JPH06244394A - Structure and design of solid-state image pick-up device - Google Patents

Structure and design of solid-state image pick-up device

Info

Publication number
JPH06244394A
JPH06244394A JP5047519A JP4751993A JPH06244394A JP H06244394 A JPH06244394 A JP H06244394A JP 5047519 A JP5047519 A JP 5047519A JP 4751993 A JP4751993 A JP 4751993A JP H06244394 A JPH06244394 A JP H06244394A
Authority
JP
Japan
Prior art keywords
electrode
light
receiving surface
solid
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5047519A
Other languages
Japanese (ja)
Inventor
Eiji Komatsu
英治 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5047519A priority Critical patent/JPH06244394A/en
Publication of JPH06244394A publication Critical patent/JPH06244394A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a structure of a solid-state image pick-up device wherein no smear is allowed to appear and a method for designing the device of such a structure and to enhance the reliability of the solid-state image pick-up device. CONSTITUTION:In a solid-state image pick-up device 1 having an elliptical or nearly elliptical condensor lens 18, the focuses Ox, Oy of which are located on a photodetecting face 12a or below the face and a shielding film 14 which covers electrodes 13a, 13b located on the upper face of a substrate 11 is located outside a flux of light collected by the condensor lens 18. When designing the solid-state image pick-up device 1, the thickness of the condensing lens 18 and the thickness of a flattened film 17 are determined by the designed values of electric characteristics of the solid-state image pick-up device 1 and an area dominated by each unit cell of the solid-state image pick-up device 1. These thicknesses are so set at to satisfy the conditions required for designing the solid-state image pick-up device 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像素子の構造及
びその設計方法に関し、特には受光面の上方に略長円型
または略長方形の集光レンズを形成してなる固体撮像素
子の構造及びその設計方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a solid-state image pickup device and a method of designing the solid-state image pickup device. And its design method.

【0002】[0002]

【従来の技術】固体撮像素子は、受信した光信号を効率
良く電気信号に変換する素子であり、VTRカメラ、フ
ァクシミリ用イメージセンサー、工業用カメラ等に幅広
く利用されている。
2. Description of the Related Art A solid-state image pickup device is a device for efficiently converting a received optical signal into an electric signal, and is widely used in VTR cameras, image sensors for facsimiles, industrial cameras and the like.

【0003】図6,図7には、上記固体撮像素子の各単
位セルの断面構造を示した。図6は上記固体撮像素子2
の水平シフト方向の断面図であり、図7は垂直シフト方
向の断面図である。上記図6,図7に示すように、上記
固体撮像素子2は、以下に説明するように構成されてい
る。すなわち、基板21にはフォトダイオード22が形
成され、このフォトダイオード22の露出表面が受光面
22aになっている。また、基板21の上面には、図示
しない絶縁膜を介して電極23が形成されている。この
電極23は図示しない絶縁膜で覆われている。上記電極
23は、上記受光面22aを囲む状態で形成され、遮光
膜24がこの電極23を覆っている。そして、図6の水
平シフト方向の断面図に示すように、上記電極23の下
方の上記基板21には、垂直シフト方向に走るチャネル
ストップ25と垂直電荷転送部26とが上記フォトダイ
オード22を挟んだ両脇に配置されている。
6 and 7 show the sectional structure of each unit cell of the solid-state image pickup device. FIG. 6 shows the solid-state image sensor 2 described above.
FIG. 7 is a sectional view in the horizontal shift direction, and FIG. 7 is a sectional view in the vertical shift direction. As shown in FIGS. 6 and 7, the solid-state imaging device 2 is configured as described below. That is, the photodiode 22 is formed on the substrate 21, and the exposed surface of the photodiode 22 serves as the light receiving surface 22a. Further, an electrode 23 is formed on the upper surface of the substrate 21 via an insulating film (not shown). The electrode 23 is covered with an insulating film (not shown). The electrode 23 is formed so as to surround the light receiving surface 22 a, and the light shielding film 24 covers the electrode 23. Then, as shown in the cross-sectional view in the horizontal shift direction of FIG. 6, a channel stop 25 running in the vertical shift direction and a vertical charge transfer unit 26 sandwich the photodiode 22 on the substrate 21 below the electrode 23. It is located on both sides.

【0004】上記固体撮像素子2の感度の向上は、上記
受光面22aでの光信号の受光量を多くすることによっ
て達成される。このため、上記受光面22aの面積がで
きるだけ広くなるように、上記電極23の高さと当該電
極23の水平シフト方向の幅と同電極23の垂直シフト
方向の幅とが設計されている。
The improvement of the sensitivity of the solid-state image pickup device 2 is achieved by increasing the amount of light received by the light receiving surface 22a. Therefore, the height of the electrode 23, the width of the electrode 23 in the horizontal shift direction, and the width of the electrode 23 in the vertical shift direction are designed so that the area of the light receiving surface 22a is as large as possible.

【0005】また近年では、さらに光信号の受光量を増
やすために、上記基板21の上方に平坦化膜27を介し
て各単位セル毎に集光レンズ28を形成している。上記
集光レンズ28は、光利用率を上げるために各単位セル
の専有面積いっぱいに形成されている。通常、各単位セ
ルは水平解像度を得るために、垂直シフト方向に細長く
形成される。したがって、上記集光レンズ28は、各単
位セルの形状に合わせた略長円形または略長方形に形成
される。
In recent years, in order to further increase the amount of received optical signals, a condenser lens 28 is formed above the substrate 21 for each unit cell via a flattening film 27. The condenser lens 28 is formed so as to fill the area occupied by each unit cell in order to increase the light utilization rate. In general, each unit cell is elongated in the vertical shift direction in order to obtain horizontal resolution. Therefore, the condenser lens 28 is formed in a substantially oval shape or a substantially rectangular shape that matches the shape of each unit cell.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記固体撮像
素子2には、以下のような課題があった。すなわち、上
記集光レンズ28は略長円形または略長方形であるため
に、短径方向の焦点距離と長径方向の焦点距離が異な
り、短径方向の集光点Oxと長径方向の集光点Oyとの
深さ位置にズレが生じる。そして、集光レンズ28の短
径寸法rxと長径寸法ryとの差が大きい程、上記短径
方向の集光点Oxと長径方向の集光点Oyとの深さ位置
のズレは大きくなる。しかも、各単位セルの形状は、製
品の高画素化に伴ってより垂直シフト方向に細長く形成
される傾向にあり、上記集光点Ox,Oyの深さ位置の
ズレはますます拡大する傾向にある。
However, the solid-state image pickup device 2 has the following problems. That is, since the condensing lens 28 has a substantially oval shape or a substantially rectangular shape, the focal length in the minor axis direction differs from the focal length in the major axis direction, and the focal point Ox in the minor axis direction and the focal point Oy in the major axis direction are different. Misalignment occurs at the depth position of. The larger the difference between the minor axis dimension rx and the major axis dimension ry of the condenser lens 28, the greater the deviation in the depth position between the focal point Ox in the minor axis direction and the focal point Oy in the major axis direction. Moreover, the shape of each unit cell tends to be elongated in the vertical shift direction as the number of pixels of the product increases, and the deviation of the depth positions of the above-mentioned focusing points Ox and Oy tends to further expand. is there.

