JPH06244458A - Blue-color-light emitting diode - Google Patents

Blue-color-light emitting diode

Info

Publication number
JPH06244458A
JPH06244458A JP5507493A JP5507493A JPH06244458A JP H06244458 A JPH06244458 A JP H06244458A JP 5507493 A JP5507493 A JP 5507493A JP 5507493 A JP5507493 A JP 5507493A JP H06244458 A JPH06244458 A JP H06244458A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
blue
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5507493A
Other languages
Japanese (ja)
Other versions
JP2964822B2 (en
Inventor
Shuji Nakamura
Masanobu Tanaka
修二 中村
政信 田中
Original Assignee
Nichia Chem Ind Ltd
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chem Ind Ltd, 日亜化学工業株式会社 filed Critical Nichia Chem Ind Ltd
Priority to JP5507493A priority Critical patent/JP2964822B2/en
Publication of JPH06244458A publication Critical patent/JPH06244458A/en
Application granted granted Critical
Publication of JP2964822B2 publication Critical patent/JP2964822B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PURPOSE:To improve the light emitting efficiency of a blue-color LED without a reflecting plate such as a cup by effectively utilizing the light emitted from the side surface of a light emitting element utilizing a gallium-nitride-based compound semiconductor, and taking out the light to the side of the observing surface. CONSTITUTION:A light emitting element comprises at least a light transmitting substrate 1 and a gallium-nitride-based compound semiconductor 2, which is formed on the light transmitting substrate. With the light transmitting substrate 1 of the light emitting element up, the element is mounted on a lead frame 4. The entire light emitting element is sealed with a resin mold 5. In this blue- color-light emitting diode, the side surface of the light emitting element is cut at an acute angle theta downward from the upper surface of the light transmitting substrate.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、透光性基板上に窒化ガリウム系化合物半導体が積層された発光素子を有する青色発光ダイオード(以下、青色LEDという。)に係り、特に該発光素子の細部の構造に関する。 BACKGROUND OF THE INVENTION This invention is a blue light emitting diode having a light emitting element gallium nitride compound on a transparent substrate semiconductor is stacked relates to (hereinafter, referred to as a blue LED.), In particular details of the light emitting element of about the structure.

【0002】 [0002]

【従来の技術】一般に、青色LEDの発光素子の材料として、GaN、InGaN、GaAlN、InAlGa In general, as the material of the light-emitting element of blue LED, GaN, InGaN, GaAlN, InAlGa
N等の窒化ガリウム系化合物半導体が知られている。 Gallium nitride-based compound such as N semiconductor has been known. これら窒化ガリウム系化合物半導体を用いた発光素子を有する従来の青色LEDの構造を図2に示す。 The structure of a conventional blue LED having a light emitting element using these gallium nitride-based compound semiconductor shown in FIG. 1は透光性基板、2は透光性基板1上に積層された窒化ガリウム系化合物半導体(以下、本明細書においては、1と2とを合わせて発光素子という。)3は窒化ガリウム系化合物半導体2上の適切な位置に設けられた電極、4は発光素子を載置するリードフレーム、5は発光素子全体を封止し、窒化ガリウム系化合物半導体2からの発光を集光する樹脂モールドである。 1 translucent substrate, 2 is light-transmissive substrate 1 gallium nitride compound is laminated on a semiconductor (hereinafter, in this specification, 1. That the light emitting device by combining the 2) 3 gallium nitride compound semiconductor 2 onto the appropriate electrode provided in a position, the lead frame for mounting the light emitting element 4, 5 seals the entire light-emitting element, a resin mold for condensing light emitted from a gallium nitride compound semiconductor 2 it is. 透光性基板1の材料にはサファイア、酸化亜鉛、酸化マグネシウム等の酸化物系単結晶を使用することができ、一般的にはサファイアが用いられている。 The material of the light transmissive substrate 1 of sapphire, zinc oxide, can be used oxide single crystals such as magnesium oxide, typically sapphire is used. また樹脂モールド5には、エポキシ樹脂、ユリア樹脂等、耐候性に優れた透明樹脂が用いられる。 The resin molding 5, epoxy resin, urea resin, etc., excellent transparent resin weatherability used. この図に示すように、従来の青色LEDはそのほとんどが、発光素子の端面が垂直になるようにチップ状にカットされ、透光性基板1側が上面、即ち発光観測面となるようにしてリードフレームに載置された構造を有している。 As shown in this figure, the conventional blue LED mostly, the end face of the light emitting element is cut into chips so that it is perpendicular, the transparent substrate 1 side is the upper surface, i.e. as a light emission observing surface leads It has the placed structure frame.

