JP2004289182A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2004289182A
JP2004289182A JP2004204397A JP2004204397A JP2004289182A JP 2004289182 A JP2004289182 A JP 2004289182A JP 2004204397 A JP2004204397 A JP 2004204397A JP 2004204397 A JP2004204397 A JP 2004204397A JP 2004289182 A JP2004289182 A JP 2004289182A
Authority
JP
Japan
Prior art keywords
light emitting
light
type semiconductor
layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004204397A
Other languages
Japanese (ja)
Inventor
Tomio Inoue
登美男 井上
Hiroshi Murata
博志 村田
Yasunari Oku
保成 奥
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004204397A priority Critical patent/JP2004289182A/en
Publication of JP2004289182A publication Critical patent/JP2004289182A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device which can improve light emission intensity by a light emitting element including a transparent substrate such as GaP-based, GaAsP-based, GaAlAs-based, or GaN-based substrate. <P>SOLUTION: In the semiconductor light emitting device, an n-type semiconductor layer 3, a p-type semiconductor layer 4, and a light emitting layer 5 are formed on an n-type semiconductor substrate 2, at the same time an n-type electrode 2a and a p-type electrode 4a are formed on the n-type semiconductor substrate 2 and the p-type semiconductor layer 4, respectively. A semiconductor light emitting element 1 is mounted on the mounting surface of the mounting part 21b of a lead frame 21 with a posture in which the n-type semiconductor substrate 2 is at the light emitting side and the light emitting layer 5 is at the mounting surface side of the mounting part 21b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、赤、オレンジ、アンバー、黄緑や緑等の発光色が得られるGaP系,GaAsP系,GaAlAs系,GaN系などの化合物半導体を積層した半導体発光素子を含む半導体発光装置に係り、特に半導体発光素子自身の発光輝度の向上と主光取出し面以外から放出される漏光を効率的に発光方向に反射回収できるようにした半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device including a semiconductor light emitting element in which compound semiconductors such as GaP-based, GaAsP-based, GaAlAs-based, and GaN-based, which can emit red, orange, amber, yellow-green, and green light, are obtained. In particular, the present invention relates to a semiconductor light emitting device capable of improving light emission luminance of a semiconductor light emitting element itself and efficiently reflecting and collecting light leaked from a surface other than the main light extraction surface in a light emitting direction.

結晶基板の上に半導体薄膜層を成長させた半導体発光素子の中で、赤、オレンジ、アンバー、黄緑や緑などの発光色を持つものとして、GaP系,GaAsP系,GaAlAs系等が、あるいは緑色や青色などの発光色を持つものとしてGaN系等のIII−V族の化合物半導体が従来から利用されている。   Among the semiconductor light emitting devices in which a semiconductor thin film layer is grown on a crystal substrate, GaP-based, GaAsP-based, GaAlAs-based, and the like, which emit light of red, orange, amber, yellow-green, green, or the like, or Conventionally, III-V group compound semiconductors such as GaN have been used to emit green or blue light.

これらのGaP系,GaAsP系,GaAlAs系等の化合物半導体を利用する半導体発光素子では、結晶基板として導電性の半導体材料が用いられる。このため、半導体発光素子の形態は、たとえばn導電型半導体基板(以下、「n型半導体基板」と記す)を用いる場合は、このn型半導体基板の上面(第1の主面)にエピタキシャル成長にてn型半導体層を形成し、その上面に同じくエピタキシャル成長にてp型半導体層を形成させる。そして、電極は、n型半導体基板の下面(第2の主面)にn電極を、またp型半導体層の上面にp電極を形成した構成をとっている。   In a semiconductor light emitting device using a compound semiconductor such as GaP, GaAsP, and GaAlAs, a conductive semiconductor material is used as a crystal substrate. For this reason, the semiconductor light emitting element may be formed, for example, by epitaxial growth on the upper surface (first main surface) of the n-type semiconductor substrate when an n-conductivity type semiconductor substrate (hereinafter referred to as “n-type semiconductor substrate”) is used. To form a p-type semiconductor layer on the upper surface by epitaxial growth. The electrodes have a configuration in which an n-electrode is formed on the lower surface (second main surface) of the n-type semiconductor substrate and a p-electrode is formed on the upper surface of the p-type semiconductor layer.

また、この半導体発光素子を用いた発光装置は、半導体基板を下にしてリードフレームや基板等の搭載面に搭載されるので、半導体基板が厚くてその上に形成されるエピタキシャル層が薄いこの半導体発光素子は、発光層すなわちp−n接合域が上側にくるような配置で搭載されている。   Further, since the light emitting device using this semiconductor light emitting element is mounted on a mounting surface such as a lead frame or a substrate with the semiconductor substrate facing down, the semiconductor substrate is thick and the epitaxial layer formed thereon is thin. The light emitting element is mounted in such an arrangement that the light emitting layer, that is, the pn junction region is on the upper side.

また、この半導体発光素子の発光波長に対して半導体基板が透光性の基板(以下、透明基板と記す)を用いているものは、p−n接合域の発光層からの主光取出し面側とは反対の向き、すなわち半導体基板側へ向かう光をリードフレームや基板側に抜けさせることができるので、リードフレームや基板の搭載面を光反射に好適なものと成るように構成されている。   Further, the semiconductor light-emitting element using a light-transmitting substrate (hereinafter referred to as a transparent substrate) with respect to the emission wavelength of the semiconductor light-emitting element is provided on the main light extraction surface side from the light-emitting layer in the pn junction region Since the light in the opposite direction, that is, the light traveling toward the semiconductor substrate can be allowed to escape to the lead frame or the substrate, the mounting surface of the lead frame or the substrate is configured to be suitable for light reflection.

一方、GaN系の化合物半導体を利用する半導体発光素子では、結晶基板として絶縁性のサファイアを用いるのが近来では主流である。このような絶縁性の結晶基板を用いる場合では、上述の導電性の半導体基板を用いる場合と異なり、n電極およびp電極を基板の半導体層形成面側に形成すると同時に主光取出し面側とする構成が用いられている。   On the other hand, in semiconductor light emitting devices using a GaN-based compound semiconductor, the use of insulating sapphire as a crystal substrate has recently become the mainstream. In the case of using such an insulating crystal substrate, unlike the case of using the above-described conductive semiconductor substrate, the n-electrode and the p-electrode are formed on the semiconductor layer forming surface side of the substrate and at the same time as the main light extraction surface side. A configuration is used.

しかしながら、最近になり、GaNに代表されるGaN系化合物半導体からなる基板が得られるようになり、これを結晶基板として用いたGaN系化合物半導体からなる半導体発光素子が作製されるようになっている。このため、GaN等の半導体材料を結晶基板として用いる半導体発光素子の場合においても、GaN系の化合物半導体は半導体発光素子の発光波長に対して透明であるので、上述のGaP系,GaAsP系,GaAlAs系等の化合物半導体を利用する半導体発光素子の場合と同様の素子構成とすることが可能となっているのが現状である。   However, recently, a substrate made of a GaN-based compound semiconductor represented by GaN has been obtained, and a semiconductor light-emitting device made of a GaN-based compound semiconductor using this as a crystal substrate has been manufactured. . For this reason, even in the case of a semiconductor light emitting device using a semiconductor material such as GaN as a crystal substrate, the GaN-based compound semiconductor is transparent to the emission wavelength of the semiconductor light emitting device, so that the above-described GaP-based, GaAsP-based, and GaAlAs-based semiconductors are used. At present, it is possible to have an element configuration similar to that of a semiconductor light emitting element using a compound semiconductor such as a system.

図7はGaP系,GaAsP系,GaAlAs系化合物半導体を利用した半導体発光素子を含む従来のLEDランプの典型的な構造を示す概略断面図、図8は半導体発光素子搭載部分の拡大図である。   FIG. 7 is a schematic sectional view showing a typical structure of a conventional LED lamp including a semiconductor light emitting device using a GaP-based, GaAsP-based, and GaAlAs-based compound semiconductor, and FIG. 8 is an enlarged view of a portion on which the semiconductor light-emitting device is mounted.

図7に示すように、従来のLEDランプは、リードフレーム21の一方のリード21aの上端にすり鉢状のマウント部21bが形成され、このマウント部21bの上に半導体発光素子22を搭載したものである。この半導体発光素子22にはワイヤ23がリード21cとの間にボンディングされ、これらの半導体発光素子22及びワイヤ23を含めてエポキシ樹脂24によって封止してLEDランプが構成される。   As shown in FIG. 7, the conventional LED lamp has a mortar-shaped mounting portion 21b formed at the upper end of one lead 21a of a lead frame 21, and a semiconductor light emitting element 22 is mounted on the mounting portion 21b. is there. A wire 23 is bonded to the semiconductor light emitting element 22 between the lead 21c and the semiconductor light emitting element 22 and the wire 23 are sealed with an epoxy resin 24 to form an LED lamp.