【0007】しかし、上記集光レンズ28を有する固体
撮像素子2は、集光レンズ28を配置しないものとして
既に設計されていた固体撮像素子に合わせて集光レンズ
28のレンズ設計をしている。上記集光レンズ28は、
製造上の制約から短径方向の寸法rxと長径方向の寸法
ryが決まると、その厚さtもある程度の範囲に規制さ
れてしまう。そして、固体撮像素子2の微細化に従っ
て、上記集光レンズ28のレンズ径も小さくなるので、
上記集光レンズ28の厚さtの規制範囲は狭くなり、レ
ンズ特性も決まる。
However, in the solid-state image pickup device 2 having the condenser lens 28, the condenser lens 28 is designed in accordance with the solid-state image pickup device which has already been designed without the condenser lens 28. The condenser lens 28 is
When the dimension rx in the minor axis direction and the dimension ry in the major axis direction are determined due to manufacturing restrictions, the thickness t is also restricted to a certain range. Then, as the solid-state image sensor 2 is miniaturized, the lens diameter of the condenser lens 28 is also reduced,
The regulation range of the thickness t of the condenser lens 28 is narrowed and the lens characteristics are also determined.

【0008】また、上記集光レンズ28を設けていない
固体撮像素子は、既に設計されているものである。この
ため、電極23の形成によって凹凸が発生した基板21
の表面を平坦化するための平坦化膜27の膜厚dも、所
定の厚さ以上に規制される。そして、微細化が進み、か
つ高画素化により各単位セルの水平シフト方向のピッチ
と垂直シフト方向のピッチとの差がある程度大きく、上
記集光レンズ28の長径方向の寸法ryに対する短径方
向の寸法rxが1:0.86より小さい固体撮像素子2
では、水平シフト方向の集光点Oxが上記受光面22a
より上方に位置する構造になっている。
Further, the solid-state image pickup device not provided with the condenser lens 28 is already designed. Therefore, the substrate 21 in which unevenness is generated by the formation of the electrode 23
The film thickness d of the flattening film 27 for flattening the surface of is also regulated to a predetermined thickness or more. Due to the progress of miniaturization and the increase in the number of pixels, the difference between the pitch in the horizontal shift direction and the pitch in the vertical shift direction of each unit cell is large to some extent, and the unit lens in the minor axis direction with respect to the major axis direction dimension ry of the condensing lens 28. Solid-state image sensor 2 having dimension rx smaller than 1: 0.86
Then, the focus point Ox in the horizontal shift direction is the light receiving surface 22a.
The structure is located higher.

【0009】上記のように集光レンズ28の短径方向の
集光点Oxが上記受光面22aより上方に位置する場合
には、上記受光面22aには、集光点Oxから広がる過
程にある光束が入射する。このため、受光面22aに入
射した光信号が、フォトダイオード22から垂直電荷転
送部に入射してスミアを発生し、上記固体撮像素子2の
信頼性を低下させる。
When the converging point Ox in the minor axis direction of the condensing lens 28 is located above the light receiving surface 22a as described above, the light receiving surface 22a is in the process of expanding from the light converging point Ox. A luminous flux enters. Therefore, the optical signal incident on the light receiving surface 22a is incident on the vertical charge transfer portion from the photodiode 22 to generate smear, and the reliability of the solid-state imaging device 2 is reduced.

【0010】本発明は、上記の課題を解決するためにな
されたものであり、スミアの発生を防止する固体撮像素
子の構造とその設計方法を提供し、高画素化及び微細化
する固体撮像素子の信頼性の向上を図ることを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and provides a structure of a solid-state image pickup device which prevents the occurrence of smear and a method for designing the solid-state image pickup device, and a solid-state image pickup device which has a higher number of pixels and is miniaturized. The purpose is to improve the reliability of.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の固体撮像素子の構造は以下のように構成
したものである。先ず、本発明の固体撮像素子の構造
は、基板の表面に各単位セル毎に配置された受光面と、
当該受光面が露出する状態で上記基板上に形成された電
極と、上記電極を覆う遮光膜と、上記基板の上方に平坦
化膜を介して各受光面に対応して形成された集光レンズ
とを備え、少なくとも上記受光面の水平シフト方向に上
記集光レンズの短径方向を配置している。そして、上記
集光レンズは、略長円形または略長方形であると共に、
当該集光レンズの集光点を上記受光面または同受光面よ
り下方に位置させたものであり、上記遮光膜は、上記集
光レンズで集光される光束の外側に位置するものである
ことを特徴とする。
In order to solve the above-mentioned problems, the structure of the solid-state image pickup device of the present invention is configured as follows. First, the structure of the solid-state imaging device of the present invention includes a light-receiving surface arranged on the surface of a substrate for each unit cell,
An electrode formed on the substrate in a state where the light receiving surface is exposed, a light-shielding film that covers the electrode, and a condenser lens formed above the substrate through a flattening film so as to correspond to each light receiving surface. And at least the minor axis direction of the condenser lens is arranged in the horizontal shift direction of the light receiving surface. The condensing lens is substantially oval or rectangular,
The condensing point of the condensing lens is located on the light receiving surface or below the light receiving surface, and the light shielding film is located outside the light beam condensed by the condensing lens. Is characterized by.

【0012】さらに、上記構造の固体撮像素子の設計方
法は以下の手順に従って行う。第1の工程では、上記固
体撮像素子の電気特性の設計値から、上記受光面の水平
シフト方向の幅と上記電極の水平シフト方向の幅とを算
出する。第2の工程では、上記受光面と電極とで占める
各単位セルの専有面積から、上記集光レンズの短径方向
の寸法と当該短径方向と直交する長径方向の寸法とを算
出する。第3の工程では、上記集光レンズの短径方向の
集光点が上記受光面または当該受光面より下方に位置
し、かつ、上記集光レンズの短径方向の光束が上記第1
の工程で算出した上記受光面の水平シフト方向の幅に収
まる状態に、上記集光レンズの厚さと上記平坦化膜の膜
厚とを設定する。第4の工程では、上記第3の工程で算
出した上記平坦化膜の膜厚と上記遮光膜の膜厚とから、
上記平坦化膜の平坦化を達成するための上記電極の高さ
を算出し、算出した上記電極の高さと当該電極の電気抵
抗値とから、当該電極の垂直シフト方向の幅を算出す
る。第5の工程では、上記第4の工程で算出した上記電
極の高さと当該電極の垂直シフト方向の幅と、同電極の
水平シフト方向の幅とから、上記電極を覆う上記遮光膜
が上記集光レンズで集光される光束の外側に位置するか
否かを判断する。そして、上記遮光膜が上記集光レンズ
で集光される光束の外側に位置しないと判断した場合に
は上記第3の工程に戻って上記第3の工程以降を順次繰
り返し行い、位置すると判断した場合には工程を終了に
する。
Further, the method of designing the solid-state image pickup device having the above structure is performed according to the following procedure. In the first step, the width of the light receiving surface in the horizontal shift direction and the width of the electrode in the horizontal shift direction are calculated from the design values of the electrical characteristics of the solid-state image sensor. In the second step, the dimension of the condenser lens in the minor axis direction and the dimension in the major axis direction orthogonal to the minor axis direction are calculated from the area occupied by each unit cell occupied by the light receiving surface and the electrode. In the third step, the converging point of the condenser lens in the minor axis direction is located on the light receiving surface or below the light receiving surface, and the light flux in the minor axis direction of the condenser lens is the first light beam.
The thickness of the condenser lens and the film thickness of the flattening film are set so as to be within the width of the light receiving surface in the horizontal shift direction calculated in the step. In the fourth step, from the film thickness of the flattening film and the film thickness of the light shielding film calculated in the third step,
The height of the electrode for achieving the flattening of the flattening film is calculated, and the width of the electrode in the vertical shift direction is calculated from the calculated height of the electrode and the electric resistance value of the electrode. In the fifth step, based on the height of the electrode calculated in the fourth step, the width of the electrode in the vertical shift direction, and the width of the electrode in the horizontal shift direction, the light shielding film covering the electrode is collected. It is determined whether or not it is located outside the light beam condensed by the optical lens. When it is determined that the light-shielding film is not located outside the light beam condensed by the condenser lens, the process returns to the third step, and the steps after the third step are sequentially repeated to determine that the light-shielding film is positioned. In some cases, the process ends.

【0013】[0013]

【作用】上記集光レンズは、略長円形または略長方形で
あるため、短径方向の焦点距離が長径方向の焦点距離よ
り短く、短径方向の集光点が長径方向の集光点よりも浅
く位置する。しかし、上記固体撮像素子では、上記集光
レンズの集光点が上記受光面または同受光面より下方に
位置する構造になっている。したがって、上記集光レン
ズで集光された光束は全て、集光点に向かって収束され
る過程で上記受光面に入射する。また、上記電極を覆う
遮光膜は、上記集光レンズで集光される光束より外側に
配置されるので、上記集光レンズで集光された光束は全
て受光面に入射する。
Since the condensing lens is substantially oval or rectangular, the focal length in the minor axis direction is shorter than the focal length in the major axis direction, and the focal point in the minor axis direction is shorter than the focal point in the major axis direction. Located shallow. However, in the solid-state imaging device, the condensing point of the condensing lens is located on the light receiving surface or below the light receiving surface. Therefore, all the light beams condensed by the condenser lens are incident on the light receiving surface in the process of being converged toward the condensing point. Moreover, since the light-shielding film that covers the electrodes is arranged outside the light flux condensed by the condenser lens, all the light flux condensed by the condenser lens is incident on the light receiving surface.

【0014】さらに、上記固体撮像素子の設計方法で
は、第4の工程で設計された電極を覆う遮光膜が、第3
の工程で設計された集光レンズで集光される光束の外側
に位置ない場合には、第3の工程に戻って上記集光レン
ズの厚さと平坦化膜の膜厚とを設定し直す。上記第3の
工程では、上記集光レンズの短径方向の集光点が上記受
光面または受光面より下方に位置し、かつ、上記集光レ
ンズの短径方向の光束が上記第1の工程で算出した上記
受光面の水平シフト方向の幅に収まる状態で上記集光レ
ンズの厚さと上記平坦化膜の膜厚とが設定される。した
がって、この工程を順次繰り返すことによって、上記集
光レンズの集光点が上記受光面及び受光面より下方に位
置し、かつ、上記電極を覆う遮光膜が上記集光レンズで
集光される光束の外側に位置する固体撮像素子が設計さ
れる。
Furthermore, in the above solid-state image pickup device designing method, the light-shielding film covering the electrode designed in the fourth step is the third
If it is not located outside the light beam condensed by the condenser lens designed in the step (3), the process returns to the third step and the thickness of the condenser lens and the film thickness of the flattening film are reset. In the third step, the focal point in the minor axis direction of the condenser lens is located on the light receiving surface or below the light receiving surface, and the luminous flux in the minor axis direction of the condenser lens is in the first step. The thickness of the condenser lens and the film thickness of the flattening film are set in a state where the thickness is within the width of the light receiving surface in the horizontal shift direction calculated in step a. Therefore, by repeating this step in sequence, the light condensing point of the condenser lens is located below the light receiving surface and the light receiving surface, and the light shielding film covering the electrode is condensed by the condenser lens. A solid-state image sensor located outside of is designed.