【0003】 [0003]

【発明が解決しようとする課題】この構造の発光素子において、例えば透光性基板1をサファイアとした場合、 [Problems that the Invention is to Solve] In the light-emitting element of this structure, for example, when the light transmitting substrate 1 and sapphire,
サファイア基板1の厚さは通常数百μmある。 The thickness of the sapphire substrate 1 is usually several hundred μm. これに対し、窒化ガリウム系化合物半導体の厚さはせいぜい数μ In contrast, the thickness of the gallium nitride-based compound semiconductor is at most a few μ
mにしか過ぎず、窒化ガリウム系化合物半導体より放射される全青色発光のうち、サファイア基板1の側面に達する光は、全体の約10〜40%である。 Only only m, of the total emission of blue light emitted from the gallium nitride-based compound semiconductor, the light reaching the side surface of the sapphire substrate 1 is about 10-40% of the total. しかも、封止樹脂をエポキシ樹脂とした場合、サファイアの屈折率を約3とし、エポキシの屈折率を約1.5とすると、サファイアとエポキシ樹脂との境界での臨界角は約30゜となり、側面に入射する30゜以下の光は、全てサファイア基板の側面から出て行ってしまい、有効利用されていない。 Moreover, when the sealing resin and epoxy resin, and the refractive index of sapphire and about 3, when about 1.5 refractive index of the epoxy, the critical angle at the boundary between the sapphire and the epoxy resin becomes about 30 °, light below 30 ° incident on the side surface, all will go out from the side surface of the sapphire substrate, not effectively utilized.

【0004】ところで、リードフレームの形状をカップ状として、そのカップの底に発光素子を載置して、側面から出ていく光を、カップ側面で上部に反射させる方法もあるが、リードフレームをカップ形状にすると、透光性基板を上にして電極を下にするような構造の窒化ガリウム系化合物半導体発光素子、つまり透光性基板を利用した発光素子では、アッセンブリが生産技術上不可能である。 Meanwhile, the shape of the lead frame as a cup shape, and mounting the light emitting element on the bottom of the cup, the light exiting from the side, there is a method to reflect the upper cup side, the lead frame When the cup-shaped, gallium nitride-based compound semiconductor light-emitting device having a structure such that the lower electrode and the upper light-transmitting substrate, the light emitting device that is utilizing a light-transmitting substrate is assembly infeasible production technology is there. そのため、従来の青色LEDは、そのほとんどが図2のような構造であり、この構造のLEDはチップ側面より出ていく光を有効利用できず、高い順方向電圧のわりに、発光効率が低く、十分な輝度が得られないという問題があった。 Therefore, the conventional blue LED, most of which has a structure as shown in FIG. 2, LED of this structure can not effectively utilize the light exiting from the tip side, in spite of high forward voltage, luminous efficiency is low, sufficient luminance is not be obtained.

【0005】したがって本発明はこのような事情を鑑みて成されたものであり、カップ等の反射板を必要とせず、窒化ガリウム系化合物半導体を利用した発光素子の側面から出る光を有効利用して、観測面側に取り出し、 [0005] Accordingly, the present invention has been made in view of such circumstances, without requiring a reflector such as a cup, the light effectively utilizing the exiting side of the light-emitting elements using a gallium nitride-based compound semiconductor Te, taken out to the observation side,
青色LEDの発光効率を向上させることを目的とする。 It aims to improve luminous efficiency of the blue LED.

【0006】 [0006]

【課題を解決するための手段】本発明の青色LEDは、 Means for Solving the Problems] blue LED of the present invention,
発光素子が少なくとも透光性基板と該透光性基板に積層された窒化ガリウム系化合物半導体とからなり、さらに該発光素子の透光性基板を上面としてリードフレーム上に載置し、発光素子全体を樹脂モールドで封止してなる青色発光ダイオードにおいて、前記発光素子の側面が、 Emitting element is composed at least translucent substrate and the light-transmitting substrate to be laminated gallium nitride-based compound semiconductor, it is placed on a lead frame further light-transmitting substrate of the light emitting element as a top, a whole light-emitting element the in the blue light-emitting diode obtained by encapsulating in a resin mold, the side surface of the light emitting element,
透光性基板上面の鉛直方向より、鋭角θで切断されていることを特徴とするものである。 From the vertical direction of the transparent substrate top surface, and is characterized in that it is cut at an acute angle theta.