半導体発光素子22は、例えばGaP系,GaAsP系の場合は、n型半導体基板22aが用いられ、その上にn型半導体層22b及びp型半導体層22cがエピタキシャル成長により順次積層形成される。発光層は、p−n接合域22dである。n型半導体基板22aは導電性であって、その下面には複数のドット形状のn電極22a−1が形成され、p型半導体層22cの上面には中央に1つドット形状のp電極22b−1が形成され、このp電極22b−1にワイヤ23がボンディングされている。そして、n型半導体基板22aをリード21aのマウント部21b側に導通させるために導電性の接着剤25によって半導体発光素子22はマウント部21bに搭載され電気的かつ機械的に接続固定される。この接着剤25は、たとえば透明のエポキシ樹脂を主剤としこれにフィラーとしてAgを混入したものが好適に利用できることが既に知られていて、混入したAgによって十分な導電性が得られる。   For example, in the case of a GaP-based or GaAsP-based semiconductor light emitting element 22, an n-type semiconductor substrate 22a is used, on which an n-type semiconductor layer 22b and a p-type semiconductor layer 22c are sequentially laminated by epitaxial growth. The light emitting layer is a pn junction region 22d. The n-type semiconductor substrate 22a is conductive, a plurality of dot-shaped n-electrodes 22a-1 are formed on the lower surface thereof, and one dot-shaped p-electrode 22b- is formed on the upper surface of the p-type semiconductor layer 22c. 1 is formed, and a wire 23 is bonded to the p-electrode 22b-1. Then, the semiconductor light emitting element 22 is mounted on the mount 21b by a conductive adhesive 25 so as to conduct the n-type semiconductor substrate 22a to the mount 21b side of the lead 21a, and is electrically and mechanically connected and fixed. It is already known that the adhesive 25 is preferably made of, for example, a transparent epoxy resin as a main component and mixed with Ag as a filler, and sufficient conductivity can be obtained by the mixed Ag.

そして、n型半導体基板22aが透明基板の場合には、導電性の接着剤25によって固定されるものでは、接着剤25の光透過度が高くてマウント部21bの搭載面も銀鏡面等のように光反射が可能な面としておけば、発光層すなわちp−n接合域22dから下に抜ける光をマウント部21bで反射させて発光方向に回収することが可能である。   When the n-type semiconductor substrate 22a is a transparent substrate, if the n-type semiconductor substrate 22a is fixed by the conductive adhesive 25, the adhesive 25 has a high light transmittance and the mounting surface of the mount portion 21b is like a silver mirror surface. If the surface is capable of reflecting light, the light that escapes downward from the light emitting layer, that is, the pn junction region 22d, can be reflected by the mount portion 21b and collected in the light emitting direction.

GaN等の透明基板を用いるGaN系化合物半導体発光素子の場合でも、このようなGaP系,GaAsP系,の場合と同様の構成とすることができる。   Even in the case of a GaN-based compound semiconductor light-emitting device using a transparent substrate such as GaN, the same configuration as in the case of such a GaP-based or GaAsP-based device can be employed.

図9はGaAlAs系の化合物半導体を利用したLEDランプの要部を示す縦断面図である。   FIG. 9 is a longitudinal sectional view showing a main part of an LED lamp using a GaAlAs-based compound semiconductor.

このGaAlAs系の発光素子31ではp型半導体基板が用いられ、その上にp型半導体層32b、活性層32d及びn型半導体層32cがエピタキシャル成長により順次積層形成され、n型半導体層32cの上面にはドット形状のn電極32b−1を形成している。p型半導体基板はGaAs基板であって、透明基板ではないので、高輝度化のためにはこれをエッチングで除去した図9に示すような構成をとる。その場合、p型半導体層32bの下面に複数のドット形状のp電極32a−1が形成される。   In the GaAlAs-based light emitting element 31, a p-type semiconductor substrate is used, on which a p-type semiconductor layer 32b, an active layer 32d and an n-type semiconductor layer 32c are sequentially formed by epitaxial growth, and on the upper surface of the n-type semiconductor layer 32c. Form a dot-shaped n-electrode 32b-1. Since the p-type semiconductor substrate is a GaAs substrate and not a transparent substrate, it has a configuration as shown in FIG. 9 in which the p-type semiconductor substrate is removed by etching in order to increase the luminance. In that case, a plurality of dot-shaped p-electrodes 32a-1 are formed on the lower surface of the p-type semiconductor layer 32b.

上記いずれの場合においても、発光層であるp−n接合域は半導体発光素子の上側にくるような配置で搭載されている。   In any of the above cases, the pn junction region, which is the light emitting layer, is mounted so as to be above the semiconductor light emitting element.

図10は半導体発光素子22からの光の取り出しの形態を説明するための概略図である。   FIG. 10 is a schematic diagram for explaining a mode of extracting light from the semiconductor light emitting element 22.

図において、発光層Aの1点から等方的に発せられる光は、上方に向かう光、下方に向かう光、および側方に向かう光に分けて考えることが出来る。上方に向かう光の場合、半導体発光素子22の上面Suへの入射角が臨界角θを越えると上面Suで全反射される。臨界角θはGaP系の場合が、θ=25°で最も小さい。   In the drawing, light isotropically emitted from one point of the light emitting layer A can be considered as being divided into upward light, downward light, and lateral light. In the case of upward light, when the incident angle on the upper surface Su of the semiconductor light emitting element 22 exceeds the critical angle θ, the light is totally reflected on the upper surface Su. The critical angle θ is smallest in the case of the GaP system at θ = 25 °.

すなわち、図10の(b)に示すように、上方には+Y方向を中心に2θの範囲に向かう光Luのみを外に取り出すことができる。また、下方に向かう光の場合も同じく、下面Sdへの入射角が臨界角θを越えると下面Sdで全反射されるので、下方には−Y方向を中心に2θの範囲に向かう光Ldのみを外に取り出すことができる。下方の場合は、裏面電極やその合金層、及びAgペーストなどが存在するが、それを無視すると(これに関しては、後で考察する)外に出た光はリードフレームのマウント部21bの銀メッキ面で反射され、再度半導体発光素子22内を通り上方に取り出される。側方に向かう光の場合は、半導体発光素子22の形状が立方体の場合は、同じように側面Ssへの入射角が臨界角θを越えると側面Ssで全反射されるので、側方には±X方向を中心に2θの範囲に向かう光Lsのみを外に取り出すことができる。上記以外の方向に向かう光Lは、半導体発光素子22内に閉じこめられ外に取り出すことはできない。   That is, as shown in FIG. 10B, only the light Lu traveling upward in the range of 2θ with the + Y direction as the center can be extracted upward. Similarly, in the case of light traveling downward, when the incident angle on the lower surface Sd exceeds the critical angle θ, the light is totally reflected by the lower surface Sd. Can be taken out. In the case of the lower side, the back electrode, its alloy layer, Ag paste, etc. are present, but if they are neglected (this will be discussed later), the outside light will be applied to the silver plating of the mount portion 21b of the lead frame. The light is reflected by the surface, passes through the semiconductor light emitting element 22 again, and is taken out upward. In the case of light traveling to the side, when the shape of the semiconductor light-emitting element 22 is a cube, if the angle of incidence on the side surface Ss exceeds the critical angle θ, the light is totally reflected by the side surface Ss. Only the light Ls directed toward the range of 2θ around the ± X direction can be taken out. Light L traveling in directions other than the above is confined in the semiconductor light emitting element 22 and cannot be taken out.

ここで、光の取り出しについて生じる問題点は次のとおりである。   Here, the problems that arise with respect to light extraction are as follows.

まず、半導体発光素子22の発光層であるp−n接合域22dあるいは活性層32dが上側にくる配置で搭載されている場合、特に側方に向かう光がその影響を受ける。すなわち、側方に向かう光のうち外に取り出される光Lsの大部分が、図10に示すように下方に向かう。下方に向かう光は、リードフレームのマウント部21bの銀メッキ面で反射され上方に向かうものや、再度半導体発光素子22内にはいるものや、Agペーストで吸収されるものなどがあり、直接上方に向かう光に比べると光の強さが弱くなり光の取り出し効率が悪くなるといった問題が生じる。   First, when the pn junction region 22d or the active layer 32d, which is the light-emitting layer of the semiconductor light-emitting element 22, is mounted so as to face upward, light directed to the side is particularly affected. That is, most of the light Ls extracted to the outside among the light traveling to the side travels downward as shown in FIG. The light going downward may be reflected by the silver-plated surface of the mount portion 21b of the lead frame and directed upward, may enter the semiconductor light emitting element 22 again, or may be absorbed by the Ag paste. There is a problem that the intensity of light is weaker than that of light traveling toward and the light extraction efficiency is deteriorated.

また、チップの形状はダイシング工程におけるダイヤモンドカッタの刃先形状に依存して、チップの切断面はカッタ側と逆のテーパ面が形成される。すなわち、図8に示すように、半導体発光素子22の四方の側壁はp型半導体層22c側に向けて先細りするテーパ状となることが製造上からどうしても避けられない。ところが、p−n接合域22dが半導体発光素子の上方にある場合は、n型半導体基板22aの側壁がテーパ状となっているために、光を外に取り出すことができるトータル角度は、図10におけるテーパがない場合の8θの範囲に比べて狭くなり、取り出せる光の量が減少するという問題がある。   The shape of the chip depends on the shape of the cutting edge of the diamond cutter in the dicing process, and the cut surface of the chip has a tapered surface opposite to the cutter side. That is, as shown in FIG. 8, it is unavoidable from a manufacturing viewpoint that the four side walls of the semiconductor light emitting element 22 become tapered toward the p-type semiconductor layer 22c side. However, when the pn junction region 22d is above the semiconductor light emitting device, the total angle at which light can be extracted outside is as shown in FIG. 10 because the sidewall of the n-type semiconductor substrate 22a is tapered. Is narrower than the range of 8θ when there is no taper, and there is a problem that the amount of light that can be extracted is reduced.

また、p−n接合域22dから下に向かう光は、マウント部21bを反射面としておけばこの部分から主光取出し面側に反射させることができる。ところが、n型半導体基板22aの下面には複数の金属のn電極22a−1があり、半導体層とこの電極との界面は合金層が形成されており、この合金層は光を吸収するため、これらのn電極22a−1が占める面積に比例して光の吸収量が多くなる。   In addition, light traveling downward from the pn junction region 22d can be reflected from this portion toward the main light extraction surface side by using the mount portion 21b as a reflection surface. However, there are a plurality of metal n-electrodes 22a-1 on the lower surface of the n-type semiconductor substrate 22a, and an interface between the semiconductor layer and this electrode is formed with an alloy layer. Since this alloy layer absorbs light, The amount of light absorption increases in proportion to the area occupied by these n-electrodes 22a-1.