【0015】[0015]

【実施例】以下に、本発明の固体撮像素子の構造及び設
計方法の実施例を図面に基づいて説明する。図1は、本
発明の固体撮像素子1の一単位セル部分の斜視図であ
り、先ず、この図により上記固体撮像素子1の構造を説
明する。図1において基板11は、例えばシリコン等で
形成され、図示しないシリコン酸化膜等の絶縁膜が表面
に形成されている。この基板11の上面には、転送電極
を構成する第1の電極13aと第2の電極13bとが例
えばポリシリコン等によって形成されている。この第1
の電極13aと第2の電極13bとは、それぞれ固有の
電気抵抗値を有しており、それぞれが図示しない絶縁膜
で覆われている。そして、上記第1の電極13aがまず
基板11の上面に形成され、この第1の電極13aが形
成された上面の一部分に上記第2の電極13bが形成さ
れる。
Embodiments of the structure and design method of a solid-state image sensor according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a unit cell portion of a solid-state image sensor 1 of the present invention. First, the structure of the solid-state image sensor 1 will be described with reference to this figure. In FIG. 1, the substrate 11 is formed of, for example, silicon or the like, and an insulating film such as a silicon oxide film (not shown) is formed on the surface thereof. On the upper surface of the substrate 11, a first electrode 13a and a second electrode 13b forming a transfer electrode are formed of, for example, polysilicon. This first
The electrode 13a and the second electrode 13b each have a specific electric resistance value and are covered with an insulating film (not shown). Then, the first electrode 13a is first formed on the upper surface of the substrate 11, and the second electrode 13b is formed on a part of the upper surface on which the first electrode 13a is formed.

【0016】上記第1の電極13aと第2の電極13b
とは、例えばアルミニウム等からなる遮光膜14で覆わ
れている。この遮光膜14は所定の膜厚を有している。
The above-mentioned first electrode 13a and second electrode 13b
Is covered with a light shielding film 14 made of, for example, aluminum. The light shielding film 14 has a predetermined film thickness.

【0017】上記第1の電極13aと第2の電極13b
とは、開口部分を有する状態で上記基板11の上面に形
成されており、この開口部分に露出する基板面が受光面
12aになっている。上記遮光膜14は、この受光面1
2aの周縁に所定幅で張り出している。そして、上記受
光面12aとこの受光面12aと隣接する第1の電極1
3aと第2の電極13bとで上記固体撮像素子1の単位
セルが構成される。各単位セルは、上記固体撮像素子1
の高画素化に伴って垂直シフト方向に細長い形状になっ
ている。
The first electrode 13a and the second electrode 13b
Is formed on the upper surface of the substrate 11 with an opening portion, and the substrate surface exposed in the opening portion is the light receiving surface 12a. The light-shielding film 14 has the light-receiving surface 1
It projects over the periphery of 2a with a predetermined width. Then, the light receiving surface 12a and the first electrode 1 adjacent to the light receiving surface 12a.
The unit cell of the solid-state imaging device 1 is configured by 3a and the second electrode 13b. Each unit cell is the solid-state image sensor 1 described above.
As the number of pixels increases, the shape becomes elongated in the vertical shift direction.

【0018】また、上記基板11のさらに上方には、平
坦化膜17を介して集光レンズ18が形成されている。
上記集光レンズ18は、各受光面12a毎に樹脂レンズ
アレーを形成したものである。
Further, a condenser lens 18 is formed above the substrate 11 via a flattening film 17.
The condenser lens 18 has a resin lens array formed for each light receiving surface 12a.

【0019】また、上記基板11には、フォトダイオー
ド12が形成されており、このフォトダイオード12の
上面が上記第1及び第2の電極13a,13bの開口部
分に露出して受光面12aになっている。また、上記フ
ォトダイオード12を挟んだ水平シフト方向の両脇に
は、垂直シフト方向に走るチャネルストップ15と垂直
電荷転送部16とが片側ずつに配置されている。このた
め、上記フォトダイオード12は、さらに垂直シフト方
向に細長い形状になる。
A photodiode 12 is formed on the substrate 11, and the upper surface of the photodiode 12 is exposed at the openings of the first and second electrodes 13a and 13b to become a light receiving surface 12a. ing. On both sides of the photodiode 12 in the horizontal shift direction, a channel stop 15 running in the vertical shift direction and a vertical charge transfer section 16 are arranged on one side. Therefore, the photodiode 12 has an elongated shape in the vertical shift direction.

【0020】そして、上記第1の電極13aと第2の電
極13bと遮光膜14とは、上記遮光膜14が上記集光
レンズ18で集光された光束の外側に位置する状態に形
成される。また、上記集光レンズ18の短径方向の集光
点Oxと長径方向の集光点Oyとは、上記受光面12a
または上記受光面12aより下方に位置している。
The first electrode 13a, the second electrode 13b, and the light-shielding film 14 are formed so that the light-shielding film 14 is located outside the light beam condensed by the condenser lens 18. . Further, the light collecting point Ox in the minor axis direction and the light collecting point Oy in the major axis direction of the condenser lens 18 are the light receiving surface 12a.
Alternatively, it is located below the light receiving surface 12a.

【0021】図2には、上記固体撮像素子1の平面模式
図を示した。図2において、第1の電極13aと第2の
電極13bとで囲まれた部分が受光面12aである。こ
の図に示すように、上記固体撮像素子1は上記単位セル
を基板11上に複数配列している。そして、上記集光レ
ンズ18は、受光面12aと第1の電極13aと第2の
電極13bとで占める各単位セルの専有面積いっぱいの
大きさに形成されている。このため、上記集光レンズ1
8は、平面形状が略長円形または略長方形の凸状レンズ
に形成されている。そして、上記固体撮像素子1の水平
シフト方向と平行して上記集光レンズ18の短径方向が
配置され、垂直シフト方向と平行して上記集光レンズ1
8の長径方向が配置される。
FIG. 2 shows a schematic plan view of the solid-state image pickup device 1. In FIG. 2, the portion surrounded by the first electrode 13a and the second electrode 13b is the light receiving surface 12a. As shown in this figure, the solid-state imaging device 1 has a plurality of the unit cells arranged on a substrate 11. The condensing lens 18 is formed to have a size that occupies the exclusive area of each unit cell occupied by the light receiving surface 12a, the first electrode 13a, and the second electrode 13b. Therefore, the condenser lens 1
8 is formed as a convex lens having a substantially oval or rectangular shape in plan view. The minor axis direction of the condenser lens 18 is arranged in parallel with the horizontal shift direction of the solid-state image sensor 1, and the condenser lens 1 is arranged in parallel with the vertical shift direction.
The major axis direction of 8 is arranged.