【0007】鋭角θの角度は特に限定するものではないが、透光性基板の屈折率、樹脂モールドの屈折率によって適宜変更することができる。 [0007] Without the acute angle θ is particularly limited, can be appropriately changed refractive index of the transparent substrate, the refractive index of the resin mold. 窒化ガリウム系化合物半導体の発光を全て透光性基板側(発光観測面側)に全反射させるためには、鋭角θは、透光性基板の屈折率をn All the light-emitting gallium nitride-based compound semiconductor in order to totally reflect the light transmissive substrate side (light emission observing surface side), the acute angle theta, the refractive index of the transparent substrate n
1、前記樹脂モールドの屈折率をn2とした場合、sin 1, if the refractive index of the resin mold was n2, sin
-1 (n2/n1)以上の角度、即ち臨界角以上の角度で切断されていることが好ましい。 -1 (n2 / n1) or more angles, i.e. which is preferably cut at an angle greater than the critical angle. なお、この式により、全ての青色発光を発光素子側面で全反射させる場合、樹脂モールドの材料の屈折率が基板の屈折率よりも小さいものを選択することはいうまでもない。 Incidentally, this formula, if totally reflects all of the blue light-emitting light-emitting element side, the refractive index of the resin molding material is selected from those smaller than the refractive index of the substrate of course.

【0008】また、発光素子の側面を斜めにカットするには、例えばダイシングを用いることができ、刃先が所望の角度に調整されているブレードを使用することによって切断可能である。 [0008] To cut the side face of the light-emitting element obliquely, for example, be used dicing is cleavable by using a blade edge is adjusted to a desired angle.

【0009】 [0009]

【作用】図4は、本発明の一実施例に係る青色LEDにおいて、側面が鋭角θで切断された発光素子の構造を示す図である。 [Action] Figure 4, in the blue LED in accordance with an embodiment of the present invention, showing a structure of a light-emitting device side is cut at an acute angle theta. また図3は、側面が垂直に切断された従来の発光素子の構造を示す図である。 The Figure 3 is a diagram showing a structure of a conventional light-emitting device side is cut vertically. なおこれらの図は電極、リードフレームを省略して示している。 Note in these figures electrodes, it is omitted the lead frame. 図4に示すように、発光素子の側面を、透光性基板1の上面から、 As shown in FIG. 4, the side surfaces of the light emitting element, from the top surface of the light transmitting substrate 1,
鋭角θで切断することにより、窒化ガリウム系化合物半導体より発する青色発光、特に発光素子側面近傍の青色発光を、透光性基板1で反射させて発光観測面に取り出し、有効利用することが可能となる。 By cutting at an acute angle theta, emission of blue light emitted from the semiconductor gallium nitride compound, in particular a blue light-emitting element side vicinity, it is reflected by the light-transmitting substrate 1 was taken out to the light emission observing surface, and can be effectively used Become. 一方、前にも説明したように、図3に示す従来の発光素子は、透光性基板1内で全反射したり、発光素子の側面から出て行ってしまう光が圧倒的に多い。 On the other hand, as has been described before, the conventional light-emitting element shown in FIG. 3, or totally reflected by the light-transmitting substrate within 1, the light will go out from the side surface of the light emitting element is overwhelmingly large. なお、この図4はθを臨界角以上としていないため、一部側面から出ていく光もあるが、θを前述の式に基づいて臨界角以上で切断することにより、全て観測面側に反射させることができるのは当然である。 The reflection of this 4 θ because it is not a critical angle or more, there is a light exiting part side, by cutting the above critical angle based on θ in the above equation, all observation side is a matter of course can be.