また、接着剤25にAgを含ませたAgペーストでは、Ag自身は外部からの入射光に対して光を反射させるのに対し、Agを混入したペースト状の接着剤では光が封じ込められやすく、むしろ入射光を吸収してしまうように作用する。したがって、導電性の接着剤25としてAgペーストを用いると、マウント部21bを反射面としていても、Agペーストによる光の吸収によって主光取出し面からの発光輝度は低下してしまう。そして、この発光輝度を補うためには、印加電流を大きくする必要があり、消費電力の低減もできなくなる。   Further, in the Ag paste in which Ag is included in the adhesive 25, the Ag itself reflects light with respect to the incident light from the outside, whereas the light in the paste adhesive containing Ag is easily confined, Rather, it acts so as to absorb the incident light. Therefore, when an Ag paste is used as the conductive adhesive 25, even if the mount portion 21b is used as a reflection surface, light emission from the main light extraction surface is reduced by light absorption by the Ag paste. In order to compensate for the emission luminance, it is necessary to increase the applied current, and the power consumption cannot be reduced.

また、通電時には発光素子22の発熱を伴うので、この発熱によって接着剤25として用いたAgペーストが加熱され、これによってペーストに含まれている樹脂が変色してしまう。この変色した樹脂は光を吸収するように作用し、Agペースト自身の光吸収に加えて樹脂による光吸収が起こる。したがって、発光素子22の発光輝度の低下を招くことになり、機能が劣化したものと判断されやすく、信頼性にも大きく影響する。   In addition, since the light emitting element 22 generates heat when energized, the heat generates heat of the Ag paste used as the adhesive 25, thereby discoloring the resin contained in the paste. The discolored resin acts to absorb light, and the resin absorbs light in addition to the light absorption of the Ag paste itself. Therefore, the light emission luminance of the light emitting element 22 is reduced, and it is easy to determine that the function is deteriorated, which greatly affects the reliability.

以上のように下方に向かう光についても、その全てを本来の発光方向に反射させて回収することはできないという問題がある。   As described above, there is a problem in that it is not possible to collect all of the downward light by reflecting the light in the original light emission direction.

さらに、GaN系の半導体発光素子を備える発光装置においては、上述の問題に加え、以下のような問題がある。すなわち、GaN系の化合物半導体は一般に有機金属気相成長法やMBE法のように成長速度の比較的遅い方法で成長されるため、これらの化合物半導体を用いる場合は、GaP系やGaAlAs系のように簡便に厚膜成長を行うことが可能な液相成長法を用いる場合とは異なり、基板の上に形成する発光のための半導体層の厚さを十分厚くすることができない。このため、発光層から上側に向かう光のうち素子の上面側から取り出される光の量はより一層制限される傾向にある。さらに、GaN系の化合物半導体はGaP系等の化合物半導体に比べ抵抗率が高く、半導体層に形成された側に形成される電極を介して注入され発光に寄与する電流は、半導体層内で広がりにくく、電極の直下に集中しやすい。このため、発光層における発光も電極の直下に集中し、発光層から上方へ向かう光は電極に遮られてしまう結果、素子の上面からの光の取り出しはより一層困難となる傾向があるという問題がある。   Further, in a light emitting device including a GaN-based semiconductor light emitting element, there are the following problems in addition to the above problems. That is, since GaN-based compound semiconductors are generally grown by a method having a relatively low growth rate such as metal organic chemical vapor deposition or MBE, when these compound semiconductors are used, GaP-based or GaAlAs-based semiconductors are used. Unlike the case of using the liquid phase growth method, which can easily grow a thick film, the thickness of the semiconductor layer for light emission formed on the substrate cannot be sufficiently increased. For this reason, the amount of light extracted from the upper surface side of the element in the light upward from the light emitting layer tends to be further limited. Furthermore, GaN-based compound semiconductors have higher resistivity than GaP-based compound semiconductors, and the current that is injected through an electrode formed on the side formed on the semiconductor layer and contributes to light emission spreads in the semiconductor layer. Hard to concentrate directly under the electrode. For this reason, the light emission in the light emitting layer also concentrates directly below the electrode, and the light going upward from the light emitting layer is blocked by the electrode, which makes it more difficult to extract light from the upper surface of the element. There is.

このように、従来のGaP系,GaAsP系,GaAlAs系,GaN系などの発光素子を備える発光装置では、透明基板等を用いた場合でも、主光取出し面以外からの漏光を十分に回収できないので、発光輝度の向上にも限界がある。   As described above, in a conventional light-emitting device having a light-emitting element of GaP, GaAsP, GaAlAs, or GaN, even when a transparent substrate or the like is used, light leakage from a surface other than the main light extraction surface cannot be sufficiently collected. Also, there is a limit to the improvement of the light emission luminance.

本発明において解決すべき課題は、GaP系,GaAsP系,GaAlAs系,GaN系などの透明基板等を持つ発光素子による発光輝度を向上させ得る半導体発光装置を提供することにある。   The problem to be solved in the present invention is to provide a semiconductor light emitting device capable of improving the light emission luminance of a light emitting element having a transparent substrate or the like of GaP, GaAsP, GaAlAs, GaN or the like.

本発明は、第1導電型半導体基板と、前記第1導電型半導体基板の第1の主面上にエピタキシャル成長された第1導電型半導体層と、前記第1導電型半導体層の上にエピタキシャル成長された第2導電型半導体層と、前記第1導電型半導体基板側の第2の主面上に形成された第1の電極と、前記第2導電型半導体層の上に形成された第2の電極と、を少なくとも備えた半導体発光素子と、この半導体発光素子を導通搭載するリードフレームまたは基板等の搭載面とを備えた半導体発光装置であって、前記第1導電型半導体基板側が発光方向であって、前記第1導電型半導体層と前記第2導電型半導体層とによって形成されるp−n接合による発光層が前記搭載面側となる姿勢として、前記半導体発光素子を前記搭載面に搭載したことを特徴とする半導体発光装置である。   The present invention provides a first conductivity type semiconductor substrate, a first conductivity type semiconductor layer epitaxially grown on a first main surface of the first conductivity type semiconductor substrate, and an epitaxial growth on the first conductivity type semiconductor layer. A second conductive type semiconductor layer, a first electrode formed on the second main surface on the first conductive type semiconductor substrate side, and a second electrode formed on the second conductive type semiconductor layer. A semiconductor light emitting device comprising at least an electrode; and a mounting surface such as a lead frame or a substrate for conductively mounting the semiconductor light emitting device, wherein the first conductive type semiconductor substrate side is in a light emitting direction. The semiconductor light emitting element is mounted on the mounting surface such that a light emitting layer formed by the first conductivity type semiconductor layer and the second conductivity type semiconductor layer and formed by a pn junction is on the mounting surface side. The feature is that That is a semiconductor light-emitting device.

このような構成では、発光層から側方に向かう光の取り出し効率を上げることができ、発光輝度の向上が可能となる。   In such a configuration, the efficiency of extracting light traveling from the light emitting layer to the side can be increased, and the emission luminance can be improved.

請求項1の発明では、第1導電型半導体基板は発光方向側とし発光層を搭載面側の姿勢とすることで発光層を搭載面に近づけるアセンブリとなるので、特に発光層から側方に放出される光の取り出し効率を上げることができ、発光輝度の向上が図られる。   According to the first aspect of the present invention, the first conductive type semiconductor substrate is placed on the light emitting direction side, and the light emitting layer is positioned on the mounting surface side, whereby the light emitting layer is brought closer to the mounting surface. Light extraction efficiency can be increased, and emission luminance can be improved.

請求項2の発明では、導電性の接着剤は光透過可能なので、発光層から搭載部側に抜ける光を搭載部から発光方向に反射させることができ、発光輝度の向上に貢献できる。   According to the second aspect of the present invention, since the conductive adhesive is capable of transmitting light, light that escapes from the light emitting layer toward the mounting portion can be reflected from the mounting portion in the light emitting direction, thereby contributing to an improvement in light emission luminance.

請求項3の発明では、マイクロバンプによってp側電極を搭載部に接合するので、接着剤を使用した場合のような光の封じ込みがなくなり、発光輝度を更に向上させることができる。   According to the third aspect of the present invention, since the p-side electrode is bonded to the mounting portion by the microbump, light is not confined as in the case where an adhesive is used, and the light emission luminance can be further improved.

請求項4の発明では、電極の大きさ形状を最適化することによって、発光層から搭載部へ向かって反射される光の光路を広くすることができ、更に一層発光輝度を向上させることができる。   According to the fourth aspect of the invention, by optimizing the size and shape of the electrode, the optical path of light reflected from the light emitting layer toward the mounting portion can be widened, and the light emission luminance can be further improved. .

請求項5の発明では、発光素子の側面が発光方向に対して先細りする向きに傾斜しているので、発光層を搭載面側に偏る配置とすることで、発光層から四方に向かう光のうち発光素子の外に取り出すことができる光の放出角度範囲が広がり、これによって発光輝度を更に向上させることができる。   According to the fifth aspect of the present invention, since the side surface of the light emitting element is inclined so as to be tapered with respect to the light emitting direction, the light emitting layer is arranged so as to be deviated toward the mounting surface side, so that light emitted from the light emitting layer in all directions can be obtained. The emission angle range of the light that can be extracted outside the light emitting element is widened, so that the light emission luminance can be further improved.

