JPH06243998A - High frequency quadrupole accelerator - Google Patents

High frequency quadrupole accelerator

Info

Publication number
JPH06243998A
JPH06243998A JP3017293A JP3017293A JPH06243998A JP H06243998 A JPH06243998 A JP H06243998A JP 3017293 A JP3017293 A JP 3017293A JP 3017293 A JP3017293 A JP 3017293A JP H06243998 A JPH06243998 A JP H06243998A
Authority
JP
Japan
Prior art keywords
electrode
quadrupole
electrodes
holders
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017293A
Other languages
Japanese (ja)
Inventor
Hirobumi Imanaka
博文 今中
Takuya Kusaka
卓也 日下
Kenichi Inoue
憲一 井上
Kojin Furukawa
行人 古川
Toshimoto Suzuki
敏司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3017293A priority Critical patent/JPH06243998A/en
Publication of JPH06243998A publication Critical patent/JPH06243998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide a high frequency quadrupole accelerator having a quadrupole electrode support structure by which quadrupole electrodes can be arranged accurately in a cage body and replacing work can be carried out easily. CONSTITUTION:Quadrupole electrodes 1, 2, 3 and 4 are supported with a plurality of the first and the second electrode holders 18 and 19, and are assembled integrally in a condition of securing positional accuracy between the electrodes. The quadrupole electrodes 1, 2, 3 and 4 in a condition of being supported with the first and the second electrode holders 18 and 19 are housed in a cage body 16, and the first and the second electrode holders 18 and 19 are supported with a plurality of the first and the second outer peripheral holders 20 and 21 fixed to prescribed positions in the cage body 16, so that the quadrupole electrodes 1, 2, 3 and 4 are arranged accurately in the cage body 16. Even replacing work of the quadrupole electrodes 1, 2, 3 and 4 is carried out similarly in a condition of the quadrupole electrodes 1, 2, 3 and 4 supported with the first and the second electrode holders 18 and 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,高周波四重極電極を用
いた荷電粒子加速器に係り,詳しくは,筐体内に配置さ
れる四重極電極を所定位置に精密に支持することができ
る電極支持構造を備えた高周波四重極加速装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle accelerator using a high frequency quadrupole electrode, and more specifically, an electrode capable of precisely supporting a quadrupole electrode arranged in a housing at a predetermined position. The present invention relates to a high frequency quadrupole accelerator having a support structure.

【0002】[0002]

【従来の技術】例えば,イオン注入,材料分析等を行う
ための高エネルギーのイオンビームを得るために,高周
波電界を利用した加速器として4個のベイン電極(四重
極電極)を共振空洞内に収容した高周波四重極加速装置
が用いられる。この高周波四重極(Radio Frequency Qu
adrupole)加速装置(以下RFQと呼称する)の基本的
な構成及び動作について以下に示す。図4に示すRFQ
30は,筒状の筐体5の中心軸方向に四重極電極を形成
する電極1,2,3,4を配設して構成されている。各
電極1,2,3,4は互いに向き合った面が凹凸状に波
打った形状に形成され,互いに向かい合った電極では凹
凸形状が同位相に形成されており,互いに隣合った電極
では凹凸形状が逆位相に形成されている。このように形
成された四重極電極に,図5に示すように互いに向かい
合った電極には同位相,互いに隣合った電極には逆位相
の高周波電圧を印加すると,4個の電極1,2,3,4
が向かい合う中心軸付近では四重極電界が発生する。電
極1,3がプラスのとき,電極2,4はマイナスであ
り,前者がマイナスのとき,後者はプラスとなる。この
ような条件に加えて電極1,2,3,4の凹凸形状が垂
直,水平に180度ずれて形成されていることから,例
えば,電極1,3がプラス,電極2,4がマイナスのと
き,中心軸上に軸方向の電界が生じることになる。電極
1,2,3,4の電圧極性が逆になったときは,この電
界の方向も逆になる。いま,中心軸に沿って四重極電極
の中に入射されたイオンが常に左右方向への加速電界を
受けるような速度及び位相をもつと,電極1,2,3,
4の凹凸形状の部分を通過する毎に加速され,単調にエ
ネルギーが増加する。他方,最初に減速を受けるような
位相で入ってきたイオンも,次の加速電界のときに後続
のイオンの中に徐々にバンチングされていき,後は単調
に加速される。また,軸に直交する平面に存在する強い
高周波電界によって垂直,水平方向には強い収束力が生
じているため,非常に高い透過率でイオンを加速させる
ことができる。実際には,イオンの速度増加,バンチン
グ状況に合わせて凹凸の周期,電極間隔を徐々に変化さ
せた四重極電極の設計により,はじめて100%近い輸
送効率が得られる。RFQにおいて上記したような加速
性能を発揮させるためには,四重極電極を構成する各電
極1,2,3,4が所定位置に精度よく固定されている
ことが要求される。各電極1,2,3,4を筐体5内に
固定するための従来例構成の一例を図6に示す。図示す
るように,水平方向に相対向する電極1,3を支持する
電極ホルダ6,6と,垂直方向に相対向する電極2,4
を支持する電極ホルダ7,7とを,筐体5aの中心軸方
向に交互に所定間隔で配設し,電極ホルダ6,6は下サ
ポータ8によって筐体5aの下部に固定された下平座1
0に接続され,電極ホルダ7,7は上サポータ9によっ
て筐体5aの上部に固定された上平座11に接続するこ
とによって,各電極1,2,3,4が筐体5aの中心軸
方向に固定される。この構成による場合,各電極1,
2,3,4の位置精度を確保するために,各電極ホルダ
6,7,各サポータ8,9,各平座10,11は誤差数
十μmの高精度で加工され,更に調整用治具によって電
極位置精度を全長にわたって±25μm程度の誤差内に
調整することによって精度確保がなされる。
2. Description of the Related Art For example, in order to obtain a high-energy ion beam for performing ion implantation, material analysis, etc., four vane electrodes (quadrupole electrodes) are placed in a resonant cavity as an accelerator using a high frequency electric field. The housed high frequency quadrupole accelerator is used. This high frequency quadrupole
The basic structure and operation of an adrupole accelerator (hereinafter referred to as RFQ) will be described below. RFQ shown in FIG.
The reference numeral 30 is configured by arranging electrodes 1, 2, 3, 4 forming a quadrupole electrode in a central axis direction of a cylindrical casing 5. The electrodes 1, 2, 3 and 4 are formed in a corrugated shape in which the surfaces facing each other are corrugated, and the concavo-convex shape is formed in the same phase in the electrodes facing each other and the concavo-convex shape in the electrodes adjacent to each other. Are formed in opposite phases. When a high-frequency voltage of the same phase is applied to the electrodes facing each other as shown in FIG. 5 and the opposite phase is applied to the electrodes adjacent to each other, as shown in FIG. , 3, 4
A quadrupole electric field is generated in the vicinity of the central axis facing each other. When the electrodes 1 and 3 are positive, the electrodes 2 and 4 are negative, and when the former is negative, the latter is positive. In addition to these conditions, since the concavo-convex shapes of the electrodes 1, 2, 3, 4 are vertically and horizontally shifted by 180 degrees, for example, the electrodes 1, 3 are positive and the electrodes 2, 4 are negative. Then, an axial electric field is generated on the central axis. When the voltage polarities of the electrodes 1, 2, 3, 4 are reversed, the direction of this electric field is also reversed. Now, if the ions injected into the quadrupole electrode along the central axis have such a velocity and phase that they always receive an accelerating electric field in the left-right direction, the electrodes 1, 2, 3,
The energy is monotonically increased as it is accelerated every time it passes through the uneven portion 4 of FIG. On the other hand, the ions that first enter the phase that undergoes deceleration are gradually bunched into the subsequent ions at the time of the next acceleration electric field, and are then monotonically accelerated. In addition, a strong high-frequency electric field existing in a plane orthogonal to the axis causes a strong focusing force in the vertical and horizontal directions, so that the ions can be accelerated with a very high transmittance. In reality, a transport efficiency close to 100% can be obtained for the first time by designing a quadrupole electrode in which the ion velocity increases, the period of the unevenness and the electrode interval are gradually changed according to the bunching situation. In order to exhibit the above-described acceleration performance in RFQ, it is required that each of the electrodes 1, 2, 3 and 4 forming the quadrupole electrode be accurately fixed at predetermined positions. FIG. 6 shows an example of a conventional configuration for fixing the electrodes 1, 2, 3, 4 in the housing 5. As shown, electrode holders 6 and 6 that support electrodes 1 and 3 that face each other in the horizontal direction and electrodes 2 and 4 that face each other in the vertical direction
The electrode holders 7, 7 for supporting the lower flat seat 1 fixed to the lower portion of the housing 5a by the lower supporters 8 are arranged alternately at predetermined intervals in the central axis direction of the housing 5a.
0, and the electrode holders 7, 7 are connected to the upper flat seat 11 fixed to the upper part of the casing 5a by the upper supporter 9, so that the electrodes 1, 2, 3, 4 are connected to the central axis of the casing 5a. Fixed in the direction. With this configuration, each electrode 1,
In order to ensure the positional accuracy of 2, 3, and 4, the electrode holders 6 and 7, the supporters 8 and 9, and the flat seats 10 and 11 are processed with high accuracy with an error of several tens of μm, and the adjustment jig is used. The accuracy is ensured by adjusting the electrode position accuracy within an error of about ± 25 μm over the entire length.

【0003】[0003]

【発明が解決しようとする課題】四重極電極の配設位置
の精度確保は,上記したように取付け部材の高精度な加
工と精密な組立て作業とが要求されるため製作が非常に
困難で,コストや時間が多大になる問題点があった。ま
た,RFQを半導体プロセスのためのイオン注入装置と
して利用する場合などでは,イオン種とイオンビーム速
度を変換させることが要求される。このような場合に
は,使用目的に適合する四重極電極に交換することがで
きる加速電極交換方式のRFQが所望される。しかしな
がら,従来構成になるRFQでは,筐体内に固定された
電極ホルダに対して四重極電極を着脱させる作業は容易
でなく,作業性の悪さや作業時間がかかるだけでなく,
難解な作業条件であるがゆえに装置を損傷させやすい問
題点があった。本発明は上記問題点に鑑みて創案された
もので,四重極電極を筐体内に精度よく配設すると共
に,交換作業が容易に行い得る四重極電極の支持構造を
備えた高周波四重極電極加速装置を提供することを目的
とする。
To ensure the accuracy of the disposition position of the quadrupole electrode, it is very difficult to manufacture it because it requires high-precision machining of the mounting member and precise assembly work as described above. , There was a problem that the cost and the time became large. Further, when the RFQ is used as an ion implanter for a semiconductor process, it is required to convert the ion species and the ion beam velocity. In such a case, an accelerating electrode replacement type RFQ that can be replaced with a quadrupole electrode suitable for the purpose of use is desired. However, in the RFQ having the conventional configuration, it is not easy to attach / detach the quadrupole electrode to / from the electrode holder fixed in the housing, and the workability is poor and the working time is long.
There is a problem that the device is easily damaged due to difficult working conditions. The present invention was made in view of the above problems, and a high-frequency quadrupole having a quadrupole electrode supporting structure that allows accurate placement of the quadrupole electrode in the housing and facilitates replacement work. An object is to provide a polar electrode accelerator.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,相対向する2対の電極が十
字方向に配置されてなる四重極電極を筒状の筐体内部の
中心軸方向に配設し,該四重極電極に高周波電力を印加
して四重極電極間を通過させる荷電粒子を任意の速度に
加速する高周波四重極加速装置において,前記四重極電
極の一方向に対向配置された第1の電極対を支持する複
数の第1の電極ホルダと,前記四重極電極の他方向に対
向配置された第2の電極対を支持する複数の第2の電極
ホルダとを前記筐体内部の中心軸方向に交互に所定間隔
で配置すると共に,前記各第1の電極ホルダを支持する
複数の第1の外周ホルダと,前記各第2の電極ホルダを
支持する複数の第2の外周ホルダとを前記筐体内に交互
に所定間隔で固定してなることを特徴とする高周波四重
極加速装置として構成される。
In order to achieve the above object, the present invention employs a quadrupole electrode in which two pairs of electrodes facing each other are arranged in a cross direction inside a cylindrical casing. In the central axis direction of the quadrupole electrode and applying high-frequency power to the quadrupole electrodes to accelerate charged particles passing between the quadrupole electrodes to an arbitrary speed. A plurality of first electrode holders that support a first electrode pair that is opposed to one direction of the electrode, and a plurality of first electrode holders that support a second electrode pair that is opposed to the other direction of the quadrupole electrode. Two electrode holders are alternately arranged at a predetermined interval in the central axis direction inside the housing, and a plurality of first outer peripheral holders supporting the first electrode holders and the second electrode holders A plurality of second outer peripheral holders that support the Be Te configured as a high-frequency quadrupole accelerator according to claim.

【0005】[0005]

【作用】本発明によれば,四重極電極は複数の第1及び
第2の電極ホルダによって支持されることによって一体
的に,且つ電極間の位置精度を確保した状態に組立てら
れる。この第1及び第2の電極ホルダで支持された状態
の四重極電極を筐体内に収容し,筐体内の所定位置に固
定された複数の第1及び第2の外周ホルダにより前記第
1及び第2の電極ホルダを支持することによって,四重
極電極は筐体内に精度よく配設される。四重極電極の交
換作業においても,同様に第1及び第2の電極ホルダに
支持された状態の四重極電極を筐体内に固定された第1
及び第2の外周ホルダに着脱させる作業を行うことによ
ってなされる。従って,四重極電極の高精度の組立て作
業は筐体外で実施できるので,作業性がよく,筐体側の
精度誤差の影響を排除することができる。また,四重極
電極の交換を行うに際しても,予め第1及び第2の電極
ホルダに精度よく支持された状態のものを準備して交換
することにより,交換の作業性がよく,作業時間の短縮
や装置に損傷を与えることが防止される。
According to the present invention, the quadrupole electrode is assembled integrally by being supported by the plurality of first and second electrode holders and in a state where the positional accuracy between the electrodes is secured. The quadrupole electrode in a state of being supported by the first and second electrode holders is housed in a housing, and the first and second outer peripheral holders fixed at predetermined positions in the housing are used to store the first and second electrodes. By supporting the second electrode holder, the quadrupole electrode is accurately arranged in the housing. Also in the replacement work of the quadrupole electrode, similarly, the quadrupole electrode supported by the first and second electrode holders is fixed to the first casing inside the casing.
And the work of attaching to and detaching from the second outer peripheral holder. Therefore, since the highly accurate assembly work of the quadrupole electrode can be performed outside the housing, the workability is good and the influence of the accuracy error on the housing side can be eliminated. Also, when replacing the quadrupole electrode, it is possible to improve the workability of the replacement and to reduce the work time by preparing and replacing the quadrupole electrode that is accurately supported by the first and second electrode holders in advance. Shortening and damage to the device are prevented.

【0006】[0006]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定するものではない。ここに,図1
は本発明の一実施例に係るRFQの四重極電極支持構造
を示す斜視図,図2は第1の電極ホルダ位置の正面図
(a)と第2の電極ホルダ位置の正面図(B),図3は
四重極電極を第1及び第2の電極ホルダによって支持し
て一体的に組み立てた状態を示す斜視図である。図1に
おいて,本実施例に係るRFQ15は,共振空洞を構成
する筒状の筐体16の中心軸14を中心に相対向して電
極1,2,3,4が中心軸方向に配置され,四重極電極
を構成している。この電極1,2,3,4は,中心軸1
4方向に交互に配置された第1の電極ホルダ18,18
と第2の電極ホルダ19,19とによって支持される。
第1の電極ホルダ18は,図2(a)に示すように,電
極1,3(第1の電極対)を支持する長辺を図示垂直方
向に形成した長方形の開口部を有し,電極1,3が前記
長辺の所定位置にノックピン等で取付けられ,電極2,
4は非接触で貫通させる。第2の電極ホルダ19は,図
2(b)に示すように,電極2,4(第2の電極対)を
支持する長辺を図示水平方向に形成した長方形の開口部
を有し,電極2,4が前記長辺の所定位置にノックピン
等で取付けられ,電極1,3は非接触で貫通させる。第
1の電極ホルダ18及び第2の電極ホルダ19は,それ
ぞれ正方形の外形に形成されており,この外形の周囲に
数mmの間隔を設けることのできる内枠が形成された第1
の外周ホルダ20と第2の外周ホルダ21とによってそ
れぞれ支持される。各外周ホルダ20,21による各電
極ホルダ18,19の支持は,図示するようにジョイン
トネジ17,17──によって支持位置の微調整が可能
なるようにして連結される。第1の外周ホルダ20,2
0は,サポータ22によって筐体16内の下面に固定さ
れた下平座23に取り付けられる。同様に第2の外周ホ
ルダ21,21は,サポータ22によって筐体16内の
上面に固定された上平座24に取り付けられる。上記構
成によって,電極1,3が筐体16の上面に,電極2,
4が筐体16の下面に電気的にも接続され,筐体16の
周面をインダクタとし,別途構成されるコンデンサと共
に,筐体16内に共振回路を形成した共振空洞が構成さ
れるが,電気的な構成についての説明は割愛する。上記
構成における電極1,2,3,4と,これを支持する第
1及び第2の電極ホルダ18,19とは,図3に示すよ
うに一体的に組み立てられた後,筐体16内に収容され
る。このとき,交互に配列される第1の電極ホルダ1
8,18と第2の電極ホルダ19,19との間の連結支
持を行うために,各電極ホルダ18,19に設けられた
支持棒挿入穴25に,図示するように支持棒26,26
を嵌挿させて,筐体16内への収容までの連結剛性を確
保させる。この図3に示すような一体的な組み立て状態
で電極1,2,3,4の位置精度を±25μmの誤差内
に調整用治具を用いて調整する。この組み立て及び精度
調整の作業は,従来の作業と異なり,筐体16の外の自
由空間で行い得るため,作業性が格段によくなることは
言うまでもない。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. still,
The following example is an example embodying the present invention and does not limit the technical scope of the present invention. Figure 1
FIG. 2 is a perspective view showing an RFQ quadrupole electrode supporting structure according to an embodiment of the present invention, FIG. 2 is a front view of a first electrode holder position (a) and a second electrode holder position front view (B). 3 is a perspective view showing a state in which the quadrupole electrode is supported by the first and second electrode holders and integrally assembled. In FIG. 1, an RFQ 15 according to the present embodiment has electrodes 1, 2, 3, 4 arranged in the central axis direction so as to face each other around a central axis 14 of a cylindrical casing 16 that constitutes a resonance cavity. It constitutes a quadrupole electrode. The electrodes 1, 2, 3, 4 have a central axis 1
First electrode holders 18, 18 alternately arranged in four directions
And the second electrode holders 19, 19.
As shown in FIG. 2A, the first electrode holder 18 has a rectangular opening in which the long sides supporting the electrodes 1 and 3 (first electrode pair) are formed in the vertical direction in the drawing. 1, 3 are attached to the predetermined positions of the long sides with knock pins or the like, and electrodes 2,
No. 4 is penetrated without contact. As shown in FIG. 2B, the second electrode holder 19 has a rectangular opening in which long sides for supporting the electrodes 2 and 4 (second electrode pair) are formed in the horizontal direction in the drawing. 2, 4 are attached to predetermined positions on the long side by knock pins or the like, and the electrodes 1, 3 are penetrated without contact. The first electrode holder 18 and the second electrode holder 19 are each formed in a square outer shape, and the first frame is formed with an inner frame capable of providing a space of several mm around the outer shape.
Are supported by the outer peripheral holder 20 and the second outer peripheral holder 21, respectively. The support of the electrode holders 18 and 19 by the outer peripheral holders 20 and 21 is connected by joint screws 17 and 17 as shown in the figure so that the support position can be finely adjusted. First outer peripheral holder 20, 2
0 is attached to the lower flat seat 23 fixed to the lower surface of the housing 16 by the supporter 22. Similarly, the second outer peripheral holders 21 and 21 are attached to the upper flat seat 24 fixed to the upper surface of the housing 16 by the supporters 22. With the above configuration, the electrodes 1 and 3 are provided on the upper surface of the housing 16, and the electrodes 2 and 3 are
4 is also electrically connected to the lower surface of the housing 16, the peripheral surface of the housing 16 serves as an inductor, and a resonance cavity in which a resonant circuit is formed in the housing 16 together with a separately configured capacitor, A description of the electrical configuration is omitted. The electrodes 1, 2, 3 and 4 and the first and second electrode holders 18 and 19 that support the electrodes in the above-described configuration are integrally assembled as shown in FIG. Be accommodated. At this time, the first electrode holders 1 alternately arranged
8 and 18 and the second electrode holders 19 and 19 are connected and supported by the support rod insertion holes 25 provided in the electrode holders 18 and 19 as shown in FIG.
Is inserted to secure the connection rigidity until the housing 16 is housed. In the integrally assembled state as shown in FIG. 3, the positional accuracy of the electrodes 1, 2, 3, 4 is adjusted within an error of ± 25 μm using an adjustment jig. It is needless to say that this assembling and precision adjusting work can be performed in a free space outside the housing 16 unlike the conventional work, so that workability is significantly improved.

【0007】上記のようにして一体的に組み立てられ,
精度調整がなされた状態の電極1,2,3,4と各電極
ホルダ18,19とは筐体16内に挿入され,各外周ホ
ルダ20,21にジョイントネジ17で位置固定される
と共に,ジョイントネジ17によって電極1,2,3,
4が所定位置に収まるよう調整される。その後,支持棒
26,26を引き出すことによって,電極1,2,3,
4の筐体16内への取付けが完了する。上記構成によっ
て,電極1,2,3,4の間隔精度は確保され,筐体1
6内への設置位置はジョイントネジ17によって調整で
きるので,各外周ホルダ20,21あるいはサポータ2
2,下平座23,上平座24の加工及び組み立て精度は
±1mm程度に緩和される。ところで,荷電粒子を効率よ
く収束加速することができるRFQは,近来とみにその
需要度の高い半導体プロセスに利用される。例えば,半
導体基板に対してイオン注入を行う場合には,イオン源
からのイオンビームを四重極電極間に入射させることに
より,任意の速度に加速することができる。このような
半導体プロセスのためのイオン注入の用に供するとき,
イオン種とイオンビーム速度が選択できことが要求され
る。イオンの加速は,イオンの速度増加,バンチング状
況に合わせて四重極電極に形成されている凹凸周期や電
極間隔を変化させた電極設計によって100%近い輸送
効率が得られる。そこで,前記要求を満たすためには,
目的に適合した設計がなされた四重極電極に交換するこ
とができる電極交換方式のRFQが望まれている。とこ
ろが,従来構成になるRFQでは,四重極電極の交換は
容易でないことは先に述べた。上記電極交換方式のRF
Qとして採用するに,本実施例構成になるRFQが適し
ていることは既に理解されよう。あえて説明を加えるな
らば,その手順は次の通りである。交換すべく取り付け
るための電極1a,2a,3a,4aを図3に示したよ
うに各電極ホルダ18a,19a上に組み立て,精度調
整を行った状態で準備しておく。次に,筐体16内の各
電極ホルダ18b,19bに支持棒26bを挿入した
後,ジョイントネジ17を緩めて各電極ホルダ18b,
19bと共に電極1b,2b,3b,4bを引き出す。
その後,一体的に組み立てて準備した電極1a,2a,
3a,4aと各電極ホルダ18a,19aとを筐体16
内に挿入して各外周ホルダ20,21に組み付ける。電
極1a,2a,3a,4aの設置位置が調整された後,
支持棒26aを引き抜けば交換作業は完了となる。この
電極交換では,電極間隔の調整は既に準備段階でなされ
ているので,筐体16内で微妙な精度調整を行う難度の
高い作業はなくなり,作業性も作業時間も大幅に改善さ
れる。尚,本実施例においては,空洞共振型のRFQに
ついて説明したが,筐体外に共振回路を備えた外部共振
型のRFQに対しても同様に適用することができる。
Assembled integrally as described above,
The electrodes 1, 2, 3, 4 and the electrode holders 18, 19 in which the precision is adjusted are inserted into the housing 16, and the outer peripheral holders 20, 21 are fixed in position by joint screws 17 and joints are formed. The screws 17, electrodes 1, 2, 3,
4 is adjusted to fit in place. After that, by pulling out the support rods 26, 26, the electrodes 1, 2, 3,
The mounting of No. 4 in the housing 16 is completed. With the above configuration, the accuracy of the spacing between the electrodes 1, 2, 3, 4 is ensured, and the housing 1
Since the installation position in 6 can be adjusted by the joint screw 17, each outer holder 20, 21 or supporter 2
2. The processing and assembling accuracy of the lower flat seat 23 and the upper flat seat 24 is relaxed to about ± 1 mm. By the way, the RFQ capable of efficiently converging and accelerating charged particles is used in a semiconductor process, which has recently been highly demanded. For example, when ion implantation is performed on a semiconductor substrate, an ion beam from an ion source can be injected between the quadrupole electrodes to accelerate it to an arbitrary speed. When it is used for ion implantation for such a semiconductor process,
It is required that the ion species and ion beam velocity can be selected. As for ion acceleration, a transport efficiency close to 100% can be obtained by an electrode design in which the period of concavities and convexities formed on the quadrupole electrode and the electrode interval are changed according to the increase in ion velocity and bunching conditions. Therefore, in order to meet the above requirements,
There is a demand for an electrode exchange type RFQ that can be exchanged for a quadrupole electrode designed to meet the purpose. However, as described above, it is not easy to replace the quadrupole electrode in the RFQ having the conventional configuration. Electrode exchange type RF
It will be already understood that the RFQ having the configuration of this embodiment is suitable for being adopted as the Q. If I dare to explain, the procedure is as follows. The electrodes 1a, 2a, 3a and 4a to be attached for replacement are assembled on the electrode holders 18a and 19a as shown in FIG. 3 and prepared in a state where the accuracy is adjusted. Next, after inserting the support rod 26b into each of the electrode holders 18b and 19b in the housing 16, loosening the joint screw 17 and then each of the electrode holders 18b and 19b.
The electrodes 1b, 2b, 3b and 4b are pulled out together with 19b.
After that, the electrodes 1a, 2a, which are integrally assembled and prepared,
3a, 4a and each electrode holder 18a, 19a
It is inserted into the inside and attached to each outer circumference holder 20, 21. After the installation positions of the electrodes 1a, 2a, 3a, 4a are adjusted,
The exchange work is completed when the support rod 26a is pulled out. In this electrode exchange, since the electrode interval is already adjusted in the preparatory stage, there is no need for highly difficult work for finely adjusting the precision in the housing 16, and workability and work time are greatly improved. Although the cavity resonance type RFQ has been described in the present embodiment, it can be similarly applied to an external resonance type RFQ having a resonance circuit outside the housing.

【0008】[0008]

【発明の効果】以上の説明の通り本発明に係るRFQの
構成によれば,四重極電極は複数の第1及び第2の電極
ホルダによって支持することによって一体的に,且つ電
極間の位置精度を確保した状態に組立てられる。この第
1及び第2の電極ホルダで支持された状態の四重極電極
を筐体内に収容し,筐体内の所定位置に固定された複数
の第1及び第2の外周ホルダにより前記第1及び第2の
電極ホルダを支持することによって,四重極電極は筐体
内に精度よく配設される。また,四重極電極の交換作業
においても,同様に四重極電極を支持した第1及び第2
の電極ホルダを筐体内に固定された第1及び第2の外周
ホルダに着脱させる作業を行うことによってなされる。
従って,四重極電極の高精度の組立て作業は筐体外で実
施できるので,作業性がよく,筐体側の精度誤差の影響
を排除することができる。また,四重極電極の交換を行
うに際しても,予め第1及び第2の電極ホルダに精度よ
く支持された状態のものを準備して交換することによ
り,交換の作業性がよく,作業時間の短縮や装置に損傷
を与えることが防止される。
As described above, according to the structure of the RFQ according to the present invention, the quadrupole electrode is integrally supported by being supported by the plurality of first and second electrode holders, and the position between the electrodes can be improved. It is assembled in a state where accuracy is secured. The quadrupole electrode in a state of being supported by the first and second electrode holders is housed in a housing, and the first and second outer peripheral holders fixed at predetermined positions in the housing are used to store the first and second electrodes. By supporting the second electrode holder, the quadrupole electrode is accurately arranged in the housing. Moreover, also in the replacement work of the quadrupole electrode, the first and second supporting quadrupole electrodes are similarly supported.
This is done by attaching and detaching the electrode holder to and from the first and second outer peripheral holders fixed in the housing.
Therefore, since the highly accurate assembly work of the quadrupole electrode can be performed outside the housing, the workability is good and the influence of the accuracy error on the housing side can be eliminated. Also, when replacing the quadrupole electrode, it is possible to improve the workability of the replacement and to reduce the work time by preparing and replacing the quadrupole electrode that is accurately supported by the first and second electrode holders in advance. Shortening and damage to the device are prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るRFQの四重極電極
支持構造を示す斜視図。
FIG. 1 is a perspective view showing an RFQ quadrupole electrode support structure according to an embodiment of the present invention.

【図2】 実施例に係る第1の電極ホルダ設置位置の正
面図(a)と第2の電極ホルダ設置位置の正面図
(b)。
FIG. 2 is a front view (a) of a first electrode holder installation position and a front view (b) of a second electrode holder installation position according to the embodiment.

【図3】 実施例に係る四重極電極を第1及び第2の電
極ホルダによって支持して一体的に組み立てた状態を示
す斜視図。
FIG. 3 is a perspective view showing a state in which the quadrupole electrode according to the embodiment is supported by first and second electrode holders and integrally assembled.

【図4】 従来例に係るRFQの斜視図。FIG. 4 is a perspective view of an RFQ according to a conventional example.

【図5】 四重極電極の動作原理を説明する模式図。FIG. 5 is a schematic diagram illustrating the operating principle of a quadrupole electrode.

【図6】 従来例に係る四重極電極の支持構造を示す斜
視図。
FIG. 6 is a perspective view showing a support structure for a quadrupole electrode according to a conventional example.

【符号の説明】[Explanation of symbols]

1,3…電極(第1の電極対) 2,4…電極(第2の電極対) 14…中心軸 15…高周波四重極加速装置(RFQ) 16…筐体 18…第1の電極ホルダ 19…第2の電極ホルダ 20…第1の外周ホルダ 21…第2の外周ホルダ 1, 3 ... Electrode (first electrode pair) 2, 4 ... Electrode (second electrode pair) 14 ... Central axis 15 ... Radio frequency quadrupole accelerator (RFQ) 16 ... Housing 18 ... First electrode holder 19 ... 2nd electrode holder 20 ... 1st outer periphery holder 21 ... 2nd outer periphery holder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 行人 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 鈴木 敏司 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Furukawa 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Institute of Technology, Kobe Steel Co., Ltd. (72) Satoshi Suzuki Takatsuka, Nishi-ku, Kobe-shi, Hyogo Prefecture 1-5-5 stand, Kobe Steel, Ltd. Kobe Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 相対向する2対の電極が十字方向に配置
されてなる四重極電極を筒状の筐体内部の中心軸方向に
配設し,該四重極電極に高周波電力を印加して四重極電
極間を通過させる荷電粒子を任意の速度に加速する高周
波四重極加速装置において,前記四重極電極の一方向に
対向配置された第1の電極対を支持する複数の第1の電
極ホルダと,前記四重極電極の他方向に対向配置された
第2の電極対を支持する複数の第2の電極ホルダとを前
記筐体内部の中心軸方向に交互に所定間隔で配置すると
共に,前記各第1の電極ホルダを支持する複数の第1の
外周ホルダと,前記各第2の電極ホルダを支持する複数
の第2の外周ホルダとを前記筐体内に交互に所定間隔で
固定してなることを特徴とする高周波四重極加速装置。
1. A quadrupole electrode in which two pairs of electrodes facing each other are arranged in a cross direction is arranged in a central axis direction inside a cylindrical casing, and high frequency power is applied to the quadrupole electrode. In a high-frequency quadrupole accelerator for accelerating charged particles passing between quadrupole electrodes to an arbitrary speed, a plurality of first electrode pairs that are arranged to face each other in one direction of the quadrupole electrodes are supported. A first electrode holder and a plurality of second electrode holders supporting a second electrode pair arranged opposite to each other in the other direction of the quadrupole electrode are alternately arranged at predetermined intervals in the central axis direction inside the casing. And a plurality of first outer peripheral holders that support the first electrode holders and a plurality of second outer peripheral holders that support the second electrode holders are alternately arranged in the housing. A high-frequency quadrupole accelerator characterized by being fixed at intervals.
JP3017293A 1993-02-19 1993-02-19 High frequency quadrupole accelerator Pending JPH06243998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017293A JPH06243998A (en) 1993-02-19 1993-02-19 High frequency quadrupole accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017293A JPH06243998A (en) 1993-02-19 1993-02-19 High frequency quadrupole accelerator

Publications (1)

Publication Number Publication Date
JPH06243998A true JPH06243998A (en) 1994-09-02

Family

ID=12296337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017293A Pending JPH06243998A (en) 1993-02-19 1993-02-19 High frequency quadrupole accelerator

Country Status (1)

Country Link
JP (1) JPH06243998A (en)

Similar Documents

Publication Publication Date Title
US8492713B2 (en) Multipole assembly and method for its fabrication
EP2372748B1 (en) Microengineered multipole rod assembly
US8173976B2 (en) Linear ion processing apparatus with improved mechanical isolation and assembly
GB2035680A (en) Micro lens array and micro deflector assembly for fly's eye electron beam tubes
EP1641327A3 (en) Plasma-electric power generation system
EP3336878B1 (en) Quadrupole rod assembly
US20220248523A1 (en) Rf quadrupole particle accelerator
JP2001522514A (en) Microdevices for generating multipole fields, especially for separating, deflecting or focusing charged particles
US6239541B1 (en) RFQ accelerator and ion implanter to guide beam through electrode-defined passage using radio frequency electric fields
JPH06243998A (en) High frequency quadrupole accelerator
JP2004241190A (en) Multipole lens, method of manufacturing multipole therefor and charged particle beam apparatus
JP3945601B2 (en) Isochronous cyclotron
JP6061283B2 (en) Multi-electrode manufacturing method
JP2002231168A (en) Wien filter
EP3989262A1 (en) Method for ion trap manufacturing
KR101610597B1 (en) Magnetic core in particle accelerator
JP3504856B2 (en) Electrostatic deflection device and method of manufacturing electrostatic deflection device
RU2152143C1 (en) Quadruple accelerating structure
JP2879302B2 (en) Magnetic field generator for magnetron plasma etching
JPH10326700A (en) Insertion type polarized light generator
JPH0735360Y2 (en) High frequency multipole accelerator
JPH07326499A (en) High frequency linear accelerator
JPH04209500A (en) Ion beam acceleration and deceleration unit
JPH06163199A (en) High frequency quadripole accelerator
JPH05121197A (en) High-energy ion implanter