【0010】このように、発光素子の側面を鋭角に切断することにより、青色発光を多く観測面に反射させることができるため、青色発光ダイオードの発光出力を向上させることができる。 [0010] Thus, by cutting the side surface of the light emitting element at an acute angle, it is possible to reflect the many observation surface blue emission, it is possible to improve the light emission output of the blue light-emitting diode. また、窒化ガリウム系化合物半導体を有する発光素子は、他のGaAs、GaP、AlI The light-emitting device having a gallium nitride-based compound semiconductors, other GaAs, GaP, AlI
nGaP等の材料を用いた発光素子と異なり、材料自体にへき開性を有していないため、斜めに切断しやすいという利点を有している。 Unlike the light-emitting element using a material such as NGAP, because it does not have a cleavage property of the material itself, it has the advantage of easily cut obliquely. このため、窒化ガリウム系化合物半導体の発光素子の側面を斜めに切断して、その側面で青色発光を反射させることは非常に重要である。 Therefore, by cutting the side surface of the light emitting device of gallium nitride compound semiconductor obliquely, it is very important to reflect blue light emission at that side.

【0011】 [0011]

【実施例】予めサファイア基板の上にn型GaNとp型GaNとを順に積層した2インチφのウエハーを用意し、p型GaN層の一部をエッチングして、n型GaN EXAMPLES a n-type GaN and p-type GaN prepared 2-inch φ wafer laminated sequentially advance on the sapphire substrate, by etching a part of the p-type GaN layer, n-type GaN
層を一部露出させる。 Partially exposing the layer. 次に、露出させたn型GaN層と、p型GaNとに所定の形状で電極を蒸着した後、サファイア基板に粘着テープを張り付ける。 Then, affix the n-type GaN layer exposed, after depositing the electrode with predetermined shape and the p-type GaN, an adhesive tape sapphire substrate.

【0012】一方、ウエハーを斜めにカットするため、 [0012] On the other hand, in order to cut the wafer at an angle,
図5に示すように刃先の中心線に向かってそれぞれ両側に30゜の傾斜を設けたブレードを用意してダイシングソーにセットする。 Respectively toward the center line of the cutting edge as shown in FIG. 5 are prepared blade having a 30 ° inclination on both sides is set to a dicing saw. 次に、前述のウエハーをテーブルに貼付し、ダイシングでp型GaN層側からX軸をカットした後、テーブルを90゜回転させ、今度はY軸をカットする。 Then, affix the aforementioned wafer on the table, after cutting the X-axis from the p-type GaN layer side dicing, the table is rotated by 90 °, this time to cut the Y-axis.

【0013】最後にウエハーをテーブルから剥し取り、 [0013] Finally, take peeled off the wafer from the table,
チップ状に分離した後、チップをサファイア基板面が発光観測面になるようにして、リードフレームに取り付け、電極とリードフレームとを電気的に接続した後、エポキシ樹脂でレンズ状にモールドすることにより、本発明の青色LEDを得る。 After separation into chips, and the chips to the sapphire substrate surface is emission observation surface, mounted on a lead frame, after the electrode and the lead frame are electrically connected, by molding the lens shape with an epoxy resin to obtain a blue LED of the present invention.

【0014】このようにして得た青色LEDは、順方向電圧5Vで、発光出力20μWを示した。 [0014] Blue LED thus obtained is a forward voltage 5V, showing a light emitting output 20 W. 一方、側面を垂直にカットしたチップよりなる従来の青色LEDは発光出力は10μWとほぼ半分しかなかった。 On the other hand, conventional blue LED made of chips obtained by cutting the side vertically emission output was only about half the 10 .mu.W.

【0015】 [0015]

【発明の効果】以上説明したように、本発明の青色LE As described in the foregoing, the blue LE of the present invention
Dはその発光素子の側面を斜めにカットしているために、窒化ガリウム系化合物半導体の発光を、その側面で反射させて透光性基板から有効に取り出すことができる。 D In order to have cut the sides of the light-emitting element obliquely, the light-emitting gallium nitride-based compound semiconductor, is reflected by the side surface can be removed effectively from the translucent substrate. しかも従来のようにカップ状のリードフレームも必要とせず、生産性にも非常に優れている。 Moreover even without requiring cupped lead frame as in the prior art, it is very excellent in productivity.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の青色LEDに係る発光素子の側面の構造を一部拡大して示す断面図。 Sectional view showing structure partially enlarged side of the light-emitting device according to the blue LED of the present invention; FIG.

【図2】 従来の青色LEDの構造を示す断面図。 2 is a cross-sectional view showing a structure of a conventional blue LED.

【図3】 従来の発光素子の構造を示す断面図。 3 is a cross-sectional view showing a structure of a conventional light emitting element.