請求項6の発明では、電流を発光層全体に均一に供給して発光層内における発光領域を広げるとともに、発光層から下方へ向かう光を反射させて発光素子の上方あるいは側方へ向かわせることにより、光の取り出し効率を上げることができるので、発光輝度をさらに向上させることができる。   According to the invention of claim 6, the current is uniformly supplied to the entire light emitting layer to widen the light emitting region in the light emitting layer, and the light directed downward from the light emitting layer is reflected and directed upward or to the side of the light emitting element. As a result, the light extraction efficiency can be increased, so that the emission luminance can be further improved.

請求項7の発明では、発光素子の側方からの光の取り出し効率を上げるとともに、導電性の接着剤により素子を固定する場合において、接着剤の発光素子側面におけるせり上がりによる短絡を防止することができるので、発光輝度を向上させるとともに半導体発光装置の信頼性を高めることができる。   According to the invention of claim 7, it is possible to increase the light extraction efficiency from the side of the light emitting element and to prevent a short circuit due to a rise of the adhesive on the side of the light emitting element when the element is fixed with a conductive adhesive. Therefore, the light emission luminance can be improved and the reliability of the semiconductor light emitting device can be improved.

請求項8の発明では、導電性であってかつ光透過可能な接着剤により素子を固定して発光素子の側面からの光の取り出し効率を上げる場合において、素子側面における接着剤のせり上がりを低減して短絡を防止することができるので、発光輝度を向上させるとともに半導体発光装置の信頼性を高めることができる。   According to the eighth aspect of the present invention, when the element is fixed with a conductive and light transmissive adhesive to increase the light extraction efficiency from the side surface of the light emitting element, the rise of the adhesive on the element side surface is reduced. As a result, a short circuit can be prevented, so that the light emission luminance can be improved and the reliability of the semiconductor light emitting device can be improved.

請求項9の発明では、有機金属気相成長法またはMBE法のように厚膜成長が困難な成長方法を用いて作製された半導体発光素子においても、半導体基板の主面および側面からの光回収率を改善し、発光素子の発光輝度を向上させることができる。   According to the ninth aspect of the present invention, even in a semiconductor light emitting device manufactured using a growth method in which a thick film is difficult to grow, such as a metal organic chemical vapor deposition method or an MBE method, light recovery from the main surface and side surfaces of the semiconductor substrate can be achieved. And the light emission luminance of the light emitting element can be improved.

請求項1に記載の発明は、第1導電型半導体基板と、前記第1導電型半導体基板の第1の主面上にエピタキシャル成長された第1導電型半導体層と、前記第1導電型半導体層の上にエピタキシャル成長された第2導電型半導体層と、前記第1導電型半導体基板側の第2の主面上に形成された第1の電極と、前記第2導電型半導体層の上に形成された第2の電極と、を少なくとも備えた半導体発光素子と、この半導体発光素子を導通搭載するリードフレームまたは基板等の搭載面とを備えた半導体発光装置であって、前記第1導電型半導体基板側が発光方向であって、前記第1導電型半導体層と前記第2導電型半導体層とによって形成されるp−n接合による発光層が前記搭載面側となる姿勢として、前記半導体発光素子を前記搭載面に搭載したことを特徴とする半導体発光装置であり、特に発光層から側方に向かう光の取り出し効率を上げることができるという作用を有する。   The invention according to claim 1, wherein a first conductivity type semiconductor substrate, a first conductivity type semiconductor layer epitaxially grown on a first main surface of the first conductivity type semiconductor substrate, and the first conductivity type semiconductor layer A second conductive type semiconductor layer epitaxially grown on the first conductive type semiconductor substrate, a first electrode formed on the second main surface on the first conductive type semiconductor substrate side, and a second conductive type semiconductor layer formed on the second conductive type semiconductor layer. And a mounting surface such as a lead frame or a substrate for conductively mounting the semiconductor light emitting element, wherein the first conductive type semiconductor is provided. The semiconductor light emitting device is configured such that the substrate side is the light emitting direction, and the light emitting layer formed by the pn junction formed by the first conductive type semiconductor layer and the second conductive type semiconductor layer is on the mounting surface side. Mounted on the mounting surface It is a semiconductor light emitting device according to claim, an effect that can increase the extraction efficiency of light directed laterally from the particular light-emitting layer.

請求項2に記載の発明は、前記第2の電極と前記搭載面との間を導電性であって光透過可能な接着剤によって電気的かつ機械的に接合したことを特徴とする請求項1記載の半導体発光装置であり、発光層から搭載部側に抜ける光をこの搭載部から発光方向側へ反射させて光を回収するという作用を有する。   The invention according to claim 2 is characterized in that the second electrode and the mounting surface are electrically and mechanically joined by a conductive and light-permeable adhesive. The semiconductor light-emitting device according to any one of the preceding claims, having an effect of collecting light by reflecting light that escapes from the light-emitting layer toward the mounting portion toward the light-emitting direction from the mounting portion.

請求項3に記載の発明は、前記第2の電極と前記搭載面との間をマイクロバンプを介して電気的かつ機械的に接合したことを特徴とする請求項1記載の半導体発光装置であり、導電性の接着剤を使用しないので、光の吸収を抑えることができ搭載部からの反射光の回収を更に向上させるという作用を有する。   The invention according to claim 3 is the semiconductor light emitting device according to claim 1, wherein the second electrode and the mounting surface are electrically and mechanically joined via micro bumps. Since no conductive adhesive is used, light absorption can be suppressed, and the effect of further improving the collection of reflected light from the mounting portion can be obtained.

請求項4に記載の発明は、前記第1および第2の電極は、平面形状が直径が10μm以上でかつ150μm以下の円またはこの円に内包される多角形、あるいは、前記円または多角形から放射状に伸びた枝をもつ形状であることを特徴とする請求項1,2または3記載の半導体発光装置であり、電極の大きさ形状の最適化によって、電極が金属であって光透過しないものでも、発光層から搭載部側へ抜けて反射される光の光路を確保するという作用を有する。   According to a fourth aspect of the present invention, the first and second electrodes have a plane shape of a circle having a diameter of 10 μm or more and 150 μm or less, a polygon included in the circle, or the circle or the polygon. 4. The semiconductor light emitting device according to claim 1, wherein the electrode has a shape of a metal and does not transmit light by optimizing the size and shape of the electrode. However, it has an effect of securing an optical path of light that is reflected from the light emitting layer toward the mounting portion.

請求項5に記載の発明は、チップ化された前記半導体発光素子の形状は、前記第1の電極が形成された面を上面とし、その面より面積が大きい前記第2の電極が形成された面を下面とする多面体であることを特徴とする請求項1,2,3または4記載の半導体発光装置であり、発光素子の側面の傾斜によって発光層から四方に向かう光、特に側方や下方に向かう光に対し、下面で反射した光が傾斜面から有効に外に取り出され、光の取り出し効率を上げるという作用を有する。   According to a fifth aspect of the present invention, in the semiconductor light emitting device in the form of a chip, the surface on which the first electrode is formed has an upper surface, and the second electrode having an area larger than that surface is formed. 5. The semiconductor light emitting device according to claim 1, wherein the light emitting element is a polyhedron having a surface as a lower surface, wherein the light is directed in four directions from the light emitting layer due to the inclination of the side surface of the light emitting element, particularly laterally or downward. The light reflected by the lower surface is effectively extracted to the outside from the inclined surface with respect to the light heading toward, and has the effect of increasing the light extraction efficiency.

請求項6に記載の発明は、前記第2の電極は、前記第2導電型半導体層の表面のほぼ全面に形成されていることを特徴とする請求項1,2,3または5記載の半導体発光装置であり、第2の電極から第2導電型層へ注入される電流を発光層全体に均一に供給して発光層内における発光領域を広げるとともに、発光層から下方へ向かう光を反射させて発光素子の上方あるいは側方へ向かわせることにより、光の取り出し効率を上げることができるという作用を有する。   The invention according to claim 6, wherein the second electrode is formed on substantially the entire surface of the second conductivity type semiconductor layer. A light-emitting device, in which a current injected from a second electrode into a second conductivity type layer is uniformly supplied to the entire light-emitting layer to expand a light-emitting region in the light-emitting layer and reflect light traveling downward from the light-emitting layer. By moving the light emitting element upward or to the side, the light extraction efficiency can be increased.

請求項7に記載の発明は、前記半導体発光素子の側面において、少なくとも前記第1導電型半導体層の表面の一部から前記第2導電型層の表面の一部へかけて、前記第1導電型半導体層と前記第2導電型層との接合部の表面を覆うように、光透過可能な絶縁性膜が形成されていることを特徴とする請求項1,2,3,4,5または6記載の半導体発光装置であり、発光素子の側方からの光の取り出し効率を上げるとともに、導電性接着剤により素子を固定する場合においては、導電性接着剤の素子側面におけるせり上がりによる短絡を防止するという作用を有する。   The invention according to claim 7, wherein in the side surface of the semiconductor light-emitting element, the first conductive layer extends from at least a part of a surface of the first conductive type semiconductor layer to a part of a surface of the second conductive type layer. The light-transmitting insulating film is formed so as to cover the surface of the junction between the mold semiconductor layer and the second conductivity type layer. 6. The semiconductor light emitting device according to 6, wherein the efficiency of extracting light from the side of the light emitting element is increased, and when the element is fixed by a conductive adhesive, a short circuit due to a rise of the conductive adhesive on a side surface of the element is prevented. It has the effect of preventing.

請求項8に記載の発明は、前記搭載面における前記半導体発光素子の下面の周囲部に前記接着剤の一部が流入するための溝部が形成されていることを特徴とする請求項2または7記載の半導体発光装置であり、導電性であってかつ光透過可能な接着剤により素子を固定して発光素子の側面からの光の取り出し効率を上げる場合において、素子側面における接着剤のせり上がりを低減して短絡を防止するという作用を有する。   The invention according to claim 8 is characterized in that a groove for allowing a part of the adhesive to flow in is formed around the lower surface of the semiconductor light emitting element on the mounting surface. The semiconductor light emitting device according to the above, wherein when the element is fixed with a conductive and light transmissive adhesive to increase the light extraction efficiency from the side surface of the light emitting element, the adhesive on the side surface of the element rises. It has the effect of reducing and preventing short circuits.

請求項9に記載の発明は、第1導電型半導体基板と、この第1導電型半導体基板の第1の主面上に設けられ有機金属気相成長法又はMBE法を用いて順に形成された第1導電型半導体層、発光層および第2導電型半導体層を有する半導体積層構造と、前記第1導電型半導体基板側の第2の主面上に形成された第1の電極と、前記第2導電型半導体層の上に形成された第2の電極と、を少なくとも備えた半導体発光素子と、この半導体発光素子を導通搭載するリードフレームまたは基板等の搭載面とを備えた半導体発光装置であって、前記第1導電型半導体基板側が主光取出し面側であって、前記半導体積層構造側が前記搭載面側となる姿勢として、前記半導体発光素子を前記搭載面に搭載したことを特徴とする半導体発光装置であり、特に有機金属気相成長法またはMBE法のように厚膜成長が困難な成長方法を用いて作製された半導体発光素子において、半導体基板側からの光取り出しを可能とすることにより半導体基板の主面および側面からの光回収率を改善するという作用を有する。   According to a ninth aspect of the present invention, a first conductivity type semiconductor substrate is formed on a first main surface of the first conductivity type semiconductor substrate, and the first conductivity type semiconductor substrate is formed using a metal organic chemical vapor deposition method or an MBE method. A semiconductor laminated structure having a first conductivity type semiconductor layer, a light emitting layer and a second conductivity type semiconductor layer; a first electrode formed on a second main surface on the first conductivity type semiconductor substrate side; A semiconductor light emitting device including at least a second electrode formed on a two-conductivity type semiconductor layer, and a mounting surface such as a lead frame or a substrate for conductively mounting the semiconductor light emitting element. The semiconductor light emitting device is mounted on the mounting surface such that the first conductive type semiconductor substrate side is the main light extraction surface side and the semiconductor laminated structure side is the mounting surface side. Semiconductor light emitting device In a semiconductor light emitting device manufactured using a growth method in which a thick film is difficult to grow, such as a metal vapor deposition method or an MBE method, light can be extracted from the semiconductor substrate side to enable the main surface and the side surface of the semiconductor substrate. Has the effect of improving the light recovery rate from light.

以下に、本発明の実施の形態の具体例を図面を参照しながら説明する。   Hereinafter, specific examples of the embodiments of the present invention will be described with reference to the drawings.

図1は本発明の半導体発光装置の要部を示す拡大図である。図示の例は、図7及び図8に示したLEDランプのリードフレームのリード21aのマウント部21bに発光素子を搭載したものとして示す。   FIG. 1 is an enlarged view showing a main part of the semiconductor light emitting device of the present invention. In the illustrated example, the light emitting element is mounted on the mount portion 21b of the lead 21a of the lead frame of the LED lamp shown in FIGS.

図1において、発光素子1は、GaP系,GaAsP系,GaN系の化合物半導体を利用したもので、透明のn型半導体基板2に透明または光透過性のn型半導体層3とp型半導体層4とを積層し、これらによるp−n接合域を発光層5としたものである。すなわち、n型半導体基板2はn型半導体層3の積層面を第1の主面とするとともに、図示の姿勢において上面を第2の主面としてこの第2の主面の表面にドット形式の1個のn電極2aを形成し、p型半導体層4の表面には複数のp電極4aを同様にドット形式のものとして形成している。そして、図8で示した従来構造のものを上下反転させて、n型半導体基板2が上側であって発光層5がその下側となる姿勢としてマウント部21bの上に搭載するものとし、これにより発光層5を下側に偏らせた配置とすることができる。   In FIG. 1, a light emitting element 1 uses a GaP-based, GaAsP-based, or GaN-based compound semiconductor, and a transparent or light-transmitting n-type semiconductor layer 3 and a p-type semiconductor layer are formed on a transparent n-type semiconductor substrate 2. 4 are laminated, and a pn junction region formed by these layers is formed as the light emitting layer 5. In other words, the n-type semiconductor substrate 2 has a lamination surface of the n-type semiconductor layer 3 as a first main surface, and has an upper surface as a second main surface in the posture shown in FIG. One n-electrode 2a is formed, and a plurality of p-electrodes 4a are formed on the surface of the p-type semiconductor layer 4 in the same manner as a dot type. Then, the conventional structure shown in FIG. 8 is turned upside down so that the n-type semiconductor substrate 2 is on the upper side and the light emitting layer 5 is on the lower side, and is mounted on the mount portion 21b. Thereby, the light emitting layer 5 can be arranged to be biased downward.

発光素子1は、マウント部21bに塗布した導電性の接着剤6によって、このマウント部21bに固定するとともにリード21aと電気的に導通させる。この接着剤6は先に述べたように、透明のエポキシ樹脂を主剤としこれにフィラーとしてAgを混入したものであり、混入したAgによってp電極4aをリード21aに導通させることができる。また、n電極2aはワイヤ23によってリード21c側にボンディングされ、発光素子1はリード21a,21cとの間で導通接続される。   The light emitting element 1 is fixed to the mount portion 21b by the conductive adhesive 6 applied to the mount portion 21b and is electrically connected to the lead 21a. As described above, the adhesive 6 is made of a transparent epoxy resin as a main component and Ag mixed therein as a filler, and the mixed Ag can make the p-electrode 4a conductive to the lead 21a. The n-electrode 2a is bonded to the lead 21c by a wire 23, and the light emitting element 1 is electrically connected to the leads 21a and 21c.

以上の構成において、発光素子1に通電すると発光層5が活性化されて発光し、透明または光透過性のn型半導体層3から透明のn型半導体基板2を抜けてその上面を主光取出し面として光を放出する。そして、発光層5からの光は、主光取出し面側だけでなく側方へも透明または光透過性のp型半導体層4を抜けて下向きにも放出される。   In the above configuration, when the light-emitting element 1 is energized, the light-emitting layer 5 is activated and emits light. The transparent or light-transmissive n-type semiconductor layer 3 passes through the transparent n-type semiconductor substrate 2 to extract the main light from the upper surface. Emit light as a surface. Then, the light from the light emitting layer 5 is emitted not only to the main light extraction surface side but also to the side and downward through the transparent or light transmitting p-type semiconductor layer 4.

ここで、発光層5はその上面を主光取出し面としたn型半導体基板2よりも下側に位置し、図8で示した従来構造のものに比べると発光層5はマウント部21bの表面側に近くなるように偏在している。一方、図10の(a)で示したように、発光層が上側に配置の構成であれば、特に側方に向かう光のうち取り出される光Lsの大部分が下側に向かうので、光の取出し効率が低下することは既に述べた。   Here, the light emitting layer 5 is located below the n-type semiconductor substrate 2 whose upper surface is the main light extraction surface, and the light emitting layer 5 is located on the surface of the mounting portion 21b as compared with the conventional structure shown in FIG. It is unevenly distributed near the side. On the other hand, as shown in FIG. 10A, if the light-emitting layer is disposed on the upper side, most of the extracted light Ls among the light directed to the side goes to the lower side. As mentioned above, the extraction efficiency is reduced.

これに対し、図10の(a)に示すように発光層A’がマウント部21bの表面に近くなるような下側配置であれば、この発光層A’から側方に向かう光は図10の(b)で示したL’sのように±X方向の2θの角度範囲内の方向に放出された光が、半導体発光素子22の外に取り出すことができ、この放出光はマウント部21bの内周面に向かう方向や、図10の(a)においてL’sの光路として描いているように発光層A’の上方のn型層の側面から主光取出し面方向へ屈折する方向に取り出すことができる。したがって、発光層が上側配置となっている場合と比べると、発光層から側方に向かう光の回収効率を上げることができる。   On the other hand, as shown in FIG. 10A, if the light-emitting layer A ′ is disposed on the lower side so as to be close to the surface of the mount portion 21b, light traveling from the light-emitting layer A ′ to the side will be Light emitted in a direction within an angle range of 2θ in the ± X direction, such as L's shown in (b), can be extracted out of the semiconductor light emitting element 22, and the emitted light is 10A, or in a direction in which the light is refracted from the side surface of the n-type layer above the light-emitting layer A 'in the direction of the main light extraction surface as depicted as the optical path of L's in FIG. Can be taken out. Therefore, compared with the case where the light emitting layer is arranged on the upper side, the efficiency of collecting light traveling laterally from the light emitting layer can be increased.

また、図10の(b)で示したLd,L’dの2θの範囲で下方に向けて放出される光は、接着剤6の中に含まれたAg及びマウント部21bの底面部から反射されて主光取出し面からの発光に加えられる。   The light emitted downward in the range of 2d of Ld and L'd shown in FIG. 10B is reflected from Ag contained in the adhesive 6 and the bottom surface of the mount 21b. This is added to the light emitted from the main light extraction surface.

図2は別の構成を示す要部の概略図であり、図1に示したものと同じ部材については共通の符号で指示しその詳細な説明は省略する。   FIG. 2 is a schematic view of a main part showing another configuration, and the same members as those shown in FIG. 1 are indicated by common reference numerals, and detailed description thereof will be omitted.

発光素子1のn電極2aを上面に形成したn型半導体基板2と、n型半導体層3及びp型半導体層4の外郭形状は図1のものと全く同じであるが、p型半導体層4の下面には1個のp電極4aを設けていること及び導電性の接着剤は使用しないことの2点で相違している。   The outer shapes of the n-type semiconductor substrate 2 having the n-electrode 2a of the light-emitting element 1 formed on the upper surface and the n-type semiconductor layer 3 and the p-type semiconductor layer 4 are exactly the same as those in FIG. Are provided with one p-electrode 4a on the lower surface and no conductive adhesive is used.

すなわち、発光素子1をマウント部21bに搭載固定するとともにリード21aと導通接続するため、p電極4aにはマイクロバンプ7を形成している。このマイクロバンプ7はp電極4aにワイヤをボンディングした後に、このボンディング部分だけを残して引きちぎることによって、p電極4aに一体に形成されたものである。そして、マウント部21bに搭載して固定するアセンブリは、マイクロバンプ7をマウント部21bの上面に超音波振動及び加熱を負荷することによって一体に接合する方法による。   That is, the micro bumps 7 are formed on the p-electrode 4a in order to mount and fix the light emitting element 1 on the mount portion 21b and electrically connect with the lead 21a. The micro-bumps 7 are formed integrally with the p-electrode 4a by bonding a wire to the p-electrode 4a and then tearing off leaving only this bonding portion. The assembly mounted and fixed on the mount 21b is based on a method of integrally joining the microbumps 7 by applying ultrasonic vibration and heating to the upper surface of the mount 21b.

このようなマイクロバンプ7を用いた発光装置においても、発光層5から側方に放出される光の回収効率が高いことは、図1の例のものと同様である。   In the light emitting device using the micro bumps 7 as well, the high recovery efficiency of the light emitted to the side from the light emitting layer 5 is the same as that in the example of FIG.

これに加えて、p型半導体層4の底面には1個のp電極4aだけを設けていて遮光面積を小さくしているので、発光層5から下に抜ける光の透過面積を広げることができる。したがって、マウント部21bを光反射膜等による反射面としておけば、下に抜けた光を主光取出し面側に反射させることができ、漏光を回収することができる。そして、Agペースト等による導電性の接着剤が介在しないので、この接着剤の中に光が閉じ込められてしまうこともない。   In addition, since only one p-electrode 4a is provided on the bottom surface of the p-type semiconductor layer 4 to reduce the light-shielding area, the transmission area of light that passes down from the light-emitting layer 5 can be increased. . Therefore, if the mount portion 21b is formed as a reflection surface by a light reflection film or the like, light that has passed downward can be reflected to the main light extraction surface side, and light leakage can be collected. Since no conductive adhesive such as Ag paste is interposed, light is not trapped in the adhesive.

このように、マイクロバンプ7を利用した発光素子1の搭載構造であれば、マウント部21b側への透過光の増大が図れると同時に接着剤による光の減衰もなくなり、図1の構成のものと比較しても発光輝度が格段に向上する。   As described above, if the mounting structure of the light emitting element 1 using the micro bumps 7 is used, the transmitted light to the mount portion 21b side can be increased, and at the same time, the light is not attenuated by the adhesive. Even when compared, the emission luminance is significantly improved.

なお、GaN系の化合物半導体を利用する半導体発光素子を用いる場合においては、p型半導体層4内で電流が広がりにくくp電極4aの直上のみで発光する傾向があるため、p型半導体層4の表面のほぼ全面にp電極4aを設ける構成とすることにより、電流を層全体に均一に広げ発光層5のほぼ全面からの発光が得られる。そして、このp電極4aを光透過可能な構成とする場合には、上述の例と同様に発光層5から下方へ向かう光を、マウント部21bに設けた反射面を用いて主光取出し面側へ反射させることが可能となる。また、p電極4aを発光層5からの発光に対し反射可能なものとする場合には、発光層5から下方へ向かう光をこのp電極4aにより発光素子の側方または上方へ反射させて主光取出し面側へ向かわせることが可能となる。   When a semiconductor light emitting device using a GaN-based compound semiconductor is used, the current hardly spreads in the p-type semiconductor layer 4 and tends to emit light only directly above the p-electrode 4a. With the configuration in which the p-electrode 4a is provided on almost the entire surface, the current is uniformly spread over the entire layer, and light emission from almost the entire surface of the light emitting layer 5 can be obtained. When the p-electrode 4a is configured to transmit light, similarly to the above-described example, light traveling downward from the light-emitting layer 5 is transmitted to the main light extraction surface side using the reflection surface provided on the mount portion 21b. Can be reflected. When the p-electrode 4a is capable of reflecting light emitted from the light-emitting layer 5, light directed downward from the light-emitting layer 5 is reflected to the side or upward of the light-emitting element by the p-electrode 4a, so that the light is mainly reflected. It is possible to make it face the light extraction surface side.

図3は図1の例におけるn電極2a及び図2の例におけるn電極2a及びp電極4aの好適な例を示す平面図である。   FIG. 3 is a plan view showing a preferred example of the n-electrode 2a in the example of FIG. 1 and the n-electrode 2a and the p-electrode 4a in the example of FIG.

図3の例におけるnまたはpの電極2a,4aは、その平面形状が円形であって直径を10μm以上でかつ150μm以下としたものである。そして、このような円形の平面形状に代えて、10μm〜150μmの円の範囲に内包される多角形状としてもよい。   The n or p electrodes 2a and 4a in the example of FIG. 3 have a circular planar shape and a diameter of 10 μm or more and 150 μm or less. Then, instead of such a circular planar shape, a polygonal shape included in a range of a circle of 10 μm to 150 μm may be used.

また、同図の(b)に示すように、中央部に円形部を備えるとともにこの円形部分から放射状に伸ばした4本の枝を持つような形状としてもよい。この場合、枝部分の先端までの距離は先の150μmの円の領域の中に納まるものとしてもよいし、図示のように発光素子1のコーナ部に向けて伸ばすような場合では、150μmの円の範囲を越える長さであってもよい。   Further, as shown in (b) of the figure, a shape having a circular portion at the center and four branches extending radially from the circular portion may be employed. In this case, the distance to the tip of the branch portion may be within the above-mentioned 150 μm circle area, or may be 150 μm circle when extending toward the corner of the light emitting element 1 as shown in the figure. May be longer than the range.

このようなn電極2a及びp電極4aの形状や大きさとすることによって、発光層であるp−n接合域への十分な電流注入が行えるとともに、発光層からの光の取り出しを妨げる面積を最小限にとどめることができる。   With such shapes and sizes of the n-electrode 2a and the p-electrode 4a, a sufficient current can be injected into the pn junction region, which is a light-emitting layer, and the area that prevents light extraction from the light-emitting layer can be minimized. Can be limited.

図4は更に別の発光素子の構成例を示す要部の断面図であり、図1及び図2の例と同じ部材については共通の符号で指示している。   FIG. 4 is a cross-sectional view of a main part showing a configuration example of still another light emitting element, and the same members as those in the examples of FIGS. 1 and 2 are indicated by common reference numerals.

図1及び図2の例は、発光素子1の側面はダイシングによって下側が少しテーパ状となる形状となっているのに対し、図4の例では、n型半導体基板2はその下端側の一部を除いて上側に向けてテーパを形成した四角錐台の外郭を持つ。すなわち、n型半導体基板2はn電極2aを形成する上面の平面積はn型半導体層3を積層する下面よりも狭く、その周囲の4側面のいずれもが図示のような台形状の面を持ち、これらの面は全て上端側すなわち主光取出し面側に向けて収斂するテーパを形成している。   In the examples of FIGS. 1 and 2, the side surface of the light emitting element 1 has a slightly tapered lower side due to dicing, whereas in the example of FIG. It has a truncated quadrangular pyramid that tapers upward except for the part. That is, the n-type semiconductor substrate 2 has a planar area of the upper surface on which the n-electrode 2a is formed is smaller than the lower surface on which the n-type semiconductor layer 3 is laminated, and all four side surfaces around the n-type semiconductor layer 3 have a trapezoidal surface as shown. These surfaces all form a taper that converges toward the upper end side, that is, the main light extraction surface side.

図5はこのようなテーパを持つn型半導体基板2の場合に、発光層5の位置によってどのような発光形態が得られるかを平面的に説明するための図である。   FIG. 5 is a plan view for explaining what kind of light emission form is obtained depending on the position of the light emitting layer 5 in the case of the n-type semiconductor substrate 2 having such a taper.

図5の(a)のように発光層が下側にある場合において、発光層Aの中央一点からこの平面内で四方に向かう光のうち、n型半導体基板2が点線で示す外郭を持っている場合は、点線で示す4θの範囲内に向かう光のみが発光素子外に取り出されるのに対し、n型半導体基板2の外郭が先細りするテーパ状となっている実線の場合は、実線で示す範囲のように4θよりも大きくなる。具体的には、GaP系の場合は、θ=25°であるから、点線と実線との比は、200°:297°と約1.5倍になる。したがって、発光層Aから放出される光は、n型半導体基板2の外郭を先細りするテーパ状とすることによって効率よく取り出され、発光輝度の向上が図られる。   In the case where the light emitting layer is on the lower side as shown in FIG. 5A, of the light traveling from one central point of the light emitting layer A to four directions in this plane, the n-type semiconductor substrate 2 has an outline indicated by a dotted line. In this case, only light traveling within the range of 4θ indicated by the dotted line is extracted out of the light emitting element, whereas the solid line in which the outer periphery of the n-type semiconductor substrate 2 is tapered is indicated by the solid line. It becomes larger than 4θ as in the range. Specifically, in the case of GaP, since θ = 25 °, the ratio between the dotted line and the solid line is about 1.5 times, 200 °: 297 °. Therefore, the light emitted from the light emitting layer A is efficiently extracted by forming the outer periphery of the n-type semiconductor substrate 2 into a tapered shape so that the emission luminance is improved.

図5の(b)は、発光素子の側面が図5の(a)と同様であって発光層Aが上側に位置する場合の例である。発光素子の側面がテーパ状となっていても、発光層Aが上側にあることから側方に向かう光の成分の中で斜め上向きのものは発光素子の上面で全反射される。また、斜め下に向かう光の成分は発光素子の側面に対する入射角度が大きくなるので、全反射される割合が大きくなる。したがって、側面がテーパ面であってこのテーパ面に対して発光層Aが上側に偏って位置する場合では、取り出すことのできる光の範囲は4θよりも小さくなり、具体的にGaP系の場合では、点線と実線との比は、200°:131°となり、取り出し可能な光の量は減少してしまう。   FIG. 5B illustrates an example in which the side surface of the light emitting element is similar to that of FIG. 5A and the light emitting layer A is positioned on the upper side. Even if the side surface of the light emitting element is tapered, the light component directed obliquely upward in the lateral direction is totally reflected on the upper surface of the light emitting element because the light emitting layer A is on the upper side. Further, since the incident angle of the light component obliquely downward to the side surface of the light emitting element increases, the ratio of total reflection increases. Therefore, in the case where the side surface is a tapered surface and the light-emitting layer A is positioned on the upper side with respect to this tapered surface, the range of light that can be extracted is smaller than 4θ, and specifically, in the case of GaP-based, The ratio between the dotted line and the solid line is 200 °: 131 °, and the amount of light that can be extracted is reduced.

以上のように、発光方向に対して先細りするようなn型半導体基板2の外郭形状であってその下側に発光層Aを位置させることにより、発光層Aから四方に向かう光を有効に取り出すことができることが判る。   As described above, the outer shape of the n-type semiconductor substrate 2 which is tapered with respect to the light emitting direction and the light emitting layer A is positioned below the outer shape allows light traveling in all directions from the light emitting layer A to be effectively extracted. You can see that it can be done.

図6は、更にまた別の発光素子の構成例を示す要部の断面図であり、図1及び図2の例と同じ部材については共通の符号で指示している。   FIG. 6 is a cross-sectional view of a main part showing still another example of the configuration of the light emitting element, and the same members as those in the examples of FIGS. 1 and 2 are designated by the same reference numerals.

発光素子1のn電極2aを上面に形成したn型半導体基板2と、n型半導体層3及びp型半導体層4の外郭形状は図1のものとほぼ同じであるが、p型半導体層4の表面のほぼ全面にわたってp電極4aを設けていること、発光素子1の側面においてp型半導体層4の一部からn型半導体層3の一部にかけて光透過性の絶縁性膜8を設けていること、及びマウント部21bにおける半導体発光素子1の下面の周囲部に導電性の接着剤6の一部が流入するための溝部21dを設けていることの3点で相違している。このような構成は、半導体層の厚さを十分厚くすることが困難な化合物半導体、すなわち、GaN系の化合物半導体を利用する半導体発光素子の場合に特に有効である。   The outer shapes of the n-type semiconductor substrate 2 having the n-electrode 2a of the light-emitting element 1 formed on the upper surface thereof and the n-type semiconductor layer 3 and the p-type semiconductor layer 4 are substantially the same as those of FIG. That the p-electrode 4 a is provided over substantially the entire surface of the light-emitting element 1, and a light-transmitting insulating film 8 is provided from a part of the p-type semiconductor layer 4 to a part of the n-type semiconductor layer 3 on the side surface of the light emitting element 1. And a groove 21d through which a part of the conductive adhesive 6 flows is provided around the lower surface of the semiconductor light emitting element 1 in the mount 21b. Such a configuration is particularly effective in the case of a semiconductor light emitting device using a compound semiconductor in which it is difficult to sufficiently increase the thickness of the semiconductor layer, that is, a GaN-based compound semiconductor.

図6におけるp電極4aは、図1の構成のものにおいてGaN系等の化合物半導体を利用する半導体発光素子を用いる場合について述べたように、発光層5から下方へ向かう光を透過することが可能なものとしてもよいし、反射させて発光素子の側方または上方から取り出せる構成としてもよい。   The p-electrode 4a in FIG. 6 can transmit light traveling downward from the light-emitting layer 5, as described in the case of using the semiconductor light-emitting element using a GaN-based compound semiconductor in the structure of FIG. It may be configured such that the light-emitting element can be reflected and taken out from the side or from above.

絶縁性膜8は、光透過可能なものとすることにより、発光層5から側方へ向かう光を透過させマウント部21bの反射面で反射させて上方へ取り出すことができる。また、発光素子1の側面における接着剤6のせり上がりによる短絡を防止することができる。絶縁性膜8は、絶縁性を有し、かつ光透過可能なものであればよく、例えば、酸化珪素や窒化珪素等の絶縁性を有する材料を好ましく用いることができる。   Since the insulating film 8 is capable of transmitting light, it can transmit light from the light-emitting layer 5 to the side, reflect the light on the reflection surface of the mount portion 21b, and extract the light upward. Further, a short circuit due to the rising of the adhesive 6 on the side surface of the light emitting element 1 can be prevented. The insulating film 8 has only to have an insulating property and can transmit light. For example, a material having an insulating property such as silicon oxide or silicon nitride can be preferably used.

さらに、光透過可能なものに限らず導電性の接着剤を用いる場合には、発光素子1の周囲部に接着剤6の一部が流入することができる溝部21dを設けることにより、上述の接着剤6のせり上がりをさらに一層低減することができ、絶縁性膜8の作用とも併せて短絡防止の効果を高め、半導体発光装置の信頼性を高めることができる。   Further, in the case where a conductive adhesive is used instead of the light-transmitting material, a groove 21d into which a part of the adhesive 6 can flow is provided around the light emitting element 1 so that the above-described bonding is achieved. The rise of the agent 6 can be further reduced, the effect of preventing short-circuiting can be enhanced in combination with the function of the insulating film 8, and the reliability of the semiconductor light emitting device can be enhanced.

本発明にかかる半導体発光装置は、発光効率を高めることができ、赤、オレンジ、アンバー、黄緑や緑等の発光色が得られるGaP系,GaAsP系,GaAlAs系,GaN系などの化合物半導体を積層した半導体発光素子を含む半導体発光装置等として有用である。   The semiconductor light emitting device according to the present invention is capable of increasing the luminous efficiency and using a compound semiconductor such as a GaP-based, GaAsP-based, GaAlAs-based, or GaN-based semiconductor capable of obtaining emission colors such as red, orange, amber, yellow-green and green. It is useful as a semiconductor light emitting device including a stacked semiconductor light emitting element.

本発明の一実施の形態による発光装置の要部を示す概略図FIG. 1 is a schematic diagram showing a main part of a light emitting device according to an embodiment of the present invention. 発光装置の別の構成例を示す要部の概略図Schematic diagram of main parts showing another configuration example of the light emitting device n型半導体基板またはp型半導体層にそれぞれ形成するn電極及びp電極の形状を示す平面図FIG. 2 is a plan view showing shapes of an n-electrode and a p-electrode formed on an n-type semiconductor substrate or a p-type semiconductor layer, respectively. n型半導体基板をほぼ四角錐台状とした発光装置の要部を示す概略図Schematic diagram showing main parts of a light-emitting device in which an n-type semiconductor substrate has a substantially truncated pyramid shape 図4の例における発光層の位置による発光形態を示す説明図FIG. 4 is an explanatory view showing a light emitting mode according to the position of a light emitting layer in the example of FIG. 発光装置の更にまた別の構成例を示す要部の概略図Schematic diagram of main parts showing still another configuration example of the light emitting device 従来のLEDランプの概略図Schematic diagram of a conventional LED lamp 図7のLEDランプの発光素子の搭載構造を示す要部の概略図Schematic diagram of the main part showing the mounting structure of the light emitting element of the LED lamp of FIG. GaAlAs系の発光素子の搭載構造を示す要部の概略図Schematic diagram of main parts showing the mounting structure of a GaAlAs-based light emitting element (a)は発光素子の発光層からの上方,側方及び下方への発光形態を示す概略図(b)は各方向への臨界角θの分布を示す概略図(A) is a schematic diagram showing a light emission mode from the light emitting layer of the light emitting element upward, side, and downward, and (b) is a schematic diagram showing a distribution of a critical angle θ in each direction.

符号の説明Explanation of reference numerals

1 発光素子
2 n型半導体基板
2a n電極
3 n型半導体層
4 p型半導体層
4a p電極
5 発光層
6 接着剤
7 マイクロバンプ
8 絶縁性膜
21 リードフレーム
21a リード
21b マウント部
21c リード
21d 溝部
23 ワイヤ
REFERENCE SIGNS LIST 1 light emitting element 2 n-type semiconductor substrate 2 an n-electrode 3 n-type semiconductor layer 4 p-type semiconductor layer 4 a p-electrode 5 light-emitting layer 6 adhesive 7 microbump 8 insulating film 21 lead frame 21 a lead 21 b mounting part 21 c lead 21 d groove 23 Wire

Claims (9)

第1導電型半導体基板と、この第1導電型半導体基板の第1の主面上にエピタキシャル成長された第1導電型半導体層と、この第1導電型半導体層の上にエピタキシャル成長された第2導電型半導体層と、前記第1導電型半導体基板側の第2の主面上に形成された第1の電極と、前記第2導電型半導体層の上に形成された第2の電極と、を少なくとも備えた半導体発光素子と、この半導体発光素子を導通搭載するリードフレームまたは基板等の搭載面とを備えた半導体発光装置であって、前記第1導電型半導体基板側が発光方向であって、前記第1導電型半導体層と前記第2導電型半導体層とによって形成されるp−n接合による発光層が前記搭載面側となる姿勢として、前記半導体発光素子を前記搭載面に搭載したことを特徴とする半導体発光装置。 A first conductivity type semiconductor substrate; a first conductivity type semiconductor layer epitaxially grown on a first main surface of the first conductivity type semiconductor substrate; and a second conductivity type epitaxially grown on the first conductivity type semiconductor layer. A type semiconductor layer, a first electrode formed on a second main surface on the first conductive type semiconductor substrate side, and a second electrode formed on the second conductive type semiconductor layer. A semiconductor light-emitting device comprising at least a semiconductor light-emitting element and a mounting surface such as a lead frame or a substrate for conductively mounting the semiconductor light-emitting element, wherein the first conductive type semiconductor substrate side is a light-emitting direction, The semiconductor light emitting device is mounted on the mounting surface such that a light emitting layer formed by a pn junction formed by the first conductive type semiconductor layer and the second conductive type semiconductor layer is on the mounting surface side. Semiconductor Light equipment. 第2の電極と搭載面との間を、導電性であって光透過可能な接着剤によって電気的かつ機械的に接合したことを特徴とする請求項1記載の半導体発光装置。 2. The semiconductor light emitting device according to claim 1, wherein the second electrode and the mounting surface are electrically and mechanically joined by a conductive and light transmissive adhesive. 第2の電極と搭載面との間を、マイクロバンプを介して電気的かつ機械的に接合したことを特徴とする請求項1記載の半導体発光装置。 2. The semiconductor light emitting device according to claim 1, wherein the second electrode and the mounting surface are electrically and mechanically joined via micro bumps. 第1および第2の電極は、平面形状が直径が10μm以上でかつ150μm以下の円またはこの円に内包される多角形、あるいは、前記円または多角形から放射状に伸びた枝をもつ形状であることを特徴とする請求項1,2または3記載の半導体発光装置。 The first and second electrodes have a planar shape of a circle having a diameter of 10 μm or more and 150 μm or less, a polygon included in the circle, or a shape having branches radially extending from the circle or the polygon. The semiconductor light-emitting device according to claim 1, 2, or 3, wherein: チップ化された半導体発光素子の形状は、第1の電極が形成された面を上面とし、その面より面積が大きい前記第2の電極が形成された面を下面とする多面体であることを特徴とする請求項1,2,3または4記載の半導体発光装置。 The semiconductor light-emitting element formed into a chip is characterized in that it is a polyhedron having a surface on which a first electrode is formed as an upper surface and a surface having an area larger than the surface on which the second electrode is formed as a lower surface. The semiconductor light emitting device according to claim 1, 2, 3, or 4. 第2の電極は、第2導電型半導体層の表面のほぼ全面に形成されていることを特徴とする請求項1,2,3または5記載の半導体発光装置。 6. The semiconductor light emitting device according to claim 1, wherein the second electrode is formed on substantially the entire surface of the second conductivity type semiconductor layer. 半導体発光素子の側面において、少なくとも第1導電型半導体層の表面の一部から第2導電型層の表面の一部へかけて、前記第1導電型半導体層と前記第2導電型層との接合部の表面を覆うように、光透過可能な絶縁性膜が形成されていることを特徴とする請求項1,2,3,4,5または6記載の半導体発光装置。 On the side surface of the semiconductor light emitting element, at least a part of the surface of the first conductive type semiconductor layer to a part of the surface of the second conductive type layer, the first conductive type semiconductor layer and the second conductive type layer 7. The semiconductor light emitting device according to claim 1, wherein an insulating film capable of transmitting light is formed so as to cover a surface of the joint. 搭載面における半導体発光素子の下面の周囲部に接着剤の一部が流入するための溝部が形成されていることを特徴とする請求項2または7記載の半導体発光装置。 8. The semiconductor light emitting device according to claim 2, wherein a groove for allowing a part of the adhesive to flow in is formed around a lower surface of the semiconductor light emitting element on the mounting surface. 第1導電型半導体基板と、この第1導電型半導体基板の第1の主面上に設けられ有機金属気相成長法又はMBE法を用いて順に形成された第1導電型半導体層、発光層および第2導電型半導体層を有する半導体積層構造と、前記第1導電型半導体基板側の第2の主面上に形成された第1の電極と、前記第2導電型半導体層の上に形成された第2の電極と、を少なくとも備えた半導体発光素子と、この半導体発光素子を導通搭載するリードフレームまたは基板等の搭載面とを備えた半導体発光装置であって、前記第1導電型半導体基板側が主光取出し面側であって、前記半導体積層構造側が前記搭載面側となる姿勢として、前記半導体発光素子を前記搭載面に搭載したことを特徴とする半導体発光装置。 A first conductivity type semiconductor substrate; a first conductivity type semiconductor layer provided on the first main surface of the first conductivity type semiconductor substrate and sequentially formed by using a metal organic chemical vapor deposition method or an MBE method; A semiconductor layered structure having a second conductive type semiconductor layer, a first electrode formed on a second main surface on the first conductive type semiconductor substrate side, and a second electrode formed on the second conductive type semiconductor layer And a mounting surface such as a lead frame or a substrate for conductively mounting the semiconductor light emitting element, wherein the first conductive type semiconductor is provided. A semiconductor light emitting device wherein the semiconductor light emitting element is mounted on the mounting surface with the substrate side being the main light extraction surface side and the semiconductor laminated structure side being the mounting surface side.
JP2004204397A 1998-03-02 2004-07-12 Semiconductor light emitting device Pending JP2004289182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004204397A JP2004289182A (en) 1998-03-02 2004-07-12 Semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4914198 1998-03-02
JP2004204397A JP2004289182A (en) 1998-03-02 2004-07-12 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01013599A Division JP3707279B2 (en) 1998-03-02 1999-01-19 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2004289182A true JP2004289182A (en) 2004-10-14

Family

ID=33301308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204397A Pending JP2004289182A (en) 1998-03-02 2004-07-12 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2004289182A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004587A (en) * 2006-06-20 2008-01-10 Sharp Corp Semiconductor light-emitting element and manufacturing method thereof, and compound semiconductor light-emitting diode
JP2008098442A (en) * 2006-10-12 2008-04-24 Sony Corp Method of forming wiring of light-emitting element, light-emitting element mounting board, display, backlight, illuminator and electronic instrument
CN101872821A (en) * 2010-05-24 2010-10-27 厦门市三安光电科技有限公司 Platform-like light-emitting diode with high light extraction efficiency and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004587A (en) * 2006-06-20 2008-01-10 Sharp Corp Semiconductor light-emitting element and manufacturing method thereof, and compound semiconductor light-emitting diode
JP2008098442A (en) * 2006-10-12 2008-04-24 Sony Corp Method of forming wiring of light-emitting element, light-emitting element mounting board, display, backlight, illuminator and electronic instrument
JP4535053B2 (en) * 2006-10-12 2010-09-01 ソニー株式会社 LIGHT EMITTING DIODE WIRING FORMING METHOD, LIGHT EMITTING DIODE MOUNTING BOARD, DISPLAY, BACKLIGHT, LIGHTING DEVICE, AND ELECTRONIC DEVICE
US7884543B2 (en) 2006-10-12 2011-02-08 Sony Corporation Method of forming wiring of light emitting device, substrate for mounting light emitting device, display, back light, illuminating apparatus and electronic appliance
CN101872821A (en) * 2010-05-24 2010-10-27 厦门市三安光电科技有限公司 Platform-like light-emitting diode with high light extraction efficiency and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3707279B2 (en) Semiconductor light emitting device
TWI550910B (en) Semiconductor light emitting device
US10707378B2 (en) Semiconductor light-emitting device
JP5591487B2 (en) LIGHT EMITTING DEVICE, PACKAGE AND SYSTEM INCLUDING THE SAME, AND MANUFACTURING METHOD THEREOF
JP6045999B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6133040B2 (en) Light emitting device and light emitting device package
US7829911B2 (en) Light emitting diode
US8823031B2 (en) Semiconductor light emitting device including metal reflecting layer
TWI543399B (en) Semiconductor light emitting device
US20060001035A1 (en) Light emitting element and method of making same
TWI570962B (en) A light emitting unit and a semiconductor light emitting device
JP2006253298A (en) Semiconductor light emitting element and device therefor
KR20100091207A (en) Improved led structure
TWI545799B (en) Semiconductor light emitting device
JP2000114595A (en) SEMICONDUCTOR LIGHT EMITTING ELEMENT OF GaN COMPOUND
JP2016171188A (en) Semiconductor light emission device and manufacturing method for the same
JP2006012916A (en) Light emitting device
TW201517321A (en) Semiconductor light emitting device
WO2017154975A1 (en) Semiconductor light emitting device
JP2006073618A (en) Optical element and manufacturing method thereof
JP2017157593A (en) Light-emitting diode, manufacturing method for light-emitting diode, light-emitting diode display device, and manufacturing method for light-emitting diode display device
JPH10209494A (en) Semiconductor light emitting device
JP2004289182A (en) Semiconductor light emitting device
JP2004319685A (en) Element and device for semiconductor light emitting
JPH11145523A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003