc oxide, and magnesium oxide can be used, and sapphire is generally used. For the resin mold 5, a transparent resin having excellent weather resistance such as epoxy resin and urea resin is used. As shown in this figure, most of the conventional blue LEDs are cut into chips so that the end faces of the light emitting elements are vertical, and the light-transmissive substrate 1 side is the upper face, that is, the light emission observation face, and the leads are read. It has a structure mounted on the frame.

【0003】[0003]

【発明が解決しようとする課題】この構造の発光素子に
おいて、例えば透光性基板1をサファイアとした場合、
サファイア基板1の厚さは通常数百μmある。これに対
し、窒化ガリウム系化合物半導体の厚さはせいぜい数μ
mにしか過ぎず、窒化ガリウム系化合物半導体より放射
される全青色発光のうち、サファイア基板1の側面に達
する光は、全体の約10〜40%である。しかも、封止
樹脂をエポキシ樹脂とした場合、サファイアの屈折率を
約3とし、エポキシの屈折率を約1.5とすると、サフ
ァイアとエポキシ樹脂との境界での臨界角は約30゜と
なり、側面に入射する30゜以下の光は、全てサファイ
ア基板の側面から出て行ってしまい、有効利用されてい
ない。
In the light emitting device having this structure, for example, when the transparent substrate 1 is sapphire,
The thickness of the sapphire substrate 1 is usually several hundred μm. On the other hand, the thickness of gallium nitride-based compound semiconductor is at most a few μ.
Of all blue light emitted from the gallium nitride-based compound semiconductor, the amount of light that reaches the side surface of the sapphire substrate 1 is about 10 to 40% of the total. Moreover, when the sealing resin is an epoxy resin and the refractive index of sapphire is about 3 and the refractive index of epoxy is about 1.5, the critical angle at the boundary between the sapphire and the epoxy resin is about 30 °, All the light of 30 ° or less incident on the side surface goes out from the side surface of the sapphire substrate and is not effectively used.

【0004】ところで、リードフレームの形状をカップ
状として、そのカップの底に発光素子を載置して、側面
から出ていく光を、カップ側面で上部に反射させる方法
もあるが、リードフレームをカップ形状にすると、透光
性基板を上にして電極を下にするような構造の窒化ガリ
ウム系化合物半導体発光素子、つまり透光性基板を利用
した発光素子では、アッセンブリが生産技術上不可能で
ある。そのため、従来の青色LEDは、そのほとんどが
図2のような構造であり、この構造のLEDはチップ側
面より出ていく光を有効利用できず、高い順方向電圧の
わりに、発光効率が低く、十分な輝度が得られないとい
う問題があった。
There is also a method in which the shape of the lead frame is cup-shaped, and the light emitting element is placed on the bottom of the cup so that the light emitted from the side surface is reflected upward by the side surface of the cup. When the cup shape is used, assembly is not possible in terms of production technology for gallium nitride-based compound semiconductor light-emitting devices that have a structure in which the transparent substrate is on top and the electrodes are on the bottom, that is, a light-emitting device that uses a transparent substrate. is there. Therefore, most of the conventional blue LEDs have a structure as shown in FIG. 2, and the LED of this structure cannot effectively use the light emitted from the side surface of the chip, and the luminous efficiency is low despite the high forward voltage. There is a problem that sufficient brightness cannot be obtained.

【0005】したがって本発明はこのような事情を鑑み
て成されたものであり、カップ等の反射板を必要とせ
ず、窒化ガリウム系化合物半導体を利用した発光素子の
側面から出る光を有効利用して、観測面側に取り出し、
青色LEDの発光効率を向上させることを目的とする。
Therefore, the present invention has been made in view of such circumstances, and does not require a reflector such as a cup, but effectively utilizes the light emitted from the side surface of a light emitting device using a gallium nitride-based compound semiconductor. Take it out to the observation side,
The purpose is to improve the luminous efficiency of the blue LED.

【0006】[0006]

【課題を解決するための手段】本発明の青色LEDは、
発光素子が少なくとも透光性基板と該透光性基板に積層
された窒化ガリウム系化合物半導体とからなり、さらに
該発光素子の透光性基板を上面としてリードフレーム上
に載置し、発光素子全体を樹脂モールドで封止してなる
青色発光ダイオードにおいて、前記発光素子の側面が、
透光性基板上面の鉛直方向より、鋭角θで切断されてい
ることを特徴とするものである。
The blue LED of the present invention comprises:
The light-emitting element is composed of at least a light-transmitting substrate and a gallium nitride-based compound semiconductor laminated on the light-transmitting substrate, and the light-transmitting substrate of the light-emitting element is placed on a lead frame as an upper surface to form a whole light-emitting element. In a blue light emitting diode obtained by sealing with a resin mold, the side surface of the light emitting element is
It is characterized in that it is cut at an acute angle θ from the vertical direction of the upper surface of the transparent substrate.

