JPH06242029A - Reflection electron diffraction intensity measuring equipment - Google Patents

Reflection electron diffraction intensity measuring equipment

Info

Publication number
JPH06242029A
JPH06242029A JP5506893A JP5506893A JPH06242029A JP H06242029 A JPH06242029 A JP H06242029A JP 5506893 A JP5506893 A JP 5506893A JP 5506893 A JP5506893 A JP 5506893A JP H06242029 A JPH06242029 A JP H06242029A
Authority
JP
Japan
Prior art keywords
sample
electron beam
diffraction
vacuum chamber
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5506893A
Other languages
Japanese (ja)
Other versions
JP3266359B2 (en
Inventor
Ko Fuwa
耕 不破
Kazuhiro Yamamuro
和弘 山室
Saburo Shimizu
三郎 清水
Hiroshi Yanagida
博司 柳田
Junichi Shigetomi
潤一 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP05506893A priority Critical patent/JP3266359B2/en
Publication of JPH06242029A publication Critical patent/JPH06242029A/en
Application granted granted Critical
Publication of JP3266359B2 publication Critical patent/JP3266359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To allow intensity measurement of diffraction spot while irradiating a sample with an electron beam by calculating the surface position of a rotating sample instantaneously and then irradiating the position thus calculated with an electron beam. CONSTITUTION:A sample 4 mounted on a sample holder 3 placed in a vacuum chamber 1 is scanned by means of an electron beam projected from a scanning electron gun 2 while being irradiated with a substance evaporated from an evaporation source 5. When a thin film is being formed thereat, surface of the sample 4 is scanned acutely by means of an electron beam projected from the electron gun 2 and a diffraction pattern, generated at the time of reflection or diffraction on the surface of the sample 4, is projected to a fluorescent screen 6 provided on the wall of the vacuum chamber 1. Thus projected diffraction pattern is then observed through a measuring means 7 disposed on the outside of the vacuum chamber 1. A sample rotation mechanism 8 is controlled by a signal delivered from a control means 9 comprising a computer to regulate the starting point of rotary movement or the rotational speed of the sample 4. The electron gun 2 and the means 7 are also controlled in synchronism with the mechanism 8 by a signal delivered from the means 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、回転している試料の
高速反射電子線回折の回折斑点強度を走査型電子銃を用
いて正確に測定する反射電子線回折強度測定装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backscattered electron beam diffraction intensity measuring apparatus for accurately measuring the diffraction spot intensity of a high speed backscattered electron beam diffraction of a rotating sample by using a scanning electron gun.

【0002】[0002]

【従来の技術】真空槽中で試料を回転する必要性は、主
として分子線エピタキシー装置等の薄膜作成装置におい
て基板を回転させて膜厚および膜質の均一性を高めるこ
とにある。薄膜の評価としては、基板に薄膜を形成した
後、真空槽から基板を取り出し、膜厚分布・組成・結晶
構造・表面構造などの測定を行っていた。薄膜表面の顕
微鏡像を観察する手段としては、光学顕微鏡や2次電子
を検出する走査型電子顕微鏡があるが、いずれも薄膜の
成長中のその場観察に不向きである。その理由は、前者
は対物レンズと基板表面との距離が短いため、真空槽中
に入れて外部から観察すのは困難であるためである。後
者は2次電子検出器が汚れに敏感で、シンチレータの汚
染により検出感度が低下してしまうために成長雰囲気に
置くのは難しいためである。成長中の薄膜表面の顕微鏡
観察を可能とする手段の一つが、反射電子線回折顕微鏡
装置である。しかし、この反射電子線回折顕微鏡装置に
より、薄膜成長中に基板試料を回転させ、その表面を観
察するとなると、回転機構と装置の信号源である蛍光ス
クリーン上の回折斑点強度の測定機構とが独立した構造
であったため実現できなかった。
2. Description of the Related Art The necessity of rotating a sample in a vacuum chamber is mainly to rotate a substrate in a thin film forming apparatus such as a molecular beam epitaxy apparatus to improve the uniformity of film thickness and film quality. For the evaluation of the thin film, after forming the thin film on the substrate, the substrate was taken out from the vacuum chamber and the film thickness distribution, composition, crystal structure, surface structure, etc. were measured. As means for observing the microscopic image of the thin film surface, there are an optical microscope and a scanning electron microscope for detecting secondary electrons, but none of them is suitable for in-situ observation during growth of the thin film. The reason is that in the former case, since the distance between the objective lens and the surface of the substrate is short, it is difficult to put it in a vacuum chamber and observe it from the outside. The latter is because the secondary electron detector is sensitive to dirt and the scintillator contamination reduces the detection sensitivity, so that it is difficult to place it in a growth atmosphere. One of the means that enables microscopic observation of the surface of a growing thin film is a backscattered electron diffraction microscope apparatus. However, when this reflection electron beam diffraction microscope device rotates the substrate sample during thin film growth and observes its surface, the rotation mechanism and the diffraction spot intensity measuring mechanism on the fluorescent screen, which is the signal source of the device, are independent. It could not be realized because it had a structure.

【0003】また、1983年J.H.Neave等に
より、反射電子線回折の回折斑点強度が一原子層あるい
は一分子層の成長に伴なって振動する現象が発見され、
分子線エピタキシー法における薄膜作成技術に積極的に
利用されている。しかし、この場合も、試料を回転させ
ながら強度測定するには、蛍光強度の測定機構と基板の
回転機構とが別個に駆動される独立した構造であったた
め不可能であった。
In 1983, J. H. Neave et al. Discovered that the diffraction spot intensity of backscattered electron diffraction oscillates with the growth of one atomic layer or one molecular layer.
It is actively used in the thin film formation technology in the molecular beam epitaxy method. However, also in this case, it was impossible to measure the intensity while rotating the sample because the fluorescence intensity measuring mechanism and the substrate rotating mechanism had independent structures that were driven separately.

【0004】従来の反射電子線回折強度測定装置は、高
真空に排気された真空槽内において、電子銃から電子線
を試料表面すれすれに照射すると、試料表面の原子配列
や幾何学構造に依存した電子線の回折模様が蛍光スクリ
ーン上の発光として現れるようになる。その際、回折斑
点の任意の部分の強度をフォトマルチューブやテレビカ
メラによって測定することにより成長速度の制御が可能
になり、更に、走査型電子銃を用いることによって試料
表面の反射回折電子線像を得ることが可能になる。前者
の成長速度は薄膜の成長に伴う強度振動を測定すること
で制御可能となり、また、後者の反射回折電子線像の観
察は電子線の走査に伴う強度変化を測定することで可能
になる。
The conventional backscattered electron diffraction intensity measuring device depends on the atomic arrangement and geometric structure of the sample surface when the sample surface is irradiated with an electron beam from an electron gun in a vacuum chamber evacuated to a high vacuum. The diffraction pattern of the electron beam comes to appear as light emission on the fluorescent screen. At that time, the growth rate can be controlled by measuring the intensity of any part of the diffraction spots with a photomultiplier tube or a television camera. Furthermore, by using a scanning electron gun, the reflection diffraction electron beam image of the sample surface can be controlled. It will be possible to obtain. The former growth rate can be controlled by measuring the intensity oscillation accompanying the growth of the thin film, and the latter observation of the reflected diffraction electron beam image is possible by measuring the intensity change associated with the scanning of the electron beam.

【0005】反射回折電子線像の測定の概略は次の通り
である。試料上で所定の領域を選び、コンピューターで
制御された電子線をその所定の領域で走査させると、試
料上の場所による原子配列の違いや、幾何学構造の差を
反映して蛍光スクリーン上の回折模様の蛍光強度や形状
が変化し、その際の回折模様上のある特定部分の強度変
化を光ファイバーやテレビカメラで測定することによ
り、反射回折電子線像が得られるようになる。
The outline of the measurement of the reflected diffraction electron beam image is as follows. When a predetermined area is selected on the sample and an electron beam controlled by a computer is scanned in the predetermined area, the difference in atomic arrangement due to the location on the sample and the difference in geometric structure are reflected on the fluorescent screen. The fluorescence intensity or shape of the diffraction pattern changes, and the reflected diffraction electron beam image can be obtained by measuring the intensity change of a specific portion on the diffraction pattern at that time with an optical fiber or a television camera.

【0006】一方、成長中の薄膜の組成や膜厚分布の均
一性を改善する手段として、基板の回転が有効に応用さ
れてきた。
On the other hand, rotation of the substrate has been effectively applied as a means for improving the composition of the growing thin film and the uniformity of the film thickness distribution.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の反射電
子線回折強度測定装置は、回転中の試料の所定の位置に
電子線を照射し続けることが出来ず、また、試料の回転
機構と電子銃を含む強度測定系とが別の機構であるた
め、回転運動に同期して強度を測定することが出来ない
等の理由から、回転中の試料の表面に電子線を照射しな
がら、回折斑点の強度測定を行うことの出来ない問題が
あった。
However, the conventional backscattered electron diffraction intensity measuring device cannot continue to irradiate a predetermined position of the rotating sample with the electron beam, and the rotating mechanism of the sample and the electron Since the intensity measurement system including the gun is a different mechanism, it is not possible to measure the intensity in synchronization with the rotational movement. There was a problem that the strength measurement could not be performed.

【0008】この発明の目的は、従来の問題を解決し
て、回転中の試料の表面に電子線を照射しながら、回折
斑点の強度測定を行うことを可能にする反射電子線回折
強度測定装置を提供することにある。
An object of the present invention is to solve the conventional problems and to make it possible to measure the intensity of diffraction spots while irradiating the surface of a rotating sample with an electron beam. To provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、真空槽内に配置された試料ホルダー上
に取り付けられた試料に蒸発物質を照射して、そこに薄
膜を形成しているときに、走査型電子銃からの電子線を
試料の表面に鋭角的に照射しながら走査させ、試料の表
面で反射、回折するときに発生する回折模様を蛍光スク
リーンに投影させ、その投影された回折模様を真空槽外
の測定手段で観察する反射電子線回折強度測定装置にお
いて、上記試料を取り付けた試料ホルダーを回転させる
試料回転機構と、回転している上記試料の表面位置を瞬
時に計算し、その位置に電子線を照射するように上記試
料回転機構、走査型電子銃および測定手段を同期して制
御する蛍光強度測定機構とを備えていることを特徴とす
るものである。
In order to achieve the above object, the present invention irradiates a sample mounted on a sample holder arranged in a vacuum chamber with an evaporated substance to form a thin film thereon. While scanning, an electron beam from a scanning electron gun irradiates the surface of the sample at an acute angle for scanning, and the diffraction pattern generated when reflected and diffracted on the surface of the sample is projected onto the fluorescent screen, and the projection is performed. In a backscattered electron diffraction intensity measuring device for observing the diffraction pattern thus formed with a measuring means outside the vacuum chamber, a sample rotating mechanism for rotating the sample holder to which the sample is attached, and the surface position of the rotating sample are instantaneously measured. It is characterized in that it is provided with a fluorescence intensity measuring mechanism for controlling the sample rotating mechanism, the scanning electron gun and the measuring means synchronously so as to irradiate an electron beam to the calculated position.

【0010】[0010]

【作用】この発明においては、制御手段からの信号によ
って試料回転機構を作動させ、試料を回転させるが、試
料回転機構を作動させる信号と同期して、走査型電子銃
と測定手段が制御されるようになる。そのため、回転し
ている薄膜形成中の試料上の電子線を照射すべき位置を
制御手段が瞬時に計算し、その位置に電子線を照射する
ようになり、蛍光強度の測定が可能になる。したがっ
て、試料の回転中に、回折斑点強度の経時変化(強度振
動)はもちろん、反射回折電子線像をも観察出来るよう
になる。
In the present invention, the sample rotating mechanism is operated by the signal from the control means to rotate the sample. The scanning electron gun and the measuring means are controlled in synchronization with the signal for operating the sample rotating mechanism. Like Therefore, the control means instantly calculates the position of the rotating thin film on the sample to be irradiated with the electron beam, and the position is irradiated with the electron beam, so that the fluorescence intensity can be measured. Therefore, during the rotation of the sample, it is possible to observe not only the temporal change in the intensity of the diffraction spots (intensity vibration) but also the reflection diffraction electron beam image.

【0011】[0011]

【実施例】以下、この発明の実施例について図面を参照
しながら説明する。この発明の実施例の反射電子線回折
強度測定装置は図1に示されており、同図において、真
空槽1の壁には走査型電子銃2が取り付けられ、この走
査型電子銃2からの電子線は真空槽1内に配置された試
料ホルダー3上に取り付けられた試料4に蒸発源5より
蒸発物資を照射して、そこに薄膜を形成しているとき
に、走査型電子銃2からの電子線を試料4の表面に鋭角
的に照射しながら走査させ、試料4の表面で反射、回折
するときに発生する回折模様を真空槽1壁の蛍光スクリ
ーン6に投影させ、その投影された回折模様を真空槽1
外の測定手段7で観察するようにしている。測定手段7
は光ファイバー、光学レンズ、光電子増倍管の組合せ、
または、テレビカメラで構成されている。試料ホルダー
3は真空対応型のステッピングモータを備えた試料回転
機構8によって駆動されるようになっており、この試料
回転機構8はコンピュータよりなる制御手段9からの信
号によって制御され、試料4の回転運動の始点や回転速
度が調整される。また、走査型電子銃2と測定手段7も
制御手段9からの信号によって試料回転機構8と同期し
て制御される構成になっている。
Embodiments of the present invention will be described below with reference to the drawings. A backscattered electron diffraction intensity measuring apparatus according to an embodiment of the present invention is shown in FIG. 1, in which a scanning electron gun 2 is attached to the wall of a vacuum chamber 1 and the scanning electron gun 2 The electron beam irradiates the sample 4 mounted on the sample holder 3 arranged in the vacuum chamber 1 with the evaporation material from the evaporation source 5 to form a thin film on the sample 4, and the electron beam is emitted from the scanning electron gun 2. The sample 4 is made to scan while irradiating the surface of the sample 4 at an acute angle, and the diffraction pattern generated when the sample 4 is reflected and diffracted on the surface of the sample 4 is projected on the fluorescent screen 6 on the wall of the vacuum chamber 1 and projected. Diffraction pattern in vacuum tank 1
The outside measuring means 7 is used for observation. Measuring means 7
Is a combination of optical fiber, optical lens, photomultiplier tube,
Alternatively, it is composed of a TV camera. The sample holder 3 is driven by a sample rotation mechanism 8 equipped with a vacuum-compatible stepping motor, and the sample rotation mechanism 8 is controlled by a signal from a control means 9 composed of a computer to rotate the sample 4. The starting point of the movement and the rotation speed are adjusted. Further, the scanning electron gun 2 and the measuring means 7 are also controlled by a signal from the control means 9 in synchronization with the sample rotating mechanism 8.

【0012】このよな実施例においては、制御手段9か
らの信号によって試料回転機構8を作動させ、試料4を
回転させるが、試料回転機構8を作動させる信号と同期
して、走査型電子銃2と測定手段7が制御されるように
なる。そのため、回転している薄膜形成中の試料4上の
電子線を照射すべき位置を制御手段9が瞬時に計算し、
その位置に電子線を照射するようになり、蛍光強度の測
定が可能になる。したがって、試料4の回転中に、回折
斑点強度の経時変化(強度振動)はもちろん、反射回折
電子線像をも観察出来るようになる。
In such an embodiment, the sample rotating mechanism 8 is operated by the signal from the control means 9 to rotate the sample 4, but the scanning electron gun is synchronized with the signal for operating the sample rotating mechanism 8. 2 and the measuring means 7 come to be controlled. Therefore, the control means 9 instantaneously calculates the position to be irradiated with the electron beam on the sample 4 during the formation of the rotating thin film,
The position is irradiated with an electron beam, and the fluorescence intensity can be measured. Therefore, during the rotation of the sample 4, it is possible to observe not only the temporal change of the intensity of the diffraction spots (intensity vibration) but also the reflection diffraction electron beam image.

【0013】図2は走査型電子銃2からの電子線を試料
4の表面に走査させるときの様子を示している。いま、
回折斑点の強度測定を試料4上で電子線を走査させなが
ら行う場合を考える。電子線は図の上部から試料表面す
れすれに照射されていて、観察領域内を(1,1)→
(2,1)→・・・(n,1)→・・・(n,n)の順
に走査する必要があるとする。回転軸は試料の中心にあ
るものと仮定しているが、中心にあるか否かは特に問題
にならない。
FIG. 2 shows how the surface of the sample 4 is scanned with the electron beam from the scanning electron gun 2. Now
Consider a case where the intensity of the diffraction spot is measured while scanning the sample 4 with an electron beam. The electron beam was irradiated from the upper part of the figure to the surface of the sample, and (1, 1) →
It is assumed that it is necessary to scan in the order of (2, 1) → ... (n, 1) → ... (n, n). It is assumed that the rotation axis is at the center of the sample, but whether or not it is at the center does not matter.

【0014】試料4が回転せずに静止している場合には
電子線を図のx軸、y軸に沿って連続的に走査し、その
際のRHEED回折斑点の強化変化をモニターすればよ
い。しかし、試料4が回転している場合は、試料4上で
の次の照射位置も回転しているので、回転に合わせて照
射位置を求める必要がある。簡単な例としては、いま観
察領域の(1,1)点を照射したとして次に(2,1)
点に照射する場合、試料4が一回転して戻ってくるのを
待って行えば、あたかも回転していない試料のように観
察することができる。
When the sample 4 is stationary without rotating, the electron beam is continuously scanned along the x-axis and the y-axis in the figure, and the strengthening change of the RHEED diffraction spots at that time may be monitored. . However, when the sample 4 is rotating, the next irradiation position on the sample 4 is also rotating, so it is necessary to obtain the irradiation position in accordance with the rotation. As a simple example, suppose that the (1,1) point in the observation area is irradiated, and then (2,1)
When irradiating a point, waiting for the sample 4 to make one rotation and returning makes it possible to observe the sample as if it were not rotating.

【0015】更に、別の観察方法として、回転して変化
する照射位置を計算して電子線を照射することもでき
る。図3はその様子を示す。前記図2に示したものは、
回転運動の零点と回転速度とをコンピュータで制御でき
るようになっているため、回転運動を開始した以後の試
料上のある点の位置変化を正確に求めることができる。
したがって、前例と同様に(1,1)点の照射後に、次
の(2,1)点に照射する際の位置をタイミングとを計
算して求めて、その通りに電子線を振ってやればよい。
この時には図3に示すように、強度を測定する反射回折
斑点のスクリーン上の位置も回転に伴って変化するの
で、測定点の位置も計算で求めて測定プローブを追従さ
せてやる必要がある。
Further, as another observation method, it is also possible to calculate the irradiation position that changes by rotation and irradiate the electron beam. FIG. 3 shows the situation. The one shown in FIG.
Since the zero point of the rotational movement and the rotational speed can be controlled by the computer, the positional change of a certain point on the sample after starting the rotational movement can be accurately obtained.
Therefore, as in the previous example, after irradiating the (1,1) point, the position when irradiating the next (2,1) point is calculated and the timing is calculated, and if the electron beam is swung as it is, Good.
At this time, as shown in FIG. 3, the position of the reflection diffraction spot on the screen for measuring the intensity also changes with the rotation, so the position of the measurement point must also be calculated and the measurement probe must be made to follow it.

【0016】ところで、上記実施例においては、試料回
転機構8に真空対応型のステッピングモータを用いた
が、この代わりに、通常の回転導入端子を使って、大気
側の回転部分をチェーンあるいはワイヤー等でモータと
つなぎ、試料の回転運動を制御することもできる。ま
た、制御手段9のコンピュータはCRTのついた汎用品
である必要はなく、CPUを有したボードコンピュータ
でもよい。更に、コンピュータを用いず、アナログ回路
でコントローラを構成することもできる。
In the above embodiment, a vacuum-compatible stepping motor is used as the sample rotating mechanism 8, but instead of this, a normal rotation introducing terminal is used to rotate the atmosphere side rotating portion into a chain or a wire. It is also possible to control the rotational movement of the sample by connecting to the motor with. Further, the computer of the control means 9 need not be a general-purpose product with a CRT, but may be a board computer having a CPU. Further, the controller can be configured by an analog circuit without using a computer.

【0017】[0017]

【発明の効果】この発明は、上記のような構成をしてい
るので、回転している薄膜形成中の試料上の電子線を照
射すべき位置を制御手段が瞬時に計算し、その位置に電
子線を照射するようになり、蛍光強度の測定が可能にな
る。そのため、試料の回転中に、回折斑点強度の経時変
化(強度振動)はもちろん、反射回折電子線像をも観察
出来るようになる。
Since the present invention has the above-mentioned structure, the control means instantly calculates the position to be irradiated with the electron beam on the sample during the formation of the rotating thin film, and the position is set to that position. The electron beam is emitted, and the fluorescence intensity can be measured. Therefore, during the rotation of the sample, it is possible to observe not only the temporal change of the diffraction spot intensity (intensity vibration) but also the reflection diffraction electron beam image.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す説明図FIG. 1 is an explanatory view showing an embodiment of the present invention.

【図2】この発明の実施例において電子線を試料表面に
走査する様子を示す説明図
FIG. 2 is an explanatory view showing how a sample surface is scanned with an electron beam in an embodiment of the present invention.

【図3】この発明の実施例において電子線を回転中の試
料表面に走査する様子を示す説明図
FIG. 3 is an explanatory view showing a state of scanning the surface of a rotating sample with an electron beam in the embodiment of the invention.

【符号の説明】 1・・・・・真空槽 2・・・・・走査型電子銃 3・・・・・試料ホルダー 4・・・・・試料 5・・・・・蒸発源 6・・・・・蛍光スクリーン 7・・・・・測定手段 8・・・・・試料回転機構 9・・・・・制御手段[Explanation of Codes] 1 ... Vacuum tank 2 ... Scanning electron gun 3 ... Sample holder 4 ... Sample 5 ... Evaporation source 6 ... ..Fluorescent screen 7 ... Measuring means 8 ... Sample rotation mechanism 9 ... Control means

フロントページの続き (72)発明者 柳田 博司 神奈川県茅ヶ崎市萩園2500番地日本真空技 術株式会社内 (72)発明者 重富 潤一 神奈川県茅ヶ崎市萩園2500番地日本真空技 術株式会社内Front page continuation (72) Inventor Hiroshi Yanagida 2500 Hagien, Chigasaki City, Kanagawa Japan Vacuum Technology Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空槽内に配置された試料ホルダー上に取
り付けられた試料に蒸発物質を照射して、そこに薄膜を
形成しているときに、走査型電子銃からの電子線を試料
の表面に鋭角的に照射しながら走査させ、試料の表面で
反射、回折するときに発生する回折模様を蛍光スクリー
ンに投影させ、その投影された回折模様を真空槽外の測
定手段で観察する反射電子線回折強度測定装置におい
て、上記試料を取り付けた試料ホルダーを回転させる試
料回転機構と、回転している上記試料の表面位置を瞬時
に計算し、その位置に電子線を照射するように上記試料
回転機構、走査型電子銃および測定手段を同期して制御
する蛍光強度測定機構とを備えていることを特徴とする
反射電子線回折強度測定装置。
1. A sample mounted on a sample holder arranged in a vacuum chamber is irradiated with an evaporated substance to form a thin film thereon, and an electron beam from a scanning electron gun is applied to the sample. Backscattered electrons that are scanned while irradiating the surface at an acute angle, project the diffraction pattern generated when reflecting and diffracting on the surface of the sample onto a fluorescent screen, and observe the projected diffraction pattern with measuring means outside the vacuum chamber. In a line diffraction intensity measuring device, a sample rotation mechanism that rotates a sample holder to which the sample is attached, and the surface position of the rotating sample is instantly calculated, and the sample rotation is performed so that the position is irradiated with an electron beam. A backscattered electron beam diffraction intensity measuring apparatus, comprising: a mechanism, a scanning electron gun, and a fluorescence intensity measuring mechanism for synchronously controlling the measuring means.
JP05506893A 1993-02-19 1993-02-19 Reflection electron beam diffraction intensity measurement device Expired - Fee Related JP3266359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05506893A JP3266359B2 (en) 1993-02-19 1993-02-19 Reflection electron beam diffraction intensity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05506893A JP3266359B2 (en) 1993-02-19 1993-02-19 Reflection electron beam diffraction intensity measurement device

Publications (2)

Publication Number Publication Date
JPH06242029A true JPH06242029A (en) 1994-09-02
JP3266359B2 JP3266359B2 (en) 2002-03-18

Family

ID=12988383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05506893A Expired - Fee Related JP3266359B2 (en) 1993-02-19 1993-02-19 Reflection electron beam diffraction intensity measurement device

Country Status (1)

Country Link
JP (1) JP3266359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807840A (en) * 2015-04-28 2015-07-29 苏州新材料研究所有限公司 Sample fixing device for superconducting strip XRD texture measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807840A (en) * 2015-04-28 2015-07-29 苏州新材料研究所有限公司 Sample fixing device for superconducting strip XRD texture measurement

Also Published As

Publication number Publication date
JP3266359B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
JP3287858B2 (en) Electron microscope device and electron microscope method
WO2002023581A1 (en) Apparatus for inspecting mask
JP2019075286A (en) Electron microscope and adjustment method of sample tilt angle
JP3266359B2 (en) Reflection electron beam diffraction intensity measurement device
JP3751841B2 (en) Inspection apparatus using electron beam and inspection method using electron beam
JPH04106853A (en) Scanning electron microscope
JPH01120749A (en) Automatic focusing device for electron microscope
JP3684106B2 (en) Deposition equipment
JP2001227932A (en) Mask inspection apparatus
JP3430788B2 (en) Sample image measuring device
JPH0221553A (en) Electron ray length-measuring device
JP2653084B2 (en) Surface analyzer
JPH0982264A (en) Pattern inspection device and scanning electron microscope
JP3078645B2 (en) Observation method of RHEED image by scanning RHEED microscope
JP3369835B2 (en) Shape evaluation method of shaping aperture in charged beam writing apparatus and rotation adjustment method of shaping aperture
JPH04137720A (en) Charged beam strength profile measuring instrument, and measuring method using same
JPH04306548A (en) Reflective electron refraction device
JPH0737885B2 (en) Inspection method and device
JPS5977347A (en) X-ray diffraction apparatus
JPH02216039A (en) Reflected electron diffraction apparatus
JPH0997584A (en) Electron beam diffracting device
JPH09204897A (en) Focusing ion beam working method
JPH11304735A (en) Correction device of mapping analysis data by electron probe micro analyzer
JPH06150864A (en) Scanning type reflection high speed electron beam diffraction microscope device
JPH0634580A (en) X-ray analysis method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130111

LAPS Cancellation because of no payment of annual fees