【0022】次に、図3,図4により上記固体撮像素子
1の断面構造を説明する。図3は、上記図2における水
平シフト方向X−X’部の断面を示し、図4は、上記図
2における垂直シフト方向Y−Y’部の断面を示してい
る。図3,図4に示すように、上記第1の電極13aと
第2の電極13bとは、同じ高さhに形成されている。
また上記集光レンズ18は、長径方向の寸法ryに対す
る短径方向の寸法rxが1:0.86より小さく形成さ
れている。
Next, the sectional structure of the solid-state image pickup device 1 will be described with reference to FIGS. 3 shows a cross section of the horizontal shift direction XX 'in FIG. 2, and FIG. 4 shows a cross section of the vertical shift direction YY' in FIG. As shown in FIGS. 3 and 4, the first electrode 13a and the second electrode 13b are formed at the same height h.
Further, the condenser lens 18 is formed such that the dimension rx in the minor axis direction is smaller than 1: 0.86 with respect to the dimension ry in the major axis direction.

【0023】上記構造の固体撮像素子1においては、上
記集光レンズ18の長径方向の寸法ryに対する短径方
向の寸法rxが1:0.86より小さい略長円形または
略長方形である。このため、上記集光レンズ18は、短
径方向の焦点距離と長径方向の焦点距離とに所定範囲の
ズレを生じ、短径方向の集光点Oxが長径方向の集光点
Oyより浅く位置する。
In the solid-state image pickup device 1 having the above-described structure, the dimension rx in the minor axis direction with respect to the dimension ry in the major axis direction of the condenser lens 18 is a substantially oval shape or a substantially rectangular shape smaller than 1: 0.86. Therefore, in the condenser lens 18, the focal length in the minor axis direction and the focal length in the major axis direction are displaced by a predetermined range, and the focal point Ox in the minor axis direction is located shallower than the focal point Oy in the major axis direction. To do.

【0024】しかし、上記の固体撮像素子1では、上記
短径方向の集光点Oxと長径方向の集光点Oyがともに
上記受光面12aより下方に位置する構造になってい
る。したがて、上記集光レンズ18で集光された光束
は、全て集光点Ox,Oyに向かって収束される過程で
上記受光面12aに入射する。
However, the solid-state image pickup device 1 has a structure in which both the light collecting point Ox in the short diameter direction and the light collecting point Oy in the long diameter direction are located below the light receiving surface 12a. Therefore, all the light beams condensed by the condenser lens 18 are incident on the light receiving surface 12a in the process of being converged toward the condensing points Ox and Oy.

【0025】また、上記第1の電極13aと第2の電極
13bを覆う遮光膜14は、上記集光レンズ18で集光
される光束より外側に配置されるので、上記集光レンズ
18で集光された光束は全て受光面12aに入射する。
Further, since the light shielding film 14 covering the first electrode 13a and the second electrode 13b is arranged outside the light beam condensed by the condenser lens 18, it is collected by the condenser lens 18. All the luminous fluxes that have been made incident are incident on the light receiving surface 12a.

【0026】次に、上記構造の固体撮像素子1の設計方
法を、上記図3,図4及び図5のフローチャートにより
説明する。先ず、第1の工程では、上記受光面12aの
水平シフト方向の幅Wxと第1の電極13aと第2の電
極13bの水平シフト方向の幅Wp1 ,Wp2 を算出す
る(S1)。設計を行う固体撮像素子1は、その電気特
性の設計値によって垂直電荷転送部16の幅が規定され
る。したがって、各単位セルの水平シフト方向で上記受
光面12aを配置することのできる幅Wx、および第1
の電極13aと第2の電極13bの水平シフト方向の幅
Wp1 ,Wp2 とが算出される。
Next, a method of designing the solid-state image pickup device 1 having the above structure will be described with reference to the flowcharts of FIGS. 3, 4 and 5. First, in the first step, the width Wx of the light receiving surface 12a in the horizontal shift direction and the widths Wp 1 and Wp 2 of the first electrode 13a and the second electrode 13b in the horizontal shift direction are calculated (S1). In the solid-state imaging device 1 to be designed, the width of the vertical charge transfer unit 16 is defined by the design value of its electric characteristics. Therefore, the width Wx where the light receiving surface 12a can be arranged in the horizontal shift direction of each unit cell, and the first
The widths Wp 1 and Wp 2 of the electrode 13a and the second electrode 13b in the horizontal shift direction are calculated.

【0027】次いで、第2の工程では、上記集光レンズ
18の短径方向の寸法rxと長径方向の寸法ryとを算
出する(S2)。上記集光レンズ18は、光の利用率を
上げるために、各単位セルの専有面積いっぱいにできる
だけ大きく形成される。したがって、設計を行う固体撮
像素子1の各単位セルの専有面積から、上記集光レンズ
18の短径方向の寸法rxと長径方向の寸法ryとが算
出される。
Next, in the second step, the dimension rx in the minor axis direction and the dimension ry in the major axis direction of the condenser lens 18 are calculated (S2). The condenser lens 18 is formed as large as possible to fill the area occupied by each unit cell in order to increase the light utilization rate. Therefore, the dimension rx in the minor axis direction and the dimension ry in the major axis direction of the condenser lens 18 are calculated from the area occupied by each unit cell of the solid-state imaging device 1 to be designed.

【0028】そして、第3の工程では、上記集光レンズ
18の厚さtと平坦化膜17の膜厚dとを設定する(S
3)。上記集光レンズ18は、上記第2の工程で算出さ
れた短径方向の寸法rxと長径方向の寸法ryとが決ま
ると、製造上の制約からその厚さtが所定の範囲で規定
される。さらに上記集光レンズ18の厚さtの範囲が規
定されることによって、上記集光レンズ18の短径方向
の焦点距離の範囲と長径方向の焦点距離の範囲とが規定
される。
Then, in the third step, the thickness t of the condenser lens 18 and the film thickness d of the flattening film 17 are set (S).
3). When the dimension rx in the minor axis direction and the dimension ry in the major axis direction of the condenser lens 18 calculated in the second step are determined, the thickness t thereof is defined within a predetermined range due to manufacturing restrictions. . Further, by defining the range of the thickness t of the condenser lens 18, the range of the focal length in the minor axis direction and the range of the focal length in the major axis direction of the condenser lens 18 are defined.

【0029】一方、上記平坦化膜17の膜厚dによっ
て、上記集光レンズ18と上記受光面12aとの距離が
規定される。したがって、平坦化膜17の膜厚dと集光
レンズ18の厚さtとの組合せによって、上記集光レン
ズ18の短径方向の集光点Oxと長径方向の集光点Oy
の深さ位置が規定される。ここで、上記集光レンズ18
は、長径方向の寸法ryに対する短径方向の寸法rxが
1:0.86より小さい略長円形または略長方形であ
り、短径方向の集光点Oxの深さ位置が長径方向の集光
点Oyの深さ位置より所定範囲で浅くなっている。
On the other hand, the film thickness d of the flattening film 17 defines the distance between the condenser lens 18 and the light receiving surface 12a. Therefore, depending on the combination of the film thickness d of the flattening film 17 and the thickness t of the condensing lens 18, the condensing point Ox in the minor axis direction and the condensing point Oy in the major axis direction of the condensing lens 18 described above.
The depth position of is defined. Here, the condenser lens 18
Is a substantially elliptical or substantially rectangular shape in which the dimension rx in the minor axis direction with respect to the dimension ry in the major axis direction is smaller than 1: 0.86, and the depth position of the focal point Ox in the minor axis direction is the focal point in the major axis direction. It is shallower within a predetermined range than the depth position of Oy.

【0030】そこで、上記集光レンズ18の厚さtと平
坦化膜17の膜厚dとの組合せを、以下の条件と条件
とを満たすように設定する。 条件:上記集光レンズ18の短径方向の集光点Ox
が、上記受光面12aまたは当該受光面12aより下方
に位置する。 条件:上記受光面12aにおける上記集光レンズ18
の短径方向の光束が、上記第1の工程で算出した上記受
光面12aの水平シフト方向の幅Wxに収まる。
Therefore, the combination of the thickness t of the condenser lens 18 and the film thickness d of the flattening film 17 is set so as to satisfy the following conditions and conditions. Condition: Focusing point Ox of the focusing lens 18 in the minor axis direction
Is located on the light receiving surface 12a or below the light receiving surface 12a. Condition: The condenser lens 18 on the light receiving surface 12a
The light flux in the direction of the shortest diameter is within the width Wx in the horizontal shift direction of the light receiving surface 12a calculated in the first step.

【0031】さらに第4の工程では、先ず、上記第1の
電極13aと第2の電極13bの高さhを算出し、次い
で、上記第1の電極13aと第2の電極13bの垂直シ
フト方向の幅Wq1 ,Wq2 を算出する(S4)。上記
第1の電極13aと第2の電極13bおよび遮光膜14
を上記基板11の上面に形成することによって、上記基
板11には凹凸が形成される。上記平坦化膜17は、上
記基板11の上面を平坦化するためのものであり、基板
11上の凹凸の度合いによって平坦化を達成するために
必要な上記平坦化膜17の膜厚dが決まる。したがっ
て、上記第3の工程で設定された平坦化膜17の膜厚d
と所定の厚さを有する遮光膜14の膜厚とから、上記平
坦化膜17の平坦化が達成されるための上記第1の電極
13aと第2の電極13bの高さhが算出される。
Further, in the fourth step, first, the height h of the first electrode 13a and the second electrode 13b is calculated, and then the vertical shift direction of the first electrode 13a and the second electrode 13b is calculated. The widths Wq 1 and Wq 2 of are calculated (S4). The above-mentioned first electrode 13a, second electrode 13b, and light-shielding film 14
Are formed on the upper surface of the substrate 11 to form irregularities on the substrate 11. The flattening film 17 is for flattening the upper surface of the substrate 11, and the film thickness d of the flattening film 17 required for achieving flattening is determined by the degree of unevenness on the substrate 11. . Therefore, the film thickness d of the flattening film 17 set in the above third step
And the film thickness of the light shielding film 14 having a predetermined thickness, the height h of the first electrode 13a and the second electrode 13b for achieving the flattening of the flattening film 17 is calculated. .

【0032】また、上記第1の電極13aと第2の電極
13bとは、それぞれ固有の電気抵抗値を有している。
したがって、この電気抵抗値と第1及び第2の電極13
a,13bを構成する材質とから、上記第1及び第2の
電極13a,13bの必要断面積が算出される。そし
て、算出された上記第1及び第2の電極13a,13b
の必要断面積と上記で算出した上記第1の電極13aと
第2の電極13bの高さhとから、上記第1の電極13
aと第2の電極13bの垂直シフト方向の幅Wq1 ,W
2 が算出される。
The first electrode 13a and the second electrode 13b have their own electric resistance values.
Therefore, this electrical resistance value and the first and second electrodes 13
The necessary cross-sectional areas of the first and second electrodes 13a and 13b are calculated from the materials forming a and 13b. Then, the calculated first and second electrodes 13a, 13b
From the required cross-sectional area of the first electrode 13a and the height h of the first electrode 13a and the second electrode 13b calculated above.
a and the widths Wq 1 and W of the second electrode 13b in the vertical shift direction.
q 2 is calculated.

【0033】次に、第5の工程では、上記第1から第4
の工程で設計した集光レンズ18と第1の電極13aと
第2の電極13bとが、以下の条件を満たすものであ
るか否かを判断する(S5)。 条件:上記工程で設計された第1の電極13aと第2
の電極13bとを覆う遮光膜14は、上記工程で設計さ
れた集光レンズ18で集光された光束の外側に位置する
ものである。
Next, in the fifth step, the first to fourth steps are performed.
It is determined whether or not the condenser lens 18, the first electrode 13a, and the second electrode 13b designed in the above process satisfy the following conditions (S5). Conditions: the first electrode 13a and the second electrode designed in the above process
The light-shielding film 14 that covers the electrode 13b is located outside the light flux condensed by the condenser lens 18 designed in the above process.

【0034】そして、上記第5の工程において、条件
を満たすと判断した場合には工程を終了する。また、上
記第5の工程において、条件を満たさないと判断した
場合には上記第3の工程に戻って、上記集光レンズ18
の厚さtと上記平坦化膜17の膜厚dの組合せを設定し
直し、第4,第5の工程を順次繰り返す。
Then, in the fifth step, when it is judged that the condition is satisfied, the step is ended. In the fifth step, if it is determined that the condition is not satisfied, the procedure returns to the third step, and the condenser lens 18
The thickness t and the film thickness d of the flattening film 17 are set again, and the fourth and fifth steps are sequentially repeated.

【0035】そして、上記第3から第5の工程を繰り返
し行うことによって、集光レンズ18の短径方向の集光
点Oxと長径方向の集光点Oyとが上記受光面12a及
び受光面12aより下方に位置し、かつ、上記遮光膜1
4が上記集光レンズ18で集光される光束の外側に位置
する固体撮像素子が設計される。
By repeating the above third to fifth steps, the light-converging point Ox in the short diameter direction and the light-converging point Oy in the long diameter direction of the condensing lens 18 become the light receiving surface 12a and the light receiving surface 12a. The light-shielding film 1 located below
A solid-state image sensor 4 is designed in which 4 is located outside the light flux condensed by the condenser lens 18.

【0036】[0036]

【発明の効果】以上説明したように、本発明の固体撮像
素子の構造によれば、集光レンズで集光された光束は全
て、集光点に向かって収束される過程で上記受光面に入
射するので、同受光面に入射する光信号がフォトダイオ
ードから垂直電荷転送部に入射することはない。したが
って、スミアの発生を防止することができる。また、集
光レンズで集光された光束は全て受光面に入射するの
で、固体撮像素子の感度を維持しながら、高画素化及び
微細化する固体撮像素子の信頼性の向上を期待すること
ができる。そして、本発明の固体撮像素子の設計方法に
よれば、高画素化及び微細化する固体撮像素子におい
て、スミアの発生を防止する固体撮像素子を設計するこ
とができる。
As described above, according to the structure of the solid-state image sensor of the present invention, all the light fluxes condensed by the condenser lens are converged on the light receiving surface in the process of being converged toward the condensing point. Since it is incident, the optical signal incident on the light receiving surface does not enter the vertical charge transfer unit from the photodiode. Therefore, the occurrence of smear can be prevented. Further, since all the light fluxes condensed by the condenser lens are incident on the light receiving surface, it is possible to expect improvement in reliability of the solid-state image pickup device with higher pixel count and smaller size while maintaining the sensitivity of the solid-state image pickup device. it can. Further, according to the method for designing a solid-state image sensor of the present invention, it is possible to design a solid-state image sensor that prevents the occurrence of smear in the solid-state image sensor with the increased number of pixels and the miniaturization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体撮像素子の斜視図である。FIG. 1 is a perspective view of a solid-state image sensor according to the present invention.

【図2】本発明の固体撮像素子の平面模式図である。FIG. 2 is a schematic plan view of a solid-state image sensor according to the present invention.

【図3】本発明の固体撮像素子の水平シフト方向の断面
図である。
FIG. 3 is a cross-sectional view of a solid-state image sensor of the present invention in the horizontal shift direction.

【図4】本発明の固体撮像素子の垂直シフト方向の断面
図である。
FIG. 4 is a cross-sectional view of a solid-state image sensor of the present invention in a vertical shift direction.

【図5】本発明の固体撮像素子の設計手順を示すフロー
チャートである。
FIG. 5 is a flowchart showing a design procedure of the solid-state imaging device of the present invention.

【図6】従来の固体撮像素子の水平シフト方向の断面図
である。
FIG. 6 is a cross-sectional view of a conventional solid-state image sensor in the horizontal shift direction.

【図7】従来の固体撮像素子の垂直シフト方向の断面図
である。
FIG. 7 is a cross-sectional view of a conventional solid-state image sensor in the vertical shift direction.

【符号の説明】[Explanation of symbols]

1 固体撮像素子 11 基板 12a 受光面 13a 第1の電極(電極) 13b 第2の電極(電極) 14 遮光膜 17 平坦化膜 18 集光レンズ Wx 受光面の水平シフト方向の幅 h 第1及び第2の電極の高さ Wp1 第1の電極の水平シフト方向の幅 Wq1 第1の電極の垂直シフト方向の幅 Wp2 第2の電極の水平シフト方向の幅 Wq2 第2の電極の垂直シフト方向の幅 d 平坦化膜の膜厚 rx 集光レンズの短径寸法 ry 集光レンズの長径寸法 t 集光レンズの厚さ Ox 集光レンズの短径方向の集光点 Oy 集光レンズの長径方向の集光点DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 11 Substrate 12a Light-receiving surface 13a First electrode (electrode) 13b Second electrode (electrode) 14 Light-shielding film 17 Flattening film 18 Condenser lens Wx Width of light-receiving surface in horizontal shift direction h First and first Height of second electrode Wp 1 Width of first electrode in horizontal shift direction Wq 1 Width of first electrode in vertical shift direction Wp 2 Width of second electrode in horizontal shift direction Wq 2 Vertical of second electrode Width in shift direction d Film thickness of flattening film rx Short-axis dimension of condensing lens ry Long-axis dimension of condensing lens t Thickness of condensing lens Ox Condensing point Oy condensing lens in short-axis direction Convergence point in the major axis direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面に各単位セル毎に配置された
受光面と、当該受光面が露出する状態で前記基板上に形
成された電極と、前記電極を覆う遮光膜と、前記基板の
上方に平坦化膜を介して各受光面に対応して形成された
集光レンズとを備え、少なくとも前記受光面の水平シフ
ト方向に前記集光レンズの短径方向を配置した固体撮像
素子の構造において、 前記集光レンズは、略長円形または略長方形であると共
に、当該集光レンズの集光点を前記受光面または同受光
面より下方に位置させたものであり、 前記遮光膜は、前記集光レンズで集光される光束の外側
に位置するものであるることを特徴とする固体撮像素子
の構造。
1. A light-receiving surface arranged on the surface of a substrate for each unit cell, an electrode formed on the substrate in a state where the light-receiving surface is exposed, a light-shielding film covering the electrode, and a substrate of the substrate. A structure of a solid-state image pickup device including a condenser lens formed corresponding to each light receiving surface through a flattening film above, and arranging at least a minor axis direction of the condenser lens in a horizontal shift direction of the light receiving surface. In the above, the condensing lens is substantially oval or substantially rectangular, and the condensing point of the condensing lens is located on the light receiving surface or below the light receiving surface, and the light shielding film is A structure of a solid-state image pickup device, which is located outside a light beam condensed by a condenser lens.
【請求項2】 前記請求項1記載の固体撮像素子の設計
方法であって、 前記固体撮像素子の電気特性の設計値から、前記受光面
の水平シフト方向の幅と前記電極の水平シフト方向の幅
とを算出する第1の工程と、 前記受光面と前記電極とで占める各単位セルの専有面積
から、前記集光レンズの短径方向の寸法と当該短径方向
と直交する長径方向の寸法とを算出する第2の工程と、 前記集光レンズの短径方向の集光点が前記受光面または
当該受光面より下方に位置し、かつ、前記集光レンズの
短径方向の光束が前記第1の工程で算出した前記受光面
の水平シフト方向の幅に収まる状態に、前記集光レンズ
の厚さと前記平坦化膜の膜厚とを設定する第3の工程
と、 前記第3の工程で算出した前記平坦化膜の膜厚と、前記
遮光膜の膜厚とから、前記平坦化膜の平坦化を達成する
ための前記電極の高さを算出し、算出した前記電極の高
さと当該電極の電気抵抗値とから、当該電極の垂直シフ
ト方向の幅を算出する第4の工程と、 前記第4の工程で算出した前記電極の高さと当該電極の
垂直シフト方向の幅と、同電極の水平シフト方向の幅と
から、前記電極を覆う前記遮光膜が前記集光レンズで集
光される光束の外側に位置するか否かを判断し、位置し
ないと判断した場合には前記第3の工程に戻って前記第
3の工程以降を順次繰り返し行い、位置すると判断した
場合には工程を終了にする第5の工程とからなることを
特徴とする固体撮像素子の設計方法。
2. The method for designing a solid-state image pickup device according to claim 1, wherein a width of the light-receiving surface in a horizontal shift direction and a horizontal shift direction of the electrode are calculated from design values of electrical characteristics of the solid-state image pickup device. From the first step of calculating the width and the area occupied by each unit cell occupied by the light-receiving surface and the electrode, the dimension of the condenser lens in the minor axis direction and the dimension in the major axis direction orthogonal to the minor axis direction. And a light-converging point in the minor axis direction of the condenser lens is located on the light-receiving surface or below the light-receiving surface, and the light flux in the minor-axis direction of the condenser lens is A third step of setting the thickness of the condenser lens and the film thickness of the flattening film in a state of being within the width of the light receiving surface in the horizontal shift direction calculated in the first step; and the third step. From the film thickness of the flattening film calculated in A fourth aspect of calculating a height of the electrode for achieving the flattening of the flattening film, and calculating a width of the electrode in the vertical shift direction from the calculated height of the electrode and an electric resistance value of the electrode. From the step, the height of the electrode calculated in the fourth step, the width of the electrode in the vertical shift direction, and the width of the electrode in the horizontal shift direction, the light shielding film covering the electrode is the condensing lens. It is judged whether or not it is located outside the condensed light beam, and when it is judged that it is not positioned, the procedure returns to the third step, and the steps after the third step are sequentially repeated. And a fifth step of terminating the steps, the method for designing a solid-state image sensor.
JP5047519A 1993-02-12 1993-02-12 Structure and design of solid-state image pick-up device Pending JPH06244394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047519A JPH06244394A (en) 1993-02-12 1993-02-12 Structure and design of solid-state image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047519A JPH06244394A (en) 1993-02-12 1993-02-12 Structure and design of solid-state image pick-up device

Publications (1)

Publication Number Publication Date
JPH06244394A true JPH06244394A (en) 1994-09-02

Family

ID=12777366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047519A Pending JPH06244394A (en) 1993-02-12 1993-02-12 Structure and design of solid-state image pick-up device

Country Status (1)

Country Link
JP (1) JPH06244394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847555B2 (en) 2017-10-16 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Imaging device with microlens having particular focal point

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847555B2 (en) 2017-10-16 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Imaging device with microlens having particular focal point
US11594562B2 (en) 2017-10-16 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Imaging device

Similar Documents

Publication Publication Date Title
USRE46635E1 (en) Solid-state imaging device and solid-state imaging device designing method
KR101294470B1 (en) Solid-state imaging element
US7859587B2 (en) Solid-state image pickup device
JP2600250B2 (en) Solid-state imaging device and video camera
KR100654146B1 (en) Solid-state imaging device and camera
EP0511404A1 (en) Solid-state imaging device and method of manufacturing the same
JP4548702B2 (en) Imaging apparatus and imaging system
US20050051860A1 (en) Solid state image pickup device
JPH05335531A (en) Solid-state imaging device
JPH1187674A (en) Solid-state image sensor and its manufacture and image-sensing apparatus
JP2008547064A (en) Manufacturing method of tilted microlens
JP4136611B2 (en) Solid-state image sensor
KR20060094877A (en) Solid-state imaging device
US20190273106A1 (en) Image sensor and focus adjustment device
JPH06118209A (en) Solid image pickup device
JPH0750401A (en) Solid state image pick-up device and manufacturing method thereof
JP2004134790A (en) Solid-state imaging device, manufacturing method therefor, and electronic apparatus
JPH04199874A (en) Solid state image sensing device
US20200077014A1 (en) Image sensor and imaging device
US20190268543A1 (en) Image sensor and focus adjustment device
JP4236168B2 (en) Solid-state imaging device
JPH06244394A (en) Structure and design of solid-state image pick-up device
US20190280033A1 (en) Image sensor and focus adjustment device
JP2000124434A (en) Solid image pickup element
JP2007288164A (en) Solid-state image pickup device