JPS5977347A - X-ray diffraction apparatus - Google Patents

X-ray diffraction apparatus

Info

Publication number
JPS5977347A
JPS5977347A JP18700382A JP18700382A JPS5977347A JP S5977347 A JPS5977347 A JP S5977347A JP 18700382 A JP18700382 A JP 18700382A JP 18700382 A JP18700382 A JP 18700382A JP S5977347 A JPS5977347 A JP S5977347A
Authority
JP
Japan
Prior art keywords
sample
ray
stage
evaluated
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18700382A
Other languages
Japanese (ja)
Inventor
Koji Egami
江上 浩二
Masakazu Kimura
正和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18700382A priority Critical patent/JPS5977347A/en
Publication of JPS5977347A publication Critical patent/JPS5977347A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To carry out an X-ray diffraction measurement of a minute sample to be evaluated at high speed, by providing a two-dimensional moving mechanism which moves a sample mounting member on a plane including the sample surface such that an X-ray incident point is located at a position in a desired evaluation region. CONSTITUTION:Two-dimensional data detected by a two-dimensional optical detector 12 are passed through an A/D converter 17 and stored in a memory circuit 19. An arithmetic controller 20 detects deviations DELTAx, DELTAy of the position of the intersection of horizontal and vertical patterns, as an X-ray incident point, from the position of a minute region 23 to be evaluated, the positions having been stored in the circuit 19. The detected quantities DELTAx, DELTAy are respectively delivered from the controller 20 to a pulse motor 21 for driving a stage 10 in the X direction and a pulse motor 22 for driving the stage 10 in the Y direction in the form of pulses the numbers of which correspond to the movements of the stage 10 in the X and Y directions. Accordingly, it is possible to effect an X-ray diffraction measurement of a minute sample to be evaluated at high speed, and the diffraction data have high reliability.

Description

【発明の詳細な説明】 本発明は微小領域からの反射X線?確実に検出すること
が可能なX線回折装置に関するものである。
[Detailed Description of the Invention] Is the present invention applicable to reflected X-rays from a minute area? The present invention relates to an X-ray diffraction device that can perform reliable detection.

従来のX線回折装置は、X線発生装置、ゴニオメータ、
X線検出装置とから構成されるが、被評価試料の微小領
域あるいは微小な評価試料からの反射X線?検出しよう
とする場合がある。この場合、前者については、被評価
試料の均一領域が広いと仮定し、入射XHk単にスリッ
トで絞り込み、均一領域と思われる部分の一微小領域か
らの反射xii検出し、また、後者については完浴法と
いって、その断面が大きな入射X線束の中へ微小試料?
完浴させて、その反射X線ケ検出していた。
Conventional X-ray diffraction devices include an X-ray generator, a goniometer,
It consists of an X-ray detection device, but is it reflected X-rays from a minute area of the sample to be evaluated or from a minute evaluation sample? You may try to detect it. In this case, for the former, assuming that the uniform area of the sample to be evaluated is wide, the incident By the method, is the cross section of a small sample inserted into an incident X-ray flux?
After taking a complete bath, the reflected X-rays were detected.

現在の材料加工工業及び電子材料工業等においては、大
形状の材料=iX線回折法により評価することが望まれ
ており、特に大口径の基板材料、他の大口径基板上に堆
積させた薄膜等の結晶性の完全度、不均一度等紮評価す
ることが望まれている。
In the current material processing industry and electronic materials industry, it is desirable to evaluate large-sized materials using iX-ray diffraction, especially for large-diameter substrate materials and thin films deposited on other large-diameter substrates. It is desired to evaluate the completeness of crystallinity, degree of heterogeneity, etc.

この不拘一度?評価するためには、入射Xfj!ビーム
を非常に小さく絞り込み、微小な被評価領域からの反射
X線を高信頼性ケ有し、かつ1対応関係が失われない状
態で評価することが必要である。
This irresponsibility? To evaluate, the incident Xfj! It is necessary to narrow down the beam to a very small size, have high reliability of reflected X-rays from a minute region to be evaluated, and perform evaluation without losing one correspondence.

前述の如く単にスリット等で入射X線に絞り込む方法や
被評価試料ゲ破壊的に微小加工し定状態で評価に用いる
完浴法では大形状の材料の微小領域〒評価することが不
可能である。
As mentioned above, it is impossible to evaluate minute areas of large-sized materials using the method of simply narrowing down the incident X-rays with a slit or the like, or the complete bath method where the sample to be evaluated is destructively micro-processed and evaluated in a steady state. .

本発明の目的は、上記欠点勿改善し1X線の入射点r検
出できるようにして被評価試料の微小領域?確実にX線
の入射点に位置させしめることのできるX線回折装置?
提供することにある。
The purpose of the present invention is to improve the above-mentioned drawbacks and to enable the detection of the incident point r of X-rays in minute areas of the sample to be evaluated. An X-ray diffraction device that can be positioned reliably at the point of incidence of X-rays?
It is about providing.

本発明のX線回折装置は、光ビーム出力音形成する光源
と、この光源からの光ビーム2X線照射すべき試料の入
射X線軸上に導く光学系と、この光学系からの光ビーム
を照射され友前記試料表面からの散乱)YSから前記試
料上の所望の評価領域の位16゛ケ検出する二次元光位
置検出手段と、この光位置検出手段により検出された位
置2X線入射点として記憶する記憶手段と、この記憶手
段に記憶されたX線入射点が前記所望の評価領域の位置
にあるように前記試料の載置部材r前記試料面勿含んだ
面上で移動させる二次元移動機構と?含んで構成される
The X-ray diffraction apparatus of the present invention includes a light source that forms a light beam output sound, an optical system that guides the light beam from this light source onto the incident X-ray axis of a sample to be irradiated with X-rays, and a light beam that irradiates the light beam from this optical system. a two-dimensional optical position detecting means for detecting a desired evaluation area on the sample from the YS (scattered from the sample surface), and a position detected by the optical position detecting means is stored as an X-ray incident point. a two-dimensional movement mechanism for moving the sample mounting member r on a surface including the sample surface so that the X-ray incident point stored in the memory means is located at the desired evaluation area; and? It consists of:

以下5本発明?図面?用いて詳細に説明する。The following 5 inventions? drawing? This will be explained in detail using

第1図は本発明の実施例の模式図である。図中。FIG. 1 is a schematic diagram of an embodiment of the present invention. In the figure.

■はX線?発生させるX線発生装置で1本実施例では出
力12KWの回転対陰極型X線発生装置6ケ用いている
。2.7.8はそれぞれ入射XIW’に絞シ込むための
スリットである。光学系(3,4゜5.6)は、光源装
#?なす光源ボックス3.絞り込みレンズ系4.光ファ
イバー5及びレーザ発生装置6から構成される。本実施
例では、出力5ITIWのHe−Ne  レーザ(6)
を用い、光ファイバー5によりX線の光軸上にそのレー
ザビームr導いている。X線及びレーザの直進性からス
リット2゜7.8紮通過しtX線の入射点とスリット7
.8を通過したレーザの入射点とが同一であることが明
らかである。ゴニオメータ−9上のステージ10上に位
置させた試料11の微小領域にスリット8によって絞り
込まれたレーザが入射する。この試料11からの反射X
iはX線検出器16により検出される。なお、スリット
15は散乱X線防止用のスリットである。
■Is it an X-ray? In this embodiment, six rotating anticathode type X-ray generators each having an output of 12 KW are used. 2, 7, and 8 are slits for narrowing down the incident XIW'. The optical system (3,4°5.6) is a light source #? Eggplant light source box 3. Aperture lens system 4. It is composed of an optical fiber 5 and a laser generator 6. In this example, a He-Ne laser (6) with an output of 5ITIW is used.
The laser beam r is guided onto the optical axis of the X-ray by an optical fiber 5. Due to the straightness of the X-rays and laser, they pass through the slit 2°7.8, and the incident point of the X-rays and the slit 7
.. It is clear that the incident point of the laser passing through 8 is the same. A laser beam narrowed by a slit 8 is incident on a minute region of a sample 11 placed on a stage 10 on a goniometer 9 . Reflection X from this sample 11
i is detected by the X-ray detector 16. Note that the slit 15 is a slit for preventing scattered X-rays.

本発明においてはスリン)7.1通過したレーザ光の入
射点とX線の入射点と同一であることから、試料表面か
ら散乱されてくるレーザの散乱光r光検出装置12によ
り検出し、ビデオモニタ13上に映し出す。本実施例で
は光検出装置として白黒のビデオカメラ11−用い)’
j014は自動位置補正装置である。
In the present invention, since the incident point of the laser beam that has passed through Surin) 7.1 is the same as the incident point of the X-ray, the scattered light of the laser scattered from the sample surface is detected by the light detection device 12, and the Displayed on monitor 13. In this embodiment, a black and white video camera 11 is used as the photodetector.
j014 is an automatic position correction device.

第2図は第1図の二次元光検出装置、記憶装置。FIG. 2 shows the two-dimensional photodetector and storage device shown in FIG. 1.

及び自動位置補正装置?含むブロック図である。and automatic position correction device? FIG.

二次元光検出装置12より検出した二次元情報はAD変
換器17ケ通して、記憶回路19に記憶される。この記
憶されt二次元情報は映像として二次元表示装置13上
に表示される。本実施例では二次元表示装置13として
白黒のビデオモニタテレビr用いている。この二次元表
示装置13上には水平、垂直パターン発生回路18によ
り1発生した水平、垂直パターンがX線の入射点2囲む
ように表示される。
The two-dimensional information detected by the two-dimensional photodetector 12 is stored in the storage circuit 19 through 17 AD converters. This stored two-dimensional information is displayed on the two-dimensional display device 13 as an image. In this embodiment, a black and white video monitor television r is used as the two-dimensional display device 13. On this two-dimensional display device 13, horizontal and vertical patterns generated by the horizontal and vertical pattern generation circuit 18 are displayed so as to surround the X-ray incident point 2.

第3図(a)〜(C)は第2図の二次元表示装置13上
に映像として表示された二次元情報の模式図である。第
3図(a)は二次元光検出装置12で検出さ第1比微小
被評価領域23盆示し、第3図(b)は前記X線の入射
点を検出し、この入射点音間むように表示した水平、垂
直パターン?示している。第3図(b)に示し定状態で
、記憶回路19中に記憶されt微小被評価領域23の位
置とX線の入射点である水平、垂直パターンの中心部と
の位置のズレΔX。
3(a) to 3(C) are schematic diagrams of two-dimensional information displayed as images on the two-dimensional display device 13 of FIG. 2. FIG. FIG. 3(a) shows the first ratio minute evaluation area 23 detected by the two-dimensional photodetector 12, and FIG. 3(b) shows the incident point of the X-rays detected and the distance between the incident point and the sound. Horizontal and vertical patterns displayed? It shows. In the steady state shown in FIG. 3(b), the deviation ΔX between the position of the t-small evaluation area 23 stored in the storage circuit 19 and the center of the horizontal and vertical patterns which are the incident points of X-rays.

ΔYk演算制御装置20により検出し、この検出された
量、ΔX、ΔyはステージlOのX方向の駆動會行うパ
ルスそ一夕21.及びY方向の駆動?行つハルスモータ
22へ移動量に対応したノ(ルス数が演算制御装置20
から送られる。本実施例ではlパルスが移動量の2μm
に対応している。
ΔYk is detected by the arithmetic and control device 20, and the detected quantities, ΔX, and Δy are the pulses that drive the stage IO in the X direction 21. And drive in Y direction? The arithmetic and control unit 20 calculates the number of Hals corresponding to the amount of movement to the Hals motor 22.
Sent from. In this example, the l pulse is 2 μm of the movement amount.
It corresponds to

第3図(C)は自動位置補正装置によりステージ10が
移動し、水平、垂直パターン中に被評価領域23が位置
したことを示す図である。なお、用いた二次元表示装置
13上の映像は512X512に分割され、記憶回路1
9に記憶されており1本実施例では二次元光検出装置1
2で検出可能な領域は3 X 3 mm2. 5 X 
5 mm2.及び1 、OX 10 mm2の三段階に
切υ変えることが可能になっている。
FIG. 3(C) is a diagram showing that the stage 10 has been moved by the automatic position correction device and the evaluation area 23 has been positioned in the horizontal and vertical patterns. Note that the image on the two-dimensional display device 13 used is divided into 512×512, and
9, and in this embodiment, the two-dimensional photodetector 1
2, the detectable area is 3 x 3 mm2. 5 X
5 mm2. It is possible to change the cutting angle in three steps: and 1, OX 10 mm2.

したがって4分解能はそれぞれ6X6μm、IQ×10
μm  、20X20μm2である。このためステージ
lOのパルスモータ21.22へ送うレるパルス数は上
記の三段階の検出領域に対応して、3パルス、5パルス
、lOパルスがそれぞれ1単fケとして送られ、高速動
作が可能である。また、ステージioのY方向は入射X
線と反射Xiとがなす平面に垂直である。このステージ
10は4軸型ゴニオメータ上に位置されておp、直径が
75mmφ までの試料が測定可能である。
Therefore, the 4 resolutions are 6 x 6 μm, IQ x 10
μm, 20×20 μm2. Therefore, the number of pulses sent to the pulse motors 21 and 22 of the stage IO is 3 pulses, 5 pulses, and IO pulses, each of which is sent as 1 single f, corresponding to the above-mentioned three-stage detection area, resulting in high-speed operation. is possible. Also, the Y direction of stage io is the incident
It is perpendicular to the plane formed by the line and the reflection Xi. This stage 10 is placed on a 4-axis goniometer and can measure samples up to 75 mmφ in diameter.

次に5本実施例のX線回折装置によ、o、xi源として
Cukα(e、長は1.5418X) ?用いて石英ガ
ラス基板上に50×50μm2.1ooXloo11r
n28度の寸法で形成した島状シリコン薄膜(膜厚は0
.6μm)の(400)反射について測定盆行ったとこ
ろ、自動位置補正時間(第3図(b)から第3図[C)
の状態へ移行する時間9が2秒以内で行われ。
Next, using the X-ray diffraction apparatus of this example, Cukα (e, length is 1.5418X) was used as the o and xi sources. 50×50μm2.1ooXloo11r on a quartz glass substrate using
An island-shaped silicon thin film formed with a dimension of n28 degrees (film thickness 0
.. When we measured the (400) reflection of 6 μm), we found that the automatic position correction time (Fig.
The transition time 9 to the state is performed within 2 seconds.

信頼性の高い回折データが得られ友。A great way to obtain highly reliable diffraction data.

なお、微小試料?測定する場合、用いるスリット8は出
来るだけ、微小試料寸法に近い方が、不必要な散乱ケ小
さくすることが出来、S/N比の高いデータが得られる
By the way, is it a micro sample? When making measurements, the slit 8 used should be as close to the size of the minute sample as possible to reduce unnecessary scattering and obtain data with a high S/N ratio.

なお1本発明はこの実施例に駆足されることなく、光源
装置として他のレーザ及び他の高輝度可視光源音用いて
も良く、二次元光検出装置としてCCD (Charg
e Coupled 1)evi’ce )等r用いて
あらかじめデジタル信号r直接、記憶回路に転送し、記
憶しても良い。
Note that the present invention is not limited to this embodiment, and other lasers and other high-intensity visible light sources may be used as the light source device, and a CCD (Charg
eCoupled 1) evi'ce) etc., the digital signal r may be directly transferred to a storage circuit and stored in advance.

以上述べたように1本発明はX線の光軸上に元ビームを
導くことが可能な光源装置、X線の入射点と等価な光検
出点?検出する二次元光検出装置。
As described above, the present invention provides a light source device that can guide the original beam onto the optical axis of X-rays, and a photodetection point equivalent to the incident point of X-rays. Two-dimensional light detection device for detection.

及び、微小試料位置とX線の入射点と一致させる自動位
置補正装置を備え−fcX線回折装置葡示したものであ
る。
The X-ray diffractometer is equipped with an automatic position correction device that matches the position of a minute sample with the incident point of X-rays.

本発明によれば、従来になく高速に微小被評価試料のX
線回折測定金行うことが可能で、その得られる回折デー
タは高信頼性ケ有しており、材料加工工業及び電子材料
工業等の分野において1材料の試験・評価等に有効な測
定手段となる。
According to the present invention, the X
It is possible to perform linear diffraction measurements on gold, and the obtained diffraction data is highly reliable, making it an effective measurement method for testing and evaluating a single material in fields such as the material processing industry and electronic material industry. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の模式図、第2図は第1図の一
部r説明するブロック図、第3図(a)〜(C)はこの
実施例の動作過程ヶ示す映像の模式図である。図におい
て ■・・・・・・X線発生装置、2,7.8.15・・・
・・・スリン)、 3. 4. 5. 6・・・・・・
光源装置、9・・・・・・ゴニオメータ、lO・・・・
・・ステージ、11・・・・・・試料、I2・・・・・
・ビデオカメラ、13・・・・・・モニタテレビ、14
・・・・・・自動位置補正装置、16・・・・・・X線
検出器、17・・・・・・AI)変換器、18・・・・
・・水平、垂直パターン発生回路、19・・・・・・記
憶回路、20・・・・・・演算制御装fu、  21.
 22・・・・・・パルスモータ、23・・・・・・微
小被評価領域、である。 第 Z  図 1α 256− 拒 3 図
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a block diagram explaining a part of Fig. 1, and Figs. It is a schematic diagram. In the figure ■...X-ray generator, 2,7.8.15...
... Surin), 3. 4. 5. 6...
Light source device, 9...Goniometer, lO...
...Stage, 11...Sample, I2...
・Video camera, 13...Monitor TV, 14
... Automatic position correction device, 16 ... X-ray detector, 17 ... AI) converter, 18 ...
. . . horizontal and vertical pattern generation circuits, 19 . . . storage circuit, 20 . . . arithmetic control unit fu, 21.
22...Pulse motor, 23...Minute evaluation area. Figure Z Figure 1α 256- Figure 3

Claims (1)

【特許請求の範囲】 光ビーム出カケ形成する光源と、この光源からの元ビー
ムiX線照射すべき試料の入射X線軸上に導く光学系と
、この光学系からの元ビームを照射された前記試料衣面
からの散乱光から前記試料上の所望の評価領域の位置?
検出する二次元光位置検出手段と、この光位置検出手段
により検出された位@’kX線入射点として記憶する記
憶手段と。 この記憶手段に記憶されたX線入射点が前記所望の評価
領域の位置にあるように前記試料の載置部材ケ前記試料
面ケ含んだ面上で移動させる二次元移動機構とr含むX
線回折装置。
[Scope of Claims] A light source for forming a light beam output, an optical system that guides the original beam from this light source onto the incident X-ray axis of a sample to be irradiated with iX-rays, and a Is the position of the desired evaluation area on the sample based on the scattered light from the sample surface?
A two-dimensional optical position detection means for detecting, and a storage means for storing the position detected by the optical position detection means as an X-ray incident point. a two-dimensional movement mechanism that moves the sample mounting member on a surface including the sample surface so that the X-ray incident point stored in the storage means is located at the desired evaluation area;
Line diffraction device.
JP18700382A 1982-10-25 1982-10-25 X-ray diffraction apparatus Pending JPS5977347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18700382A JPS5977347A (en) 1982-10-25 1982-10-25 X-ray diffraction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18700382A JPS5977347A (en) 1982-10-25 1982-10-25 X-ray diffraction apparatus

Publications (1)

Publication Number Publication Date
JPS5977347A true JPS5977347A (en) 1984-05-02

Family

ID=16198499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18700382A Pending JPS5977347A (en) 1982-10-25 1982-10-25 X-ray diffraction apparatus

Country Status (1)

Country Link
JP (1) JPS5977347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120911A (en) * 1984-11-19 1986-06-09 Seiko Instr & Electronics Ltd Measuring point inputting device for x-ray film thickness meter
JPS61148311A (en) * 1984-12-21 1986-07-07 Seiko Instr & Electronics Ltd X-ray fluorescence plating thickness gauge with fine positioning mechanism for sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120911A (en) * 1984-11-19 1986-06-09 Seiko Instr & Electronics Ltd Measuring point inputting device for x-ray film thickness meter
JPS61148311A (en) * 1984-12-21 1986-07-07 Seiko Instr & Electronics Ltd X-ray fluorescence plating thickness gauge with fine positioning mechanism for sample

Similar Documents

Publication Publication Date Title
US4103998A (en) Automatic alignment apparatus
US5572598A (en) Automated photomask inspection apparatus
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
EP0532927B1 (en) Automated photomask inspection apparatus
JPS5977347A (en) X-ray diffraction apparatus
JP2987540B2 (en) 3D scanner
JP3056823B2 (en) Defect inspection equipment
JPS60774B2 (en) Pattern inspection method
US20010009460A1 (en) Angle compensation method
JP2001227932A (en) Mask inspection apparatus
JPH0330448A (en) Foreign substance inspecting device
JPS62168007A (en) Shape recognizing device
JPH05215528A (en) Three-dimensional shape measuring apparatus
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
JPH05296946A (en) X-ray diffraction device
JPH1090197A (en) Flaw detector for filmy body
JPS6127178A (en) Detection of beveling edge
JPH0672776B2 (en) Inspection device for mounted printed circuit boards
JPS6117904A (en) Pattern detector
JPH10281732A (en) Dimension measuring equipment
JPS59203908A (en) Optical measuring device
JPH0760136B2 (en) Internal defect inspection method and apparatus
JPS6222530B2 (en)
JPH02103404A (en) Lead inspection apparatus
JP2000292360A (en) Foreign matter inspection method