【0007】鋭角θの角度は特に限定するものではない
が、透光性基板の屈折率、樹脂モールドの屈折率によっ
て適宜変更することができる。窒化ガリウム系化合物半
導体の発光を全て透光性基板側(発光観測面側)に全反
射させるためには、鋭角θは、透光性基板の屈折率をn
1、前記樹脂モールドの屈折率をn2とした場合、sin
-1(n2/n1)以上の角度、即ち臨界角以上の角度で切
断されていることが好ましい。なお、この式により、全
ての青色発光を発光素子側面で全反射させる場合、樹脂
モールドの材料の屈折率が基板の屈折率よりも小さいも
のを選択することはいうまでもない。
Although the angle of the acute angle θ is not particularly limited, it can be appropriately changed depending on the refractive index of the transparent substrate and the refractive index of the resin mold. In order to totally reflect all the light emitted from the gallium nitride-based compound semiconductor to the transparent substrate side (emission observation surface side), the acute angle θ is equal to the refractive index n of the transparent substrate.
1. If the refractive index of the resin mold is n2, then sin
It is preferable to cut at an angle of -1 (n2 / n1) or more, that is, an angle of a critical angle or more. It is needless to say that in the case of totally reflecting all the blue light emission on the side surface of the light emitting element by this formula, the material of the resin mold has a refractive index smaller than that of the substrate.

【0008】また、発光素子の側面を斜めにカットする
には、例えばダイシングを用いることができ、刃先が所
望の角度に調整されているブレードを使用することによ
って切断可能である。
Further, in order to cut the side surface of the light emitting element obliquely, for example, dicing can be used, and cutting can be performed by using a blade whose cutting edge is adjusted to a desired angle.

【0009】[0009]

【作用】図4は、本発明の一実施例に係る青色LEDに
おいて、側面が鋭角θで切断された発光素子の構造を示
す図である。また図3は、側面が垂直に切断された従来
の発光素子の構造を示す図である。なおこれらの図は電
極、リードフレームを省略して示している。図4に示す
ように、発光素子の側面を、透光性基板1の上面から、
鋭角θで切断することにより、窒化ガリウム系化合物半
導体より発する青色発光、特に発光素子側面近傍の青色
発光を、透光性基板1で反射させて発光観測面に取り出
し、有効利用することが可能となる。一方、前にも説明
したように、図3に示す従来の発光素子は、透光性基板
1内で全反射したり、発光素子の側面から出て行ってし
まう光が圧倒的に多い。なお、この図4はθを臨界角以
上としていないため、一部側面から出ていく光もある
が、θを前述の式に基づいて臨界角以上で切断すること
により、全て観測面側に反射させることができるのは当
然である。
FIG. 4 is a diagram showing the structure of a light emitting element in which the side surface is cut at an acute angle θ in the blue LED according to the embodiment of the present invention. Further, FIG. 3 is a view showing a structure of a conventional light emitting device whose side surface is vertically cut. Note that these figures are shown with the electrodes and lead frame omitted. As shown in FIG. 4, the side surface of the light emitting element is changed from the upper surface of the transparent substrate 1 to
By cutting at an acute angle θ, blue light emitted from the gallium nitride-based compound semiconductor, particularly blue light emitted in the vicinity of the side surface of the light emitting element, can be reflected by the transparent substrate 1 and taken out to the light emission observation surface for effective use. Become. On the other hand, as described above, the conventional light emitting element shown in FIG. 3 has an overwhelming amount of light that is totally reflected in the transparent substrate 1 or goes out from the side surface of the light emitting element. In addition, since θ is not set to the critical angle or more in FIG. 4, some light may be emitted from the side surface, but by cutting θ at the critical angle or more based on the above equation, all the light is reflected to the observation surface side. Of course, it can be done.

【0010】このように、発光素子の側面を鋭角に切断
することにより、青色発光を多く観測面に反射させるこ
とができるため、青色発光ダイオードの発光出力を向上
させることができる。また、窒化ガリウム系化合物半導
体を有する発光素子は、他のGaAs、GaP、AlI
nGaP等の材料を用いた発光素子と異なり、材料自体
にへき開性を有していないため、斜めに切断しやすいと
いう利点を有している。このため、窒化ガリウム系化合
物半導体の発光素子の側面を斜めに切断して、その側面
で青色発光を反射させることは非常に重要である。
As described above, by cutting the side surface of the light emitting element at an acute angle, a large amount of blue light can be reflected on the observation surface, so that the light emission output of the blue light emitting diode can be improved. Further, a light emitting device having a gallium nitride-based compound semiconductor is used for other GaAs, GaP, AlI
Unlike a light emitting element using a material such as nGaP, the material itself does not have a cleavage property, and thus has an advantage that it can be easily cut at an angle. Therefore, it is very important to cut the side surface of the gallium nitride-based compound semiconductor light emitting device obliquely and reflect the blue light emission on the side surface.

【0011】[0011]

【実施例】予めサファイア基板の上にn型GaNとp型
GaNとを順に積層した2インチφのウエハーを用意
し、p型GaN層の一部をエッチングして、n型GaN
層を一部露出させる。次に、露出させたn型GaN層
と、p型GaNとに所定の形状で電極を蒸着した後、サ
ファイア基板に粘着テープを張り付ける。
EXAMPLE A 2-inch φ wafer in which n-type GaN and p-type GaN were sequentially stacked on a sapphire substrate was prepared, and a part of the p-type GaN layer was etched to form n-type GaN.
Expose part of the layer. Next, after depositing electrodes in a predetermined shape on the exposed n-type GaN layer and p-type GaN, an adhesive tape is attached to the sapphire substrate.

【0012】一方、ウエハーを斜めにカットするため、
図5に示すように刃先の中心線に向かってそれぞれ両側
に30゜の傾斜を設けたブレードを用意してダイシング
ソーにセットする。次に、前述のウエハーをテーブルに
貼付し、ダイシングでp型GaN層側からX軸をカット
した後、テーブルを90゜回転させ、今度はY軸をカッ
トする。
On the other hand, since the wafer is cut diagonally,
As shown in FIG. 5, blades having inclinations of 30 ° on both sides toward the center line of the cutting edge are prepared and set on a dicing saw. Next, the above-mentioned wafer is attached to a table, the X axis is cut from the p-type GaN layer side by dicing, the table is rotated 90 °, and the Y axis is cut this time.

【0013】最後にウエハーをテーブルから剥し取り、
チップ状に分離した後、チップをサファイア基板面が発
光観測面になるようにして、リードフレームに取り付
け、電極とリードフレームとを電気的に接続した後、エ
ポキシ樹脂でレンズ状にモールドすることにより、本発
明の青色LEDを得る。
Finally, the wafer is peeled off the table,
After separating into chips, the chips are attached to the lead frame with the sapphire substrate surface serving as the emission observation surface, the electrodes and the lead frames are electrically connected, and then molded into a lens shape with epoxy resin. , To obtain the blue LED of the present invention.

【0014】このようにして得た青色LEDは、順方向
電圧5Vで、発光出力20μWを示した。一方、側面を
垂直にカットしたチップよりなる従来の青色LEDは発
光出力は10μWとほぼ半分しかなかった。
The blue LED thus obtained showed a light emission output of 20 μW at a forward voltage of 5V. On the other hand, the conventional blue LED consisting of a chip whose side face is cut vertically has a light emission output of 10 μW, which is almost half.

【0015】[0015]

【発明の効果】以上説明したように、本発明の青色LE
Dはその発光素子の側面を斜めにカットしているため
に、窒化ガリウム系化合物半導体の発光を、その側面で
反射させて透光性基板から有効に取り出すことができ
る。しかも従来のようにカップ状のリードフレームも必
要とせず、生産性にも非常に優れている。
As described above, the blue LE of the present invention is used.
Since D has the side surface of the light emitting element cut obliquely, the light emission of the gallium nitride-based compound semiconductor can be reflected on the side surface and can be effectively extracted from the translucent substrate. Moreover, it does not require a cup-shaped lead frame as in the past, and is very excellent in productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の青色LEDに係る発光素子の側面の
構造を一部拡大して示す断面図。
FIG. 1 is a partially enlarged cross-sectional view showing a structure of a side surface of a light emitting element relating to a blue LED of the present invention.

【図2】 従来の青色LEDの構造を示す断面図。FIG. 2 is a sectional view showing the structure of a conventional blue LED.

【図3】 従来の発光素子の構造を示す断面図。FIG. 3 is a sectional view showing a structure of a conventional light emitting element.

【図4】 本発明の一実施例に係る発光素子の構造を示
す断面図。
FIG. 4 is a sectional view showing a structure of a light emitting device according to an embodiment of the present invention.

【図5】 ダイシングソーのブレードの刃先角を示す断
面図。
FIG. 5 is a cross-sectional view showing a cutting edge angle of a blade of a dicing saw.

【符号の説明】[Explanation of symbols]

1・・・・・・透光性基板 2・・・・・・窒化ガリウム系化合物半導体 3・・・・・・電極 4・・・・・・リードフレーム 5・・・・・・樹脂モールド 1-Translucent substrate 2-Gallium nitride compound semiconductor 3-Electrode 4-Lead frame 5-Resin mold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光素子が少なくとも透光性基板と該透
光性基板に積層された窒化ガリウム系化合物半導体とか
らなり、さらに該発光素子の透光性基板を上面としてリ
ードフレーム上に載置し、発光素子全体を樹脂モールド
で封止してなる青色発光ダイオードにおいて、 前記発光素子の側面が、透光性基板上面の鉛直方向よ
り、鋭角θで切断されていることを特徴とする青色発光
ダイオード。
1. A light emitting element is composed of at least a transparent substrate and a gallium nitride-based compound semiconductor laminated on the transparent substrate, and is mounted on a lead frame with the transparent substrate of the light emitting element as an upper surface. In a blue light emitting diode in which the entire light emitting element is sealed with a resin mold, the side surface of the light emitting element is cut at an acute angle θ from the vertical direction of the upper surface of the translucent substrate. diode.
【請求項2】 前記鋭角θは、前記透光性基板の屈折率
をn1、前記樹脂モールドの屈折率をn2とすると、θ≧
sin-1(n2/n1)の関係にあることを特徴とする請
求項1に記載の青色発光ダイオード。
2. The acute angle θ is θ ≧ when the refractive index of the transparent substrate is n1 and the refractive index of the resin mold is n2.
The blue light emitting diode according to claim 1, wherein the blue light emitting diode has a relationship of sin -1 (n2 / n1).
JP5507493A 1993-02-19 1993-02-19 Manufacturing method of light emitting diode Expired - Fee Related JP2964822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5507493A JP2964822B2 (en) 1993-02-19 1993-02-19 Manufacturing method of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5507493A JP2964822B2 (en) 1993-02-19 1993-02-19 Manufacturing method of light emitting diode

Publications (2)

Publication Number Publication Date
JPH06244458A true JPH06244458A (en) 1994-09-02
JP2964822B2 JP2964822B2 (en) 1999-10-18

Family

ID=12988555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5507493A Expired - Fee Related JP2964822B2 (en) 1993-02-19 1993-02-19 Manufacturing method of light emitting diode

Country Status (1)

Country Link
JP (1) JP2964822B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308532A (en) * 1997-05-06 1998-11-17 Sony Corp Semiconductor light-emitting element
JP2002528890A (en) * 1998-10-21 2002-09-03 サーノフ コーポレイション Wavelength conversion performing device using phosphor having light emitting diode
WO2002089221A1 (en) * 2001-04-23 2002-11-07 Matsushita Electric Works, Ltd. Light emitting device comprising led chip
JP2004002823A (en) * 2002-04-26 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, manufacturing method for the opical material, and light-emitting diode using the same
US6853010B2 (en) 2002-09-19 2005-02-08 Cree, Inc. Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor
US6995400B2 (en) 2002-09-30 2006-02-07 Fuji Photo Film Co., Ltd. Light emitting device and manufacturing method thereof
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
JP2006206918A (en) * 2002-04-26 2006-08-10 Kaneka Corp Composition for optical material, optical material and method for producing the same
US7183587B2 (en) 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
CN100391016C (en) * 2003-07-18 2008-05-28 三洋电机株式会社 Light-emitting diode
US7391153B2 (en) * 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
JP2009135539A (en) * 2009-03-16 2009-06-18 Toyoda Gosei Co Ltd Method of manufacturing solid-state element device
US7572657B2 (en) 2004-08-20 2009-08-11 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
JP2010034608A (en) * 2005-06-22 2010-02-12 Seoul Opto Devices Co Ltd Light-emitting element
EP2270103A2 (en) 2000-12-27 2011-01-05 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and LED's made by using the materials
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
JP2014160797A (en) * 2013-02-19 2014-09-04 Lextar Electronics Corp Light-emitting diode chip and method for manufacturing the same
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
USRE45796E1 (en) 2004-12-23 2015-11-10 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
US9220149B2 (en) 2006-01-20 2015-12-22 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US9608166B2 (en) 2003-08-14 2017-03-28 Cree, Inc. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
EP3369735A1 (en) 2013-11-25 2018-09-05 Shikoku Chemicals Corporation Glycolurils having functional group and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229160B1 (en) 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US6784463B2 (en) 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH10308532A (en) * 1997-05-06 1998-11-17 Sony Corp Semiconductor light-emitting element
JP2002528890A (en) * 1998-10-21 2002-09-03 サーノフ コーポレイション Wavelength conversion performing device using phosphor having light emitting diode
EP2270103A2 (en) 2000-12-27 2011-01-05 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and LED's made by using the materials
WO2002089221A1 (en) * 2001-04-23 2002-11-07 Matsushita Electric Works, Ltd. Light emitting device comprising led chip
JP2004002823A (en) * 2002-04-26 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, manufacturing method for the opical material, and light-emitting diode using the same
JP2006206918A (en) * 2002-04-26 2006-08-10 Kaneka Corp Composition for optical material, optical material and method for producing the same
US6853010B2 (en) 2002-09-19 2005-02-08 Cree, Inc. Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor
US6995400B2 (en) 2002-09-30 2006-02-07 Fuji Photo Film Co., Ltd. Light emitting device and manufacturing method thereof
US7391153B2 (en) * 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
CN100391016C (en) * 2003-07-18 2008-05-28 三洋电机株式会社 Light-emitting diode
US9608166B2 (en) 2003-08-14 2017-03-28 Cree, Inc. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7183587B2 (en) 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
US7572657B2 (en) 2004-08-20 2009-08-11 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
USRE45796E1 (en) 2004-12-23 2015-11-10 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
US7977691B2 (en) 2005-06-22 2011-07-12 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8704246B2 (en) 2005-06-22 2014-04-22 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
US7951626B2 (en) 2005-06-22 2011-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8895957B2 (en) 2005-06-22 2014-11-25 Seoul Viosys Co., Ltd Light emitting device and method of manufacturing the same
US7723737B2 (en) 2005-06-22 2010-05-25 Seoul Opto Device Co., Ltd. Light emitting device
JP2010034608A (en) * 2005-06-22 2010-02-12 Seoul Opto Devices Co Ltd Light-emitting element
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US9220149B2 (en) 2006-01-20 2015-12-22 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP2009135539A (en) * 2009-03-16 2009-06-18 Toyoda Gosei Co Ltd Method of manufacturing solid-state element device
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US10139095B2 (en) 2012-05-04 2018-11-27 GE Lighting Solutions, LLC Reflector and lamp comprised thereof
JP2014160797A (en) * 2013-02-19 2014-09-04 Lextar Electronics Corp Light-emitting diode chip and method for manufacturing the same
EP3369735A1 (en) 2013-11-25 2018-09-05 Shikoku Chemicals Corporation Glycolurils having functional group and use thereof

Also Published As

Publication number Publication date
JP2964822B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JPH06244458A (en) Blue-color-light emitting diode
US10903397B2 (en) Light emitting device package
USRE49047E1 (en) Light emitting device
US10043955B2 (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
KR101002111B1 (en) Light emitting device and its manufacturing method
US7977686B2 (en) Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US7329905B2 (en) Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US7169632B2 (en) Radiation-emitting semiconductor component and method for producing the semiconductor component
JP5186800B2 (en) Nitride semiconductor light emitting device, light emitting device including the same, and method for manufacturing nitride semiconductor light emitting device
CN105393373B (en) Light emitting device with optical element and reflector
US8878214B2 (en) Semiconductor light emitting device
JPH08102549A (en) Semiconductor light emitting element
US20100025702A1 (en) Substrate-free flip chip light emitting diode
US9601668B2 (en) Light emitting device
TWI493758B (en) Semiconductor light emitting device and a light emitting module
TW201208134A (en) Light emitting device and semiconductor wafer
GB2426123A (en) Substrate-free flip chip light emitting diode
TWI453952B (en) Light emitting element and manufacturing method thereof
JP2007088080A (en) Light emitting device
US10505071B2 (en) Method of manufacturing a light emitting device
JP2004289182A (en) Semiconductor light emitting device
KR100785451B1 (en) Light emitting device having patterned trasparent electrode layer and method of fabricating the same
GB2437848A (en) Substrate-free flip-chip light emitting diode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees