JPH06243737A - 酸化物超電導コイル - Google Patents

酸化物超電導コイル

Info

Publication number
JPH06243737A
JPH06243737A JP5052917A JP5291793A JPH06243737A JP H06243737 A JPH06243737 A JP H06243737A JP 5052917 A JP5052917 A JP 5052917A JP 5291793 A JP5291793 A JP 5291793A JP H06243737 A JPH06243737 A JP H06243737A
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
temperature
oxide
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052917A
Other languages
English (en)
Inventor
Eiji Yanagisawa
栄治 柳沢
Toshiya Matsubara
俊哉 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5052917A priority Critical patent/JPH06243737A/ja
Publication of JPH06243737A publication Critical patent/JPH06243737A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【目的】液体ヘリウムを使用せずに電源のみで動作する
酸化物超電導コイルを得る。 【構成】最低到達温度が4K〜70Kの冷凍機冷却で動
作する超電導コイルにあって、電力供給を行うリードの
一部分を温度がReBa2 Cu3 y の超電導臨界温度
以下の温度領域において、希土類系超電導材料の溶融凝
固体を用いた酸化物超電導コイル。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、酸化物超電導コイルに
関するものである。
【0002】
【従来の技術】従来、液体ヘリウム温度で使用する超電
導コイルに電力供給を行う電流リードは電気伝導度が高
く、電気抵抗による発熱の少ない銅等の金属が用いられ
てきた。これらの金属は、電気の良導体であるだけでな
く、熱の良導体でもあるので外界の熱を良く伝達してし
まう。このため冷媒の液体ヘリウムの蒸発量が大きくな
り、冷媒の補充サイクルが短くなる。さらに液体ヘリウ
ムは、高価で取扱いが難かしいという問題点であった。
【0003】この問題に対して、最近金属製の電流リー
ドに代えて、鉛を添加したBi系2223相超電導体の
多結晶焼結体ロッド、あるいは同じ系の銀シース圧延テ
ープ線材の超電導電流リードを用いることにより大電流
を低損失で、かつ外界からの熱侵入量を抑えて供給する
ことも報告されている(第39回応用物理学会関係連合
会、講演予稿集30P−ZN−5、30P−ZN−2あ
るいは低温工学Vol.26、No.6、59(199
1)等参照)。
【0004】しかし、多結晶焼結体ロッドは、多結晶で
あり臨界電流密度が低いため断面積を大きくする必要が
あり、また銀シース圧延テープ線材は、臨界電流密度は
比較的高いが、熱伝導性の良好な銀と複合化しているた
め熱侵入量を低く抑えることが困難である。
【0005】さらにBi系超電導体電流リードは、20
K以上で臨界温度密度の磁場依存性が大きく、液体窒素
温度においては更にこの傾向が顕著となり、磁場印加に
より急激に臨界電流密度が減少することが知られてい
る。すなわち、Bi系超電導電流リードでは、大電流が
電流リードを通過することにより発生する自己磁場に加
えて超電流コイルからの距離に依存して磁場が印加さ
れ、臨界電流密度が減少する。
【0006】例えばMRI等に実用されている超電導コ
イルの場合、コイルの発生する磁場が0.5〜2テスラ
と大きく、リード部分には自己磁場に加えて超電導コイ
ルからの距離に依存して最大0.2テスラ程度の磁場が
印加される。したがってBi系超電導体を電流リードと
して使用するにあたっては、磁場印加による臨界電流密
度の劣化分を補うことが必要となり、断面積を大きくす
る必要があり熱侵入量を低く抑えるうえで問題点があ
る。
【0007】一方、近年冷凍技術は著しく進歩し、例え
ばGM冷凍機のごとく、小型で省電力タイプで4K〜1
0K程度まで比較的容易に冷却可能な冷凍機が開発され
るようになった。そこで、従来の超電導線材とこの冷凍
機などとの組合せで、冷凍機冷却型の超電導コイルが考
案されている(袴田他、1992年度秋季低温工学・超
電導学会予稿集、P300)。
【0008】しかし、これら冷凍機と液体ヘリウムとの
冷却能力の差は大きく、超電導状態が線材の一部分で破
れて温度上昇が起った場合、もとの温度に復帰させるこ
とに要する時間が長時間となるという問題点がある。
【0009】
【発明が解決しようとする課題】本発明の目的は、液体
ヘリウムを使用せずに電源のみで動作する冷凍機冷却型
の酸化物超電導コイルを提供するものである。
【0010】
【課題を解決するための手段】本発明は、最低到達温度
が4K〜70Kの冷凍機冷却で動作する超電導コイルで
あって電力供給を行う電流リードの一部分を、温度がR
eBa2 Cu3 y (ReはY、Lu、Yb、Tm、E
r、Ho、Dy、Gd、Eu、Sm、Nd、Pr、La
からなる群より選ばれた1種以上の元素、yは酸素量)
からなる超電導化合物の超電導臨界温度以下の温度領域
において、希土類系超電導材料の溶融凝固体を用いるこ
とを特徴とする酸化物超電導コイルを提供するものであ
る。すなわち、冷媒として液体ヘリウムを用いないで、
冷凍機で冷却することにより電源のみで動作する冷凍機
冷却型の酸化物超電導コイルである。
【0011】本発明の冷凍機冷却型超電導コイルにおい
て、電力供給を行う電流リードである酸化物超電導体
は、従来の超電導コイルの電流リードに用いられている
材質の銅に比べて液体窒素温度(77K)の温度近傍
で、熱伝導率が2桁以上小さく、大電流を通電した際に
も電気抵抗が零でありジュール発熱なしに、外界からの
熱侵入を極力抑えて直流の大電流を超電導コイルに供給
する電流リード材料として好適である。
【0012】また、超電導電流リードに電力供給を行う
際の雰囲気温度領域が酸化物超電導体の臨界温度からみ
て、液体窒素温度近傍の比較的高い温度領域を含むた
め、酸化物超電導体のなかでも液体窒素温度近傍の温度
において、他の酸化物超電導体(例えばビスマス系超電
導体)に比べて臨界電流密度の磁場依存性が小さい希土
類系超電導材料の溶融凝固体を用いることにより電流密
度を大きく保つことができる。すなわち大容量の直流電
流を通電しながら、それ自身では電気抵抗値が零であっ
て電気抵抗による発熱をせずに、かつ外界から超電導コ
イルへ向かう熱の侵入量を低く抑えること、更に加え
て、それ自身が通電時に発生する磁場(自己磁場)およ
び超電導コイルから漏れ出てくる磁場に対して超電導特
性の変化すなわち臨界電流密度の劣化が少ないという優
れた特性を有している。
【0013】具体的には、主な通電体である溶融凝固法
により配向成長させた希土類系超電導体は、液体窒素温
度近傍でも粒子直径0.01〜20μmの希土類元素か
ら構成されるY2 BaCuO5 、BaSnO3 、Ag、
Auが磁束のピン止めとして寄与するため、超電導電流
が効率よく流れるようにリードの通電方向(長手方向)
に対して結晶軸のc軸を垂直に配向して結晶成長させた
c軸配向凝固体は高磁界まで高い臨界電流密度を維持し
良好な超電導特性を示すことが知られており、Bi、T
l系の超電導体からなる電流リードと比較して優れると
考えられる。
【0014】本発明において用いられる溶融凝固法によ
り配向成長させた希土類系超電導体は、単独でも、また
機械強度を増強し、または配向組織を連続して成長させ
るためバッファー層を施したセラミックスあるいは金
属、繊維強化プラスチックと複合化した物を用いてもよ
い。
【0015】また、希土類元素から構成されるY2 Ba
CuO5 を微細分散させるのに有効なPtを微量に添加
してもよい。
【0016】また一方、本発明の超電導コイル線材とし
ては、線材としてNb−Ti、Nb3 Sn、Nb3
e、Nb3 Al等の合金あるいは化合物型の臨界温度が
25K以下の超電導線材を用いて比較的臨界電流を低く
保つことにより、電流リードの断面積、接続部分の抵抗
発熱の絶対値を総合的に抑えながら常電導磁石では発生
できない高磁界を発生することができる。
【0017】さらに、4.2K,10テスラ以上の高磁
界中で従来材料を上回る超電導特性を有し、かつ臨界温
度が液体窒素温度近傍かそれ以上のBi−Sr−Ca−
Cu−O系2212相/Ag部分溶融凝固線材を用いる
ことが、動作温度が従来に比べて高温となり、液体ヘリ
ウム冷媒に比べて冷却能力の小さな冷凍機冷却システム
において、線材の超電導状態を安定に保ち、超電導状態
が破れた際の復帰に要する時間を短縮する面からより望
ましい。
【0018】冷凍機としては、GM冷凍機のごとく10
K程度まで、また蓄冷材により4K程度まで冷却できる
ものが使用できる。
【0019】
【実施例】
実施例1 原料粉としてYBa2 Cu3 y 、Ho2 BaCu
5 、BaSnO3 、Agの微粉末を各々6:4:2:
0.01モルの割合でボールミルを用いて均一に混合
し、1.5トン/cm2 の圧力で静水圧プレス成形した
直径4mm、長さ170mmの円柱状試料を作製した。
これを940℃、20時間大気中で焼成した後、温度勾
配が200℃/cmの電気炉で最高温度を1030℃と
して、鉛直方向に1mm/hの移動速度で一方向溶融凝
固成長を行い、液体窒素温度での臨界電流が600A
(77K、OT)のY系配向多結晶ロッドを得た。
【0020】また、金属元素の仕込み組成をBi:S
r:Ca:Cu=2:2.05:0.95:2となるよ
うに酸化物または炭酸塩の粉末を秤量後、ボールミルを
用いて混合し、750℃、780℃、800℃の各温度
で20時間大気中で仮焼し、粉砕した原料粉を用いて、
ドクターブレード法で成形を行い、厚さ80μmのグリ
ーンシートテープを得た。これを厚さ50μmの銀板の
表および裏に接着し、最高温度880℃で部分溶融凝固
して幅12mm、長さ200mmのc軸配向テープから
内径35mm、外径120mm、高さ10mmの超電導
コイルを作製し、さらにこれを6段に重ねて直列に接続
し、高さ約120mmの超電導コイルを作製した。
【0021】これらを用いて、冷凍機として70Kの1
段ステージが50W、20Kの2段ステージが10Wの
GM冷凍機と組み合わせることにより動作温度20Kに
おいて、通電電流が200Aで3.5テスラの磁場を発
生することができた。
【0022】実施例2 原料粉としてHoBa2 Cu3 y 、Y2 BaCu
5 、BaSnO3 、Agの微粉末を各々6:4:2:
0.1モルの割合でボールミルを用いて均一に混合し、
1.5トン/cm2 の圧力で静水圧プレス成形した直径
2mm、長さ170mmの円柱状試料を作製した。これ
を940℃、20時間大気中で焼成した後、温度勾配が
200℃/cmの電気炉で最高温度を1030℃とし
て、鉛直方向に1mm/hの移動速度で一方向溶融凝固
成長を行い、液体窒素温度での臨界電流が400A(7
7K、OT)のY系配向多結晶ロッドを得た。
【0023】またこれと、内径60mm、外径165m
m、高さ190mmのNb3 Sn線材を使用した超電導
コイルとを用いて、冷凍機として50Kの1段ステージ
が40W、4Kの2段ステージが3WのGM冷凍機と組
み合わせることにより、動作温度5Kにおいて、6テス
ラの磁場を発生することができた。
【0024】
【発明の効果】本発明は、液体ヘリウムを用いることな
しに、電源のみで動作する冷凍機冷却型超電導コイルに
関するものであり、この発明により超電導コイルを超電
導磁石として使用した場合、これまで液体ヘリウムとい
う特殊な冷媒を使用するが故に一般への普及が制限され
ていた、常電導磁石あるいは永久磁石では発生できなか
った3テスラ以上の高磁場を有する空間を電源のみを確
保することにより容易に得られる超電導磁石を実現で
き、またこれを一般に広く普及できるという効果を有す
る。
【0025】また、本発明の構成で、超電導コイルを無
誘導巻とすれば、超電導磁石のみならず電力系統に生ず
る短絡電流を瞬時に抑制する超電導限流器としても応用
することができる。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】最低到達温度が4K〜70Kの冷凍機冷却
    で動作する超電導コイルにあって電力供給を行う電流リ
    ードの一部分を、温度がReBa2 Cu3 y (Reは
    Y、Lu、Yb、Tm、Er、Ho、Dy、Gd、E
    u、Sm、Nd、Pr、Laからなる群より選ばれた1
    種以上の元素、yは酸素量)からなる超電導化合物の超
    電導臨界温度以下の温度領域において、希土類系超電導
    材料の溶融凝固体を用いることを特徴とする酸化物超電
    導コイル。
  2. 【請求項2】超電導臨界温度から冷凍機で冷却可能な到
    達温度範囲で動作する超電導コイルに電力供給を行う電
    流リードにおいて、その微細組織が、超電導電流が効率
    よく流れるようにリードの通電方向に対して少なくとも
    結晶のc軸が垂直に配向した溶融凝固法により形成され
    た、希土類系超電導体を主な通電体とすることを特徴と
    する請求項1の酸化物超電導コイル。
  3. 【請求項3】電流リードの組成が、ReBa2 Cu3
    7-x (Re:希土類)を母相として、その中に粒子直径
    0.01〜20μmの希土類元素から構成されるY2
    aCuO5 、BaSnO3 、Ag、Auの少なくとも一
    種以上を均一に含有する溶融凝固体からなることを特徴
    とする請求項1の酸化物超電導コイル。
  4. 【請求項4】冷凍機冷却で動作する超電導コイルにおい
    て超電導コイルの線材として50K以上の臨界温度を有
    する酸化物超電導線材からなることを特徴とする請求項
    1の酸化物超電導コイル。
  5. 【請求項5】冷凍機冷却で動作する超電導コイルにおい
    て超電導コイルの線材としてBi−Sr−Ca−Cu−
    O系2212相を銀基板上、あるいは銀シース内で部分
    溶融し、凝固により作製した酸化物超電導線材を用いる
    ことを特徴とする請求項1の酸化物超電導コイル。
  6. 【請求項6】冷凍機冷却で動作する超電導コイルにおい
    て超電導コイルの線材としてNb−Ti、Nb3 Sn、
    Nb3 Ge、Nb3 Alの合金あるいは化合物型の臨界
    温度が25K以下の超電導線材を用いることを特徴とす
    る請求項1の酸化物超電導コイル。
JP5052917A 1993-02-18 1993-02-18 酸化物超電導コイル Pending JPH06243737A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052917A JPH06243737A (ja) 1993-02-18 1993-02-18 酸化物超電導コイル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052917A JPH06243737A (ja) 1993-02-18 1993-02-18 酸化物超電導コイル

Publications (1)

Publication Number Publication Date
JPH06243737A true JPH06243737A (ja) 1994-09-02

Family

ID=12928186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052917A Pending JPH06243737A (ja) 1993-02-18 1993-02-18 酸化物超電導コイル

Country Status (1)

Country Link
JP (1) JPH06243737A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038840A1 (en) * 2001-11-02 2003-05-08 Sumitomo Electric Industries, Ltd. Superconducting cable and superconducting cable line
JP2008270307A (ja) * 2007-04-17 2008-11-06 Sumitomo Electric Ind Ltd 超電導コイルおよびそれに用いる超電導導体
JP2012174565A (ja) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd 酸化物超電導体形成用の原料溶液

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038840A1 (en) * 2001-11-02 2003-05-08 Sumitomo Electric Industries, Ltd. Superconducting cable and superconducting cable line
US7149560B2 (en) 2001-11-02 2006-12-12 Sumitomo Electric Industries, Ldt. Superconducting cable and superconducting cable line
JP2008270307A (ja) * 2007-04-17 2008-11-06 Sumitomo Electric Ind Ltd 超電導コイルおよびそれに用いる超電導導体
WO2008133003A1 (ja) * 2007-04-17 2008-11-06 Sumitomo Electric Industries, Ltd. 超電導コイルおよびそれに用いる超電導導体
US8185175B2 (en) 2007-04-17 2012-05-22 Sumitomo Electric Industries, Ltd. Superconducting coil and superconductor used for the same
JP2012174565A (ja) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd 酸化物超電導体形成用の原料溶液

Similar Documents

Publication Publication Date Title
AU603942B2 (en) Devices and systems based on novel superconducting material
EP0284062B2 (en) Ceramic oxide superconductive composite material
US4942151A (en) Magnetic preferential orientation of metal oxide superconducting materials
JP2636049B2 (ja) 酸化物超電導体の製造方法および酸化物超電導線材の製造方法
KR100524466B1 (ko) 산화물 초전도체의 접합방법 및 산화물 초전도체 접합체
Alford et al. Processing, properties and devices in high-Tc superconductors
US5061681A (en) Superconducting thin material and a method for preparing the same
Marken Fundamental issues in high temperature superconductor (HTS) materials science and engineering
EP0286521B1 (en) Superconducting composite
JPH06243737A (ja) 酸化物超電導コイル
US5262398A (en) Ceramic oxide superconductive composite material
Kitaguchi et al. Advances in Bi-Based High-Tc superconducting tapes and wires
JP5162088B2 (ja) 窒素−酸素混合冷媒による冷却方法
JPH1125771A (ja) 酸化物超電導テープ材とその製造方法
JPH06231950A (ja) 超電導磁石
Slimani et al. Fabrication Technologies of Superconducting Cables and Wires
JP2779210B2 (ja) 電流リード用導体
JP3283691B2 (ja) 高ダンピング酸化物超伝導材料およびその製造方法
US5508252A (en) Bi oxide superconductors
Martini et al. Electrical properties of multifilamentary Bi (Pb)-2223/Ag tapes
US5334579A (en) Process for preparing superconducting material
Dubey STUDY OF HIGH TEMPERATURE SUPERCONDUCTORS, ITS RARE EARTH NANOCOMPOSITES AND THEIR BULK TECHNOLOGY
Hu et al. Development and applications of high T c superconducting bulk materials
JP3240133B2 (ja) 酸化物超電導体およびそれを用いた超電導線材
Rietschel High Temperature Superconductors From Basic Research to Technology