【図4】 本発明の一実施例に係る発光素子の構造を示す断面図。 Sectional view showing a structure of a light emitting device according to an embodiment of the present invention; FIG.

【図5】 ダイシングソーのブレードの刃先角を示す断面図。 5 is a sectional view showing a cutting edge angle of the dicing saw blade.

【符号の説明】 DESCRIPTION OF SYMBOLS

1・・・・・・透光性基板 2・・・・・・窒化ガリウム系化合物半導体 3・・・・・・電極 4・・・・・・リードフレーム 5・・・・・・樹脂モールド 1 ...... translucent substrate 2 ...... gallium nitride compound semiconductor 3 ...... electrode 4 ...... lead frame 5 ...... resin mold

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 発光素子が少なくとも透光性基板と該透光性基板に積層された窒化ガリウム系化合物半導体とからなり、さらに該発光素子の透光性基板を上面としてリードフレーム上に載置し、発光素子全体を樹脂モールドで封止してなる青色発光ダイオードにおいて、 前記発光素子の側面が、透光性基板上面の鉛直方向より、鋭角θで切断されていることを特徴とする青色発光ダイオード。 1. A light emitting element is composed at least translucent substrate and the gallium nitride-based compound semiconductor laminated on the light-transmissive substrate, placed on a lead frame further light-transmitting substrate of the light emitting element as a top and, in the blue light-emitting diode obtained by encapsulating the entire light-emitting element in the resin mold, blue side of the light emitting element, characterized in that from the vertical direction of the transparent substrate top surface, is cut at an acute angle θ emission diode.
  2. 【請求項2】 前記鋭角θは、前記透光性基板の屈折率をn1、前記樹脂モールドの屈折率をn2とすると、θ≧ Wherein said acute angle theta is the refractive index of the translucent substrate n1, and the refractive index of the resin mold and n2, theta ≧
    sin -1 (n2/n1)の関係にあることを特徴とする請求項1に記載の青色発光ダイオード。 sin -1 (n2 / n1) blue light-emitting diode according to claim 1, characterized in that the relationship.
JP5507493A 1993-02-19 1993-02-19 Method of manufacturing a light emitting diode Expired - Fee Related JP2964822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5507493A JP2964822B2 (en) 1993-02-19 1993-02-19 Method of manufacturing a light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5507493A JP2964822B2 (en) 1993-02-19 1993-02-19 Method of manufacturing a light emitting diode

Publications (2)

Publication Number Publication Date
JPH06244458A true JPH06244458A (en) 1994-09-02
JP2964822B2 JP2964822B2 (en) 1999-10-18

Family

ID=12988555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5507493A Expired - Fee Related JP2964822B2 (en) 1993-02-19 1993-02-19 Method of manufacturing a light emitting diode

Country Status (1)

Country Link
JP (1) JP2964822B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528890A (en) * 1998-10-21 2002-09-03 エムコール コーポレイション Wavelength conversion execution apparatus using a phosphor having a light emitting diode
WO2002089221A1 (en) * 2001-04-23 2002-11-07 Matsushita Electric Works, Ltd. Light emitting device comprising led chip
JP2004002823A (en) * 2002-04-26 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, manufacturing method for the opical material, and light-emitting diode using the same
US6853010B2 (en) 2002-09-19 2005-02-08 Cree, Inc. Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor
US6995400B2 (en) 2002-09-30 2006-02-07 Fuji Photo Film Co., Ltd. Light emitting device and manufacturing method thereof
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
JP2006206918A (en) * 2002-04-26 2006-08-10 Kaneka Corp Composition for optical material, optical material and method for producing the same
US7183587B2 (en) 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
CN100391016C (en) 2003-07-18 2008-05-28 三洋电机株式会社;鸟取三洋电机株式会社 Light-emitting diode
US7391153B2 (en) * 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
JP2009135539A (en) * 2009-03-16 2009-06-18 Toyoda Gosei Co Ltd Method of manufacturing solid-state element device
US7572657B2 (en) 2004-08-20 2009-08-11 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
JP2010034608A (en) * 2005-06-22 2010-02-12 Seoul Opto Devices Co Ltd Light-emitting element
EP2270103A2 (en) 2000-12-27 2011-01-05 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and LED's made by using the materials
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
JP2014160797A (en) * 2013-02-19 2014-09-04 Lextar Electronics Corp Light-emitting diode chip and method for manufacturing the same
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
USRE45796E1 (en) 2004-12-23 2015-11-10 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
US9220149B2 (en) 2006-01-20 2015-12-22 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US9608166B2 (en) 2003-08-14 2017-03-28 Cree, Inc. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229160B1 (en) 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US6784463B2 (en) 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2002528890A (en) * 1998-10-21 2002-09-03 エムコール コーポレイション Wavelength conversion execution apparatus using a phosphor having a light emitting diode
EP2270103A2 (en) 2000-12-27 2011-01-05 Kaneka Corporation Curing agent, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and LED's made by using the materials
WO2002089221A1 (en) * 2001-04-23 2002-11-07 Matsushita Electric Works, Ltd. Light emitting device comprising led chip
JP2006206918A (en) * 2002-04-26 2006-08-10 Kaneka Corp Composition for optical material, optical material and method for producing the same
JP2004002823A (en) * 2002-04-26 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, manufacturing method for the opical material, and light-emitting diode using the same
US6853010B2 (en) 2002-09-19 2005-02-08 Cree, Inc. Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor
US6995400B2 (en) 2002-09-30 2006-02-07 Fuji Photo Film Co., Ltd. Light emitting device and manufacturing method thereof
US7391153B2 (en) * 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
CN100391016C (en) 2003-07-18 2008-05-28 三洋电机株式会社;鸟取三洋电机株式会社 Light-emitting diode
US9608166B2 (en) 2003-08-14 2017-03-28 Cree, Inc. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7183587B2 (en) 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
US7572657B2 (en) 2004-08-20 2009-08-11 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
USRE45796E1 (en) 2004-12-23 2015-11-10 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
JP2010034608A (en) * 2005-06-22 2010-02-12 Seoul Opto Devices Co Ltd Light-emitting element
US7951626B2 (en) 2005-06-22 2011-05-31 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8704246B2 (en) 2005-06-22 2014-04-22 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
US7723737B2 (en) 2005-06-22 2010-05-25 Seoul Opto Device Co., Ltd. Light emitting device
US8895957B2 (en) 2005-06-22 2014-11-25 Seoul Viosys Co., Ltd Light emitting device and method of manufacturing the same
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
US7977691B2 (en) 2005-06-22 2011-07-12 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US9220149B2 (en) 2006-01-20 2015-12-22 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP2009135539A (en) * 2009-03-16 2009-06-18 Toyoda Gosei Co Ltd Method of manufacturing solid-state element device
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US10139095B2 (en) 2012-05-04 2018-11-27 GE Lighting Solutions, LLC Reflector and lamp comprised thereof
JP2014160797A (en) * 2013-02-19 2014-09-04 Lextar Electronics Corp Light-emitting diode chip and method for manufacturing the same

Also Published As

Publication number Publication date
JP2964822B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
KR101095753B1 (en) Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
US9070850B2 (en) Light emitting diode package and method for fabricating same
US8759865B2 (en) Light emitting diode chip, light emitting diode package structure, and method for forming the same
EP1258929B1 (en) Semiconductor LED flip-chip having low refractive index underfill
US5557115A (en) Light emitting semiconductor device with sub-mount
JP5918221B2 (en) LED chip manufacturing method
US5798536A (en) Light-emitting semiconductor device and method for manufacturing the same
US6956245B2 (en) Group III nitride compound semiconductor light-emitting element
US7015054B2 (en) Semiconductor light emitting device and method
US7329905B2 (en) Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US7446344B2 (en) Radiation-emitting semiconductor chip, method for production thereof and radiation-emitting component
JP4954712B2 (en) Sapphire laser lift-off from nitride flip chip
US7977686B2 (en) Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
JP3616766B2 (en) Light emitting diode and its manufacturing method
TWI550910B (en) Semiconductor light emitting device
US10326059B2 (en) Thin film light emitting diode
EP2565944B1 (en) Semiconductor light emitting device
JP4254266B2 (en) Method of manufacturing a light emitting device and a light-emitting device
JP5278023B2 (en) Method for manufacturing light emitting device
US6838704B2 (en) Light emitting diode and method of making the same
US6682950B2 (en) Light emitting diode and method of making the same
US6744196B1 (en) Thin film LED
JP5313256B2 (en) Strong LED structure for substrate lift-off
US7129527B2 (en) Light emitting diode and method of making the same
JP3504079B2 (en) The method of manufacturing a semiconductor light emitting diode element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees