JPH06241728A - Detection method for position deviation and gap - Google Patents

Detection method for position deviation and gap

Info

Publication number
JPH06241728A
JPH06241728A JP5047138A JP4713893A JPH06241728A JP H06241728 A JPH06241728 A JP H06241728A JP 5047138 A JP5047138 A JP 5047138A JP 4713893 A JP4713893 A JP 4713893A JP H06241728 A JPH06241728 A JP H06241728A
Authority
JP
Japan
Prior art keywords
light
incident
optical path
optical axis
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5047138A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kato
勝弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soltec Co Ltd
Original Assignee
Soltec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soltec Co Ltd filed Critical Soltec Co Ltd
Priority to JP5047138A priority Critical patent/JPH06241728A/en
Priority to PCT/JP1994/000178 priority patent/WO1994018522A1/en
Publication of JPH06241728A publication Critical patent/JPH06241728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Transform (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To provide a position deviation detection method high in detection resolution to a large detection extent and capable of separately detection posi tion deviation quantities DELTAx, DELTAz in two-dimensional directions. CONSTITUTION:Two pairs of two monochromatic lights having slightly mutually different frequencies f1, f2, are used. In each pair, the two light fluxes are mutually different in incident angles on both sides of the light axis, concerning the light axis, in asymmetrical relation, (theta1<theta2). The two pairs are incident on the diffraction lattices 32, 32 for a first object M and a second object W, respectively, from the two directions in reverse symmetrical relation on both sides of the light axes. Diffraction lights of two or more beams, subjected to light heterodyne interference, are taken out from two positions symmetrical on both sides of the each light axis. Accordingly, two-dimensional phase fluctuation quantities in x and 2 directions, phix, phiz, are separately calculated on the basis of phases phixz and phixz' of light heterodyne detection signals occurring from light path difference fluctuation quantities due to position deviation in x and 2 directions in both diffraction lattices 32, 32. And thus, the displacement quantities or both objects M, W, are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体超微細加工装
置(SORアライナ・ステッパ、液晶ステッパ等のプロ
キシミティ露光装置)や感光基板に露光されたパターン
の重ね合せ精度を測定するレジストレーション超精密測
定等において光ヘテロダイン干渉光を利用する位置ずれ
検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ultra-fine processing apparatus (proximity exposure apparatus such as SOR aligner / stepper, liquid crystal stepper) and a registration ultra-precision registration measuring superposition accuracy of a pattern exposed on a photosensitive substrate. The present invention relates to a position shift detection method using optical heterodyne interference light in measurement or the like.

【0002】[0002]

【従来の技術】シンクロトロン放射光リソグラフィ用ア
ライナやフォトステッパ等の超精密位置合せにあっては
位置合せすべき2つの物体のX方向(面内方向)位置ず
れ検出を高精度に行なう必要があり、そのために例えば
特開昭62−261003号や特開昭64−89323
号等では、光ヘテロダイン干渉光を利用した位置ずれ検
出方法が提案されている。一方、特開昭63−3810
2号では、Z方向(面外ギャップ方向)の測定も併せて
行うため、位置検出光学系に3次回折角方向からの入射
光系を付加する構成が提案されている。
2. Description of the Related Art In the ultra-precision alignment of aligners for synchrotron radiation photolithography, photosteppers, etc., it is necessary to accurately detect the positional deviation of two objects to be aligned in the X direction (in-plane direction). Therefore, for that purpose, for example, JP-A-62-261003 and JP-A-64-89323.
JP-A-H09-242, et al. Propose a position shift detection method using optical heterodyne interference light. On the other hand, JP-A-63-3810
No. 2 proposes a configuration in which an incident light system from the third-order diffraction angle direction is added to the position detection optical system because measurement in the Z direction (out-of-plane gap direction) is also performed.

【0003】これらはいずれも2つの物体の各回折格子
から取り出された回折光を干渉させ、これらの両物体の
夫々において生成されたビート信号の位相差を検出する
ことで両物体の位置ずれ量を測るものであり、位置ずれ
検出分解能力が飛躍的に向上するとして期待されてい
る。
Both of these interfere with the diffracted light extracted from the diffraction gratings of the two objects, and detect the phase difference of the beat signals generated in each of these two objects to detect the amount of positional deviation between the two objects. It is expected to dramatically improve the ability to detect and resolve misalignment.

【0004】[0004]

【発明が解決しようとする課題】ところがこれらの方法
では、位相ずれが1周期以上になると位置合せにおける
ピッチ跳び・ずれ等が起こり不正確なものとなるため、
その位置ずれが予めある範囲内に納まっていなければな
らないという検出範囲の限定がある。特に回折格子の格
子ピッチを小さくすれば検出分解能は向上するが、検出
範囲が狭くなり、反対に上記ピッチを大きくすればその
逆の関係となる。
However, in these methods, when the phase shift is more than one cycle, pitch jumping / shifting in alignment occurs, which is inaccurate.
There is a limit to the detection range in which the displacement must be within a certain range in advance. In particular, if the grating pitch of the diffraction grating is reduced, the detection resolution is improved, but the detection range is narrowed, and conversely, if the pitch is increased, the opposite relationship occurs.

【0005】このため本出願人により相反する関係にあ
る検出分解能の向上と検出範囲の拡大を達成するため、
2つの物体に夫々格子ピッチの異なる回折格子を複数並
べて検出を行なう構成の提案を行なった。
Therefore, in order to achieve the improvement of the detection resolution and the expansion of the detection range, which are contradictory to each other by the present applicant,
We proposed a structure in which a plurality of diffraction gratings with different grating pitches are arranged side by side on two objects for detection.

【0006】又仮りに光軸方向より光を入射させた場合
に得られる回折光の±1次方向、±2次方向、±3次方
向……(該光軸を中心に対称的な2方向)から反対に光
を入射させた場合(その入射方向をこの回折次数を借り
て入射次数とここでは表現するとすると)、入射次数が
0に近い程、光路差変化量が少なくなるので前記検出範
囲が広がり、且つ低次数回折光の干渉なので回折光強度
も強いものが得られる一方で前記検出分解能は低下する
ことになる。反対にその入射次数が0から離れた値にな
る程、上記の場合とは全く逆になる。
Further, if the light is incident from the direction of the optical axis, the ± 1st order, ± 2nd order, ± 3rd order of the diffracted light obtained (two directions symmetrical about the optical axis) ) From the opposite direction (when the incident direction is referred to as the incident order here by borrowing this diffraction order), the closer the incident order is to 0, the smaller the change amount of the optical path difference becomes. Is wide and the interference of low-order diffracted light is strong, so that a strong diffracted light intensity can be obtained, but the detection resolution is lowered. On the contrary, the farther the incident order is from 0, the opposite of the above case.

【0007】そこで本出願人等は入射次数が複数となる
方式を採用した構成の提案を行ない、且つその次数の絶
対値が大きくなると、回折光強度が低下する欠点を補う
ため、回折格子に特殊形状のもの(ブレーズド格子)を
用いることで特定次数の回折光に0次回折光を重ねて回
折光強度を高める別の提案も行なった。
Therefore, the applicants have proposed a structure adopting a system in which the incident orders are plural, and when the absolute value of the orders becomes large, the defect that the diffracted light intensity is lowered is compensated, so that the diffraction grating is specially designed. Another proposal was made to increase the intensity of diffracted light by superposing the 0th-order diffracted light on the diffracted light of a specific order by using a shape (blaze grating).

【0008】しかし、格子ピッチの異なる複数の回折格
子を並べる最初の方法では、そのような回折格子の形成
に手間がかかり実用的ではないこと、又入射次数が複数
となる2つめの提案では、光学系が複雑となり過ぎるこ
と、更に特殊形状の回折格子を用いる3つめの提案は光
学系の複雑化以外に、その様な形状の回折格子の形成が
非常に難しく実用的ではないこと等の問題点が指摘され
た。
However, the first method of arranging a plurality of diffraction gratings having different grating pitches is not practical because it takes time to form such a diffraction grating, and the second proposal in which a plurality of incident orders are provided is as follows. The problem is that the optical system becomes too complicated, and the third proposal using a specially shaped diffraction grating is very difficult to form a diffraction grating with such a shape, and is not practical, in addition to the complicated optical system. A point was pointed out.

【0009】また前記特開昭63−38102号のよう
に別の入射光系を付加しない限りZ方向の位置ずれ測定
は不可能であり、光軸の傾きや振動により発生するZ方
向のアライメント誤差要因を十分に補正することができ
なくなって、問題となることも多かった。更に同号に示
す入射光系を付加する構成でも、高次入射は2光束の波
面調整が難しく、且つ他の次数の回折光(例えば−3次
回折光等)がX方向の検出信号に重畳して検出精度を低
下させたり、検出信号のS/N比が低下したり、更には
多重干渉の影響も受け、アライメントに悪影響を与えて
いた。
Further, it is impossible to measure the displacement in the Z direction unless another incident light system is added as in JP-A-63-38102, and an alignment error in the Z direction caused by the tilt or vibration of the optical axis. There were often problems because the factors could not be corrected sufficiently. Even with the configuration in which the incident light system shown in the same item is added, it is difficult to adjust the wavefront of the two light beams for high-order incidence, and diffracted light of another order (for example, -3rd order diffracted light) is superimposed on the detection signal in the X direction. As a result, the detection accuracy is lowered, the S / N ratio of the detection signal is lowered, and multiple interference is also exerted, which adversely affects the alignment.

【0010】本発明は従来技術の以上の様な問題に鑑み
創案されたもので、光学系の構成及びその調整が複雑と
ならず、広い検出範囲を持ちながら検出分解能も高く、
2次元方向の位置ずれ量ΔxとΔzを分離検出すること
が可能な位置ずれ検出方法を提供し、光軸の傾きがある
場合やZ方向の振幅がある場合でもその補正が可能なよ
うにせんとするものである。
The present invention was devised in view of the above problems of the prior art, and does not complicate the configuration and adjustment of the optical system, has a wide detection range and high detection resolution,
A position shift detection method capable of separately detecting the position shift amounts Δx and Δz in the two-dimensional direction is provided so that the correction can be performed even when there is an inclination of the optical axis or there is an amplitude in the Z direction. It is what

【0011】[0011]

【課題を解決するための手段】ここで本発明の構成を説
明する前に、本願における回折格子から得られる回折光
の回折次数につき予め定義しておく。
Before describing the structure of the present invention, the diffraction order of the diffracted light obtained from the diffraction grating of the present application will be defined in advance.

【0012】図1及び図2は反射回折格子の入射角・回
折角の符合の状態を示している。まず周波数fの単色光
が格子ピッチPの反射回折格子32に対し、光軸から入射
角θiの傾きを持って入射した場合、正反射となる回折
次数m、n=0の回折光を中心にそれより光軸側に回折す
るものはm、n=−1、−2、−3……というようにマイ
ナス次数又その反対側に回折するものはm、n=+1、+
2、+3……というようにプラス次数(これらの回折次
数に対応する回折角をθm、θnとする)になる。この時
の入射角θiと回折角θm、θnとの関係は、回折格子の
基礎公式により、次式数3及び数4の様になる。
FIG. 1 and FIG. 2 show the states of coincidence of the incident angle and the diffraction angle of the reflection diffraction grating. First, when monochromatic light having a frequency f is incident on the reflection diffraction grating 32 having a grating pitch P with an inclination of an incident angle θi from the optical axis, the diffracted light with a diffraction order of m and n = 0 is specularly reflected. Those diffracting to the optical axis side are m, n = -1, -2, -3, and so on. Those diffracting to the minus order or the opposite side are m, n = +1 and +.
2, +3, and so on, plus order (diffraction angles corresponding to these diffraction orders are denoted by θm and θn). The relationship between the incident angle θi and the diffraction angles θm and θn at this time is expressed by the following formulas 3 and 4 according to the basic formula of the diffraction grating.

【0013】[0013]

【数3】 Sinθm−Sinθi=m・λ/P[Equation 3] Sinθm-Sinθi = m · λ / P

【0014】[0014]

【数4】 Sinθn−Sinθi=n・λ/P[Equation 4] Sinθn-Sinθi = n · λ / P

【0015】以上の定義を基に本発明の位置ずれ検出方
法につき説明すると、図3に示される様に、周波数のわ
ずかに異なる(即ち、f1、 f2の)2つの単色光の組
を2組(即ち計4光束)用い、これらの各組の2光束に
ついては光軸の両側で該光軸に対して入射角の異なる
(即ちθ1とθ2であってθ1<θ2)非対称な方向からで
あって且つ該組間では前記光軸の両側で反転対称となる
方向(即ち、白抜き矢印のf1とf2の組と斜線書きのf
1とf2の組は光軸に対し図面上左右反転対称になってい
る)から夫々第1の物体M及び第2の物体Wの各回折格
子32a、32b(これらの格子ピッチはPとする)に入射さ
せ、光軸の夫々両側対称な位置から2ビーム以上の光ヘ
テロダイン干渉させた回折光を取り出した上で、両回折
格子32a、32bのX方向位置ずれ及びZ方向位置ずれによ
る光路差変動量に基づき生じる光ヘテロダイン検出信号
の下式数1及び数2に示される位相φxz及びφxz′から
これらの2式の和と差によってX方向及びZ方向の2次
元位相変動量φx及びφzを夫々分離算出することで、両
物体M、Wの変位量を求めることを基本的特徴としてい
る。
The position shift detecting method of the present invention will be described based on the above definitions. As shown in FIG. 3, two monochromatic light sets having slightly different frequencies (that is, f 1 and f 2 ) are used. Two sets (that is, a total of four beams) are used, and the two beams of each set have different incident angles with respect to the optical axis on both sides of the optical axis (that is, θ 1 and θ 2 where θ 12 ). From the asymmetrical direction, and between the pairs, there is a direction of reversal symmetry on both sides of the optical axis (that is, a pair of blank arrows f 1 and f 2 and a shaded f).
The pair of 1 and f 2 is symmetrical with respect to the optical axis in the left-right inversion in the drawing) to the diffraction gratings 32a and 32b of the first object M and the second object W, respectively (these grating pitches are P). ) And take out the diffracted light of two or more beams of optical heterodyne interference from the positions symmetrical to both sides of the optical axis. Then, the optical path difference due to the X-direction positional deviation and the Z-direction positional deviation of both diffraction gratings 32a and 32b is extracted. From the phases φ xz and φ xz ′ shown in the following equations 1 and 2 generated based on the variation amount, the two-dimensional phase variation amount φ x in the X and Z directions is calculated by the sum and difference of these two equations. The basic feature is that the displacement amounts of both objects M and W are obtained by separately calculating φ z and φ z , respectively.

【0016】[0016]

【数1】φxz=φx+φz [ Formula 1] φ x z = φ x + φ z

【0017】[0017]

【数2】φxz′=φx−φz (2) φ xz ′ = φ x −φ z

【0018】上記発明法のように、光軸に対して左シフ
ト及び右シフトした2光束の2組を左右反転対称な4光
束にしてその両側から入射させると、図4(a)に示さ
れる様に左側の周波数f1の光束と右側の周波数f2の光
束が全体として右側にシフトした組から得られる1以上
の光ヘテロダイン干渉された回折光は左傾きの状態のも
のが得られ(光軸両側に干渉回折光が出る場合は全体的
に左シフトした状態となる)、他方同図(b)に示され
るように、左側の周波数f1の光束と右側の周波数f2
光束が全体として左側にシフトした別の組から得られる
1以上の光ヘテロダイン干渉された回折光は右傾きの状
態のものが得られる(光軸両側に干渉回折光が出る場合
は全体的に右シフトした状態となる)ことになる。こう
して得られた干渉回折光から検出されるビート信号に
は、両物体M、WにX方向のずれがある場合、左傾きの
回折光由来のビート信号及び右傾きの回折光由来のビー
ト信号共、参照信号に対して常に一定方向に位相のずれ
(位相変動量)φxを生じ、またZ方向のずれがある場
合、左傾きの回折光由来のビート信号と右傾きの回折光
由来のビート信号では、参照信号に対して反対方向に位
相のずれφzを生じる。その結果実際に検出される左傾
きの回折光由来のビート信号の参照信号に対する位相の
ずれφxzは前記数1で示されたものが得られ、また右傾
きの回折光由来のビート信号の参照信号に対する位相の
ずれφxz′は前記数2で示されたものが得られることに
なる。従って、両式の和と差から、X方向及びZ方向の
2次元位相変動量φx及びφzを夫々分離算出することが
可能となる。
As in the above-mentioned method of the invention, when two sets of two light beams shifted left and right with respect to the optical axis are made into four light beams having left-right inversion symmetry and are made incident from both sides thereof, it is shown in FIG. 4 (a). As described above, one or more optical heterodyne-interfered diffracted lights obtained from a set in which the light flux of the left side frequency f 1 and the right side light of the frequency f 2 are shifted to the right side as a whole are obtained in the state of the left tilt (light When the interfering diffracted light emerges on both sides of the axis, the entire light beam is shifted to the left. On the other hand, as shown in FIG. 7B, the light flux with the frequency f 1 on the left side and the light flux with the frequency f 2 on the right side are totally One or more optical heterodyne interference diffracted light obtained from another set that is shifted to the left is obtained in the state of right tilt (if interference diffracted light appears on both sides of the optical axis, it is shifted to the right as a whole. Will be). In the beat signal detected from the interference diffracted light thus obtained, when the two objects M and W have a shift in the X direction, both the beat signal derived from the diffracted light with the left tilt and the beat signal derived from the diffracted light with the right tilt , If there is always a phase shift (phase variation amount) φ x in the constant direction with respect to the reference signal, and if there is a shift in the Z direction, the beat signal derived from the diffracted light with the left tilt and the beat derived from the diffracted light with the right tilt The signal causes a phase shift φ z in the opposite direction with respect to the reference signal. As a result, the phase shift φ xz of the beat signal derived from the diffracted light with the left tilt that is actually detected is obtained as shown in the above equation 1, and the reference of the beat signal derived from the diffracted light with the right tilt is obtained. As the phase shift φ xz ′ with respect to the signal, the one expressed by the above-mentioned equation 2 is obtained. Therefore, it is possible to separately calculate the two-dimensional phase fluctuation amounts φ x and φ z in the X direction and the Z direction from the sum and difference of both equations.

【0019】[0019]

【実施例】以下本発明法の具体的実施例につき詳述す
る。
EXAMPLES Hereinafter, specific examples of the method of the present invention will be described in detail.

【0020】図5及び図6はマスクMとウェハWの位置
ずれ検出を行なう本発明法の実施に使用される光学系装
置構成の一例を示す斜視図と、該光学系光路詳細図であ
る。
FIGS. 5 and 6 are a perspective view showing an example of the configuration of an optical system device used for carrying out the method of the present invention for detecting the positional deviation between the mask M and the wafer W, and a detailed view of the optical path of the optical system.

【0021】図5において、まず2波長直交偏光レーザ
光源12より偏光面が直交し、且つ周波数がわずかに異な
る(f1、f2)単色レーザ光(即ち、周波数f1成分に
ついては→で表わすP偏光、又周波数f2成分について
は↑で表わすS偏光)を発生させる。10は該光源12のコ
ントローラであり、電気的な処理を施して第1REF11
aから|f1−f2|の周波数の参照ビート信号が出力さ
れるようになる。尚、該光源12については音響光学素子
(AOM)2つからなる周波数シフタ等で2周波数のも
のを得る構成に置き換えてもよい。
In FIG. 5, first, a monochromatic laser light whose polarization planes are orthogonal to each other from the two-wavelength orthogonal polarization laser light source 12 and whose frequencies are slightly different (f 1 , f 2 ) (that is, the frequency f 1 component is represented by →). P-polarized light, or S-polarized light represented by ↑ for the frequency f 2 component) is generated. Reference numeral 10 is a controller for the light source 12, which is electrically processed to produce a first REF 11
The reference beat signal having the frequency of | f 1 −f 2 | is output from a. The light source 12 may be replaced with a structure in which a frequency shifter including two acousto-optic elements (AOM) is used to obtain a light source having two frequencies.

【0022】この光源12から射出されたアライメント光
は通常3〜4%程度レーザ射出口で楕円偏光になってお
り、これをλ/4板13という位相板(回転補正光学部
品)によって2周波成分の直交状態をより正しい姿勢に
直す。そしてアライメント光のビームは偏光ビームスプ
リッタ(PBS)14に至り、そこからS偏光(f2周波
数)成分がλ/2板15に至る。λ/2板15に対して結晶
軸と45°の方向から入射させ、周波数f2のS偏光を
90°回転させたf1周波数と同じP偏光にする。該λ
/2板15より出たf2周波数のP偏光は、ミラー16によ
り光路を変へ、f2周波数のアライメントビームは図上
Z方向、X方向に移動可能であり、あおりやθ回転もで
きるミラー17により光軸方向を変えてレンズ18に至る。
このレンズ18はレーザービームf2を絞り込み(集収)
をして図上24、25のビームウェストBWで示す2箇所の
位置でビーム径が最も絞られた状態位置を作成する。こ
れは後述する視野絞りAS27上で平行交差する光束とす
るためであり、テレセントリック光学系を構成するため
である。
The alignment light emitted from the light source 12 is normally elliptically polarized at a laser emission port of about 3 to 4%, and this is converted into a two-frequency component by a phase plate (rotation correction optical component) called a λ / 4 plate 13. Correct the orthogonal state of to a more correct posture. Then, the beam of alignment light reaches the polarization beam splitter (PBS) 14, and the S-polarized (f 2 frequency) component reaches the λ / 2 plate 15 from there. It is incident on the λ / 2 plate 15 from the direction of 45 ° with respect to the crystal axis, and the S-polarized light of frequency f 2 is rotated 90 ° to be P-polarized light which is the same as f 1 frequency. The λ
The F 2 frequency P-polarized light emitted from the / 2 plate 15 has its optical path changed by the mirror 16, and the f 2 frequency alignment beam can be moved in the Z and X directions in the figure, and can also be tilted or rotated by θ. The optical axis direction is changed by 17 to reach the lens 18.
This lens 18 focuses the laser beam f 2 (collection)
Then, the state position where the beam diameter is most narrowed is created at two positions indicated by beam waist BW of 24 and 25 in the figure. This is for forming a light flux that crosses in parallel on a field stop AS27, which will be described later, and for configuring a telecentric optical system.

【0023】一方、偏光ビームスプリッタ14を透過した
P偏光の周波数f1のアライメントビームは、レンズ19
に至る。このレンズ19は、前記レンズ18と同様に2カ所
のビームウェストBW24、25の位置にレーザービームを
絞り込むものである。レンズ18、19で絞り込まれたレー
ザービームは入射位置が調整され、無偏光ビームスプリ
ッタNPBS20に夫々入射される。この無偏光ビームス
プリッタNPBS20上でf1とf2周波数のビームの間隔
は後に所望の回折次数(−1、−1)の干渉回折光が得
られる間隔になるようミラー17により調整される。後述
の対物レンズ31により回折格子32への入射照明角度は、
この周波数f1とf2のビーム間隔で決定するので精密に
調整する。無偏光ビームスプリッタNPBS20の反射透
過面はあおりや回軸により2光束の波面を調整でき、2
光束の波面が同一になるように波面収差を取り除く。無
偏光ビームスプリッタNPBS20に入射された周波数f
1とf2の両アライメントビームは、平行光束として一緒
に2方向に分岐される。
On the other hand, the P-polarized alignment beam of frequency f 1 transmitted through the polarization beam splitter 14 is reflected by the lens 19
Leading to. Like the lens 18, the lens 19 narrows the laser beam to two beam waists BW 24, 25. The incident positions of the laser beams narrowed down by the lenses 18 and 19 are adjusted and are made incident on the non-polarizing beam splitter NPBS20. On the non-polarizing beam splitter NPBS20, the distance between the beams of the frequencies f 1 and f 2 is adjusted by the mirror 17 so that the interference diffracted light of the desired diffraction order (-1, -1) can be obtained later. The incident illumination angle to the diffraction grating 32 by the objective lens 31 described later is
Since the frequency is determined by the beam spacing between f 1 and f 2 , it is adjusted precisely. The reflection / transmission surface of the non-polarization beam splitter NPBS20 can adjust the wavefronts of two light fluxes by tilting and rotating axes.
Wavefront aberration is removed so that the wavefronts of the light beams are the same. Frequency f incident on non-polarizing beam splitter NPBS20
Both the 1 and f 2 alignment beams are split together in two directions as parallel beams.

【0024】ミラー21に至った周波数f1とf2の2光束
は光軸方向を変え、無偏光ビームスプリッタNPBS23
に至る。同様にミラー22に至った2光束は光軸方向を変
え、X方向、Z方向に回転・あおりが可能なミラー22に
より所定量ずらし、無偏光ビームスプッリタNPBS23
上で4光束のビーム(f2211)配置となり、光軸
に対して左右反転対称になるよう精密に調整する。もし
光軸に対して横ずれが発生すると非テレセントリック状
態になり、結像面となる回折格子32で微小なずれが発生
し、2組の検出範囲長が異なってしまう。図上無偏光ビ
ームスプリッタNPBS23より右側に射出される4光束
は他軸用としたが、もしキューブ状でミラー面が2カ所
あるビームスプッリタが作成できるのであれば、置き換
えることが望ましい。
The two light fluxes of frequencies f 1 and f 2 reaching the mirror 21 change the optical axis direction, and the non-polarizing beam splitter NPBS23
Leading to. Similarly, the two light fluxes reaching the mirror 22 change the optical axis direction and are shifted by a predetermined amount by the mirror 22 which can be rotated and tilted in the X and Z directions, and a non-polarized beam splitter NPBS23.
The four light beams (f 2 f 2 f 1 f 1 ) are arranged above, and are precisely adjusted so as to be symmetrical left and right with respect to the optical axis. If a lateral shift occurs with respect to the optical axis, a non-telecentric state occurs, and a minute shift occurs in the diffraction grating 32 that is the image plane, and the two detection range lengths differ. In the figure, the four light beams emitted from the non-polarizing beam splitter NPBS23 to the right side are for the other axes, but it is preferable to replace them if a cube-shaped beam splitter having two mirror surfaces can be produced.

【0025】無偏光ビームスプリッタNPBS23より射
出された4光束は、光軸に対して夫々左右反転対称な配
置となり、レンズ26に至る。レンズ26、28、31、33は両
テレセントリック光学系になっていて、視野絞りAS27
の像がマスクM、ウェハWの回折格子32上に像を作る共
役(結像)関係になっている。このようなテレセントリ
ック配置により視野絞りAS27の像が回折格子32上に結
像すると、デフォーカス(焦点位置ずれ)があってもそ
の像の結像倍率が一定となる。例えば光学系の傾きやレ
ンズの偏心があった場合発生する視野絞りAS27からの
フランホーファー回折像は、アライメント誤差要因にな
るが、両テレセントリック光学系で結像されているの
で、その影響がより低減できる。レンズ26より射出され
た4光束は該レンズ26の後面焦点位置に配置された視野
絞りAS27上で4光束が平行交差するように絞り込まれ
て、視野絞り径のアライメントビームが成形射出され、
レンズ28の後面焦点位置にある後述の瞳面EP70で4光
束の平行光となる。この4光束平行光はレンズ28から射
出され光軸に対して平行に進み、対物レンズ31の前面焦
点位置にあり回折格子32のフーリエ変換像が得られる瞳
面EP70で集光されあたかも点光源のようになる。この
瞳面EP70上の4光束の並びはレンズ26、28により反転
されるので、4光束の並びが(f2211)から(f
1122)となり、逆位置になる。
The four light beams emitted from the non-polarization beam splitter NPBS23 are arranged symmetrically with respect to the optical axis in the left-right direction and reach the lens 26. The lenses 26, 28, 31, 33 are both telecentric optics and have a field stop AS27.
Image has a conjugate (image forming) relationship for forming an image on the diffraction grating 32 of the mask M and the wafer W. When the image of the field stop AS27 is formed on the diffraction grating 32 by such a telecentric arrangement, the image forming magnification of the image becomes constant even if there is defocus (focal position shift). For example, the Franhofer diffraction image from the field stop AS27, which occurs when the optical system is tilted or the lens is decentered, causes an alignment error, but the influence is reduced because it is imaged by both telecentric optical systems. it can. The four light beams emitted from the lens 26 are narrowed down on the field stop AS27 arranged at the focal position of the rear surface of the lens 26 so that the four light beams cross each other in parallel, and an alignment beam having a field stop diameter is formed and injected.
A pupil plane EP70, which will be described later, located at the focal point of the rear surface of the lens 28, forms four parallel light beams. The four-beam parallel light is emitted from the lens 28, travels in parallel to the optical axis, and is focused on the pupil plane EP70 where the Fourier transform image of the diffraction grating 32 is obtained at the front focus position of the objective lens 31 as if it were a point light source. Like Since the arrangement of the four light fluxes on the pupil plane EP70 is inverted by the lenses 26 and 28, the arrangement of the four light fluxes is changed from (f 2 f 2 f 1 f 1 ) to (f
1 f 1 f 2 f 2 ) and the reverse position.

【0026】全てP偏光(→)である4光束は偏光ビー
ムスプリッタPBS29を透過し、λ/4板30に至る。こ
のλ/4板30を通過した4光束は左回りの円偏光とな
り、対物レンズ31に平行光としてのビーム径を拡大して
進む。ここを透過した4光束は図7に示されるように、
この対物レンズ31によって光軸に対して外側の角度
θ2、内側の角度θ1で入射照明される。このような入射
照明が行われる時、4光束は光軸に対し瞳面EP70上で
Fb・Sinθ2とFb・Sinθ1の位置に配置されて
おり(Fbは対物レンズ31の後面焦点距離である)、光
軸に対して左右反転対称となる角度で回折格子32に入射
照明されることになる。
The four beams of P-polarized light (→) all pass through the polarization beam splitter PBS29 and reach the λ / 4 plate 30. The four light fluxes that have passed through the λ / 4 plate 30 become counterclockwise circularly polarized light, and travel by expanding the beam diameter as parallel light to the objective lens 31. As shown in FIG. 7, the four light fluxes transmitted through here are
The objective lens 31 makes incident illumination with an outer angle θ 2 and an inner angle θ 1 with respect to the optical axis. When such incident illumination is performed, four-beam is arranged in a position of Fb · sin [theta 2 and Fb · sin [theta 1 on the pupil plane EP70 respect to the optical axis (Fb is the surface focal length of the objective lens 31 ), The light is incident on the diffraction grating 32 at an angle which is symmetrical with respect to the optical axis.

【0027】更に本実施例では次のような受光光学系で
干渉回折光を受光する。2組の2光束を照明して得られ
る回折光は前記図7に示されるような状態となる。即ち
入射角度θ1、θ2と反対方向の正反射光(0次光)を中
心として高次の回折光が前記ピッチP間隔に並ぶため、
2光束の2組が混入することなく回折される。この図面
では干渉ビート信号が得られる回折次数(−1、−1)
(−1、−1)(−3、+1)(−3、+1)(+1、
−3)(+1、−3)のみを明記してある。ここでビー
ト信号を検出している干渉回折光は上記の6光束とした
が、これはレンズ31の有効径によって決めたもので、高
NA(開口比)のレンズであれば高次の干渉回折光を集
光することが可能である。
Furthermore, in this embodiment, the interference diffracted light is received by the following light receiving optical system. Diffracted light obtained by illuminating two sets of two light fluxes is in a state as shown in FIG. That is, since the high-order diffracted light is centered on the specularly reflected light (0th-order light) in the direction opposite to the incident angles θ 1 and θ 2 , the pitch P intervals are arranged.
Two sets of two light beams are diffracted without being mixed. In this figure, the diffraction orders (-1, -1) from which the interference beat signal is obtained
(-1, -1) (-3, +1) (-3, +1) (+1,
Only -3) (+1, -3) is specified. Here, the interference diffracted light that detects the beat signal is the above-mentioned six light beams, but this is determined by the effective diameter of the lens 31, and if the lens has a high NA (aperture ratio), the higher order interference diffraction light is used. It is possible to collect light.

【0028】次に以上の入射照明光と干渉回折光のアイ
ソレーション(分離)方法について説明する。得られる
回折光は光軸に対称な角度で回折され、入射時の円偏光
と逆に回る右回りの円偏光となり、対物レンズ31で集光
される。干渉6光束は平行光となり、λ/4板30を通過
すると、偏光方向がS偏光(↑)(図6では紙面に垂直
な偏光◎で図示)となり、入射時とその偏光方向を変
え、偏光ビームスプリッタPBS29の分離面で反射され
る。ここで偏光ビームスプリッタPBS29とλ/4板30
によって入射光と回折光が完全に分離される。進行方向
を変えた反射回折光はその前面焦点距離が瞳面EP70上
にあるレンズ33に至り、更にその後面焦点距離の位置に
結像する。この位置は前記視野絞りAS27と共役(結
像)関係にある。レンズ33、34はアホーカル系拡大レン
ズであり、前面の結像面を拡大してリレーするものであ
る。この拡大像はレンズ34の後面でフーリエ像となる。
Next, a method for isolating the incident illumination light and the interference diffracted light will be described. The obtained diffracted light is diffracted at an angle symmetric with respect to the optical axis, becomes circularly polarized light that rotates in the opposite direction to the circularly polarized light when incident, and is condensed by the objective lens 31. The interference 6 light beams become parallel light, and when passing through the λ / 4 plate 30, the polarization direction becomes S-polarized (↑) (shown by the polarized light ◎ perpendicular to the paper surface in FIG. 6). It is reflected by the separation surface of the beam splitter PBS29. Here, polarizing beam splitter PBS 29 and λ / 4 plate 30
The incident light and diffracted light are completely separated by. The reflected diffracted light whose traveling direction is changed reaches the lens 33 having the front focal length on the pupil plane EP70, and is further imaged at the position of the rear focal length. This position has a conjugate (image forming) relationship with the field stop AS27. Lenses 33 and 34 are afocal magnifying lenses, which magnify and relay the image forming surface on the front surface. This magnified image becomes a Fourier image on the rear surface of the lens 34.

【0029】レンズ34を通過した6光束は穴開きミラー
35により中央の(−1、−1)(−1、−1)次回折光
のみが通過し、他の光束は反射される。通過した2光束
はレンズ36に至り、スリット38で迷光や外乱光が遮断さ
れて四分割ディテクタ37に至る。四分割ディテクタ37面
上では前記回折格子32の像が拡大投影された面であり、
ここでウェハWとマスクMの夫々のビート信号が分離さ
れ、夫々の検出面で受光される。一方穴開きミラー35で
反射された高次の回折光は空間フィルタ39で所望の回折
光のみが取り出され、その後図示しないレンズとディテ
クタにより夫々受光される。
The six light fluxes that have passed through the lens 34 are perforated mirrors.
By (35), only the central (-1, -1) (-1, -1) th order diffracted light passes through and the other light beams are reflected. The two passed light fluxes reach the lens 36, stray light and ambient light are blocked by the slit 38, and reach the four-divided detector 37. On the surface of the four-divided detector 37 is a surface on which the image of the diffraction grating 32 is enlarged and projected,
Here, the beat signals of the wafer W and the mask M are separated and received by the respective detection surfaces. On the other hand, as for the high-order diffracted light reflected by the perforated mirror 35, only the desired diffracted light is taken out by the spatial filter 39, and thereafter, it is received by a lens and a detector (not shown), respectively.

【0030】平行4光束を作成するため本実施例では2
個の無偏光スプリッタNPBS20、25を用いたが、マス
クM、ウェハWの回折格子32と同一ピッチの回折格子の
透過光を用いても平行4光束が作成できる。図8(a)
は平行2光束を作成する従来法を示す図面であり、又同
図(b)は回折格子を用いた平行4光束を作成する方法
を説明する図面である。従来法では光軸に沿ったレーザ
光が回折格子50を照明すると、透過側に回折光が発生す
る。これをレンズ51で集光できる(−1、0、+1)の
回折光を取り出し、空間フィルタ52で0次(正反射光)
をカットし、−1次、+1次平行光束を作成している。
平行4光束はこの構成を応用しており、光軸に対して夫
々異なる方向からレーザ2光束を回折格子50に照明し、
夫々の回折光が所望の間隔で並ぶようにし、レンズ51で
平行光として空間フィルタ52で同様に−1次、+1次の
4光束を取り出して平行4光束を作成するものである。
実際の構成としては、図9に示すように、直行する方向
から周波数f1とf2の2つのP偏光レーザビームをレン
ズ18、19を介して無偏光ビームスプリッタNPBS20に
入射せしめ、平行な2光束として2つに分岐されてから
1、f2周波数のレーザビームは図上ビームウェストB
W53の位置で絞り込まれ、ここで所望の平行光が得られ
る間隔にする。レンズ54で平行2光束となり、回折格子
50を照明して得られる透過側の回折光は、周波数f1
ものについては斜線の入った線で又周波数f2のものに
ついては白抜きの線で示しているが、レンズ51を通過し
て平行光になり、空間フィルタ52で0次光が夫々カット
され、+1、−1、−1、+1次の4光束の平行光が取
り出される。尚、回折格子50はマスクM及びウェハWと
共役な位置に配置する。前記実施例の構成では視野絞り
AS27に回折格子54を配置する。この他の実施例ではウ
ォラストンプリズム(P偏光、S偏光分離取り出し素
子)を使用して平行4光束を作成しても良い。
In this embodiment, two beams are used to create four parallel light beams.
Although the non-polarizing splitters NPBS20 and 25 are used, four parallel light fluxes can be created by using the transmitted light of the diffraction grating having the same pitch as the diffraction grating 32 of the mask M and the wafer W. Figure 8 (a)
Is a drawing showing a conventional method for producing parallel 2 light fluxes, and FIG. 7B is a drawing for explaining a method for producing parallel 4 light fluxes using a diffraction grating. In the conventional method, when laser light along the optical axis illuminates the diffraction grating 50, diffracted light is generated on the transmission side. The (51, 0, +1) diffracted light that can be condensed by the lens 51 is extracted, and the spatial filter 52 extracts the 0th order (regular reflection light).
Is cut to create −1st and + 1st order parallel light fluxes.
This configuration is applied to four parallel light fluxes, which illuminate the diffraction grating 50 with two laser light fluxes from different directions with respect to the optical axis.
The respective diffracted lights are arranged at desired intervals, and the parallel light is extracted by the lens 51 as the parallel light by the spatial filter 52 in the same manner to extract the −1st and + 1st order light fluxes.
As an actual configuration, as shown in FIG. 9, two P-polarized laser beams of frequencies f 1 and f 2 are made incident on a non-polarized beam splitter NPBS20 through lenses 18 and 19 in a direction orthogonal to each other and are made parallel to each other. A laser beam of frequencies f 1 and f 2 after being split into two as a light beam has a beam waist B in the figure.
The aperture is narrowed down at the position of W53, and the interval is set so that desired parallel light can be obtained. Two parallel light beams are formed by the lens 54, and the diffraction grating
The diffracted light on the transmission side obtained by illuminating 50 passes through the lens 51 though it is shown by the shaded line for the frequency f 1 and the white line for the frequency f 2. Are converted into parallel light, and the spatial filter 52 cuts the 0th-order light, respectively, and the +1, -1, -1, and + first-order four-beam parallel light is extracted. The diffraction grating 50 is arranged at a position conjugate with the mask M and the wafer W. In the configuration of the above embodiment, the diffraction grating 54 is arranged in the field stop AS27. In another embodiment, a Wollaston prism (P-polarized light, S-polarized light separation / extraction element) may be used to create four parallel light beams.

【0031】本実施例に示すように、光軸に対し左シフ
ト及び右シフトした2光束の組2組を左右反転対称な4
光束にして、図10に示すようにマスクM及びウェハW
の各回折格子32に入射照明すると、光軸に対して対称な
位置に(−1、−1)次回折光をマスクM・ウェハW共
に2つずつ得る(図面上他の回折次数のものは省略され
ている)。前記図4(b)に示されたように、光軸に対
して左シフトした入射光に対しては、反射の法則により
光軸に対して入射方向と逆向きの右傾きの回折光が得ら
れる。同様に光軸に対して右シフトした入射光に対して
は、同図(a)に示すように、左傾きした回折光が得ら
れる。このように4光束照明したのは2次元方向(X方
向、Z方向)の位相変化を同時に測定するためであり、
2光束の組を2組にして光軸に対し対称に入射照明した
のは得られるΔx、Δzの移動量に対応する位相量を同
量にするためである。
As shown in this embodiment, two pairs of two light fluxes which are left-shifted and right-shifted with respect to the optical axis are left-right inverted symmetrically.
As a light flux, as shown in FIG. 10, the mask M and the wafer W
When each of the diffraction gratings 32 is illuminated, two (-1, -1) th order diffracted lights are obtained at positions symmetrical to the optical axis for both the mask M and the wafer W (other diffraction orders are omitted in the drawing). Has been). As shown in FIG. 4B, with respect to the incident light that is left-shifted with respect to the optical axis, diffracted light having a right tilt opposite to the incident direction with respect to the optical axis is obtained according to the law of reflection. To be Similarly, for incident light that is shifted to the right with respect to the optical axis, diffracted light that is tilted to the left is obtained as shown in FIG. The reason why the four-beam illumination is performed is to measure the phase change in the two-dimensional direction (X direction, Z direction) at the same time.
The reason why two sets of two light fluxes are incident and illuminated symmetrically with respect to the optical axis is to make the phase amounts corresponding to the obtained movement amounts of Δx and Δz the same amount.

【0032】次に本実施例において、光軸に対して対称
位置に(−1、−1)次回折光が2つ得られることを説
明する。前記図7は、ウェハWに形成された回折格子に
対する入射光と(−3次〜+3次)までの回折光をもっ
て、2波長の干渉モデルを示す原理説明図である。本実
施例では同図(f)に示すように、その回折格子32のデ
ューティー比として、1次回折効率が一番良い(P−
a)/P=1/2の1:1のものを用いた。同図(c)
(d)に示すものは、前記回折格子32からの(−3次〜
+3次)までの対物レンズ31で集光できる次数のf1
2のm次、n次回折光の強度分布である。
Next, in the present embodiment, it will be described that two (-1, -1) th order diffracted lights are obtained at symmetrical positions with respect to the optical axis. FIG. 7 is a principle explanatory diagram showing an interference model of two wavelengths with incident light to the diffraction grating formed on the wafer W and diffracted light up to (−3rd to + 3rd). In the present embodiment, as shown in FIG. 6F, the duty ratio of the diffraction grating 32 has the best first-order diffraction efficiency (P-
a) 1 / P = 1/2 was used. The same figure (c)
The one shown in (d) is from the diffraction grating 32.
F 1 of the order that can be condensed by the objective lens 31 up to + 3rd order,
It is the intensity distribution of the m-th and n-th order diffracted light of f 2 .

【0033】まず光軸から左側にシフトした2光束(周
波数f1、f2)の組から説明する。同図(e)に示した
対物レンズ31の前面焦点距離にある瞳面EP70は、回折
格子32のフーリエ変換像が得られる面であり、照明系の
光学配置ではこの面で点光源となるよう4光束を絞り込
む。外側入射角度θ2で入射する周波数f1の照明光(白
抜き矢印)は回折格子32に入射照明され、その正反射光
(0次光)が瞳面EP70上で光軸に対して入射位置と反
対位置に戻る。この位置を中心にして、同図(d)の
(R1)に示されるように、−3次〜+1次の回折光が
得られる。同様に内側入射角度θ1で入射する周波数f2
の照明光(白抜き矢印)も回折格子32に入射照明され、
その正反射光は瞳面EP70上で光軸に対して入射位置と
反対位置に正反射光(0次光)が戻り、同図(d)の
(R2)に示されるように、これを中心として+1次〜
−3次の回折光が得られる。この時、瞳面EP70上での
周波数f1の入射照明光(白抜き矢印)と同周波数f2
入射照明光(白抜き矢印)の間隔は、この回折光のうち
(m=−1、n=−1)次の回折光が干渉する(重なり
合う)ように設定する。このような状況にして得られる
(−1、−1)次の干渉回折光は光軸に対して右傾き回
折光位置(黒実線矢印)に得られ、光軸より右側にずれ
る。回折光が干渉状態になるのは、これ以外に(−3、
+1)次及び(+1、−3)次の位置にもある。
First, a set of two light beams (frequency f 1 and f 2 ) shifted leftward from the optical axis will be described. The pupil plane EP70 at the front focal length of the objective lens 31 shown in (e) of the figure is a plane on which the Fourier transform image of the diffraction grating 32 is obtained, and this plane serves as a point light source in the optical arrangement of the illumination system. 4 Narrow the light flux. Illumination light (white arrow) having a frequency f 1 incident at an outer incident angle θ 2 is incident and illuminated on the diffraction grating 32, and its specularly reflected light (0th order light) is incident on the pupil plane EP70 with respect to the optical axis. And return to the opposite position. With this position as the center, as shown in (R1) of FIG. Similarly, the frequency f 2 incident at the inner incident angle θ 1
Illumination light (white arrow) is also incident on the diffraction grating 32 and illuminated.
The specularly reflected light returns to the position opposite to the incident position with respect to the optical axis on the pupil plane EP70 as the specularly reflected light (0th order light), and as shown in (R2) of FIG. As +1 order ~
-3rd order diffracted light is obtained. At this time, the interval between the incident illumination light having the frequency f 1 (white arrow) and the incident illumination light having the same frequency f 2 (white arrow) on the pupil plane EP70 is (m = −1, It is set so that the n = −1) th order diffracted light interferes (overlaps). The interference diffracted light of the (-1, -1) th order obtained in such a situation is obtained at the diffracted light position tilted to the right (black solid line arrow) with respect to the optical axis, and is shifted to the right of the optical axis. Other than this, the diffracted light enters the interference state (-3,
It is also in the (+1) th and (+ 1, -3) th positions.

【0034】一方もう一組の周波数f1、f2の2光束
(斜線塗りの矢印)の組も、その入射照明時に光軸を中
心として右にシフトしており、従って光軸を中心に前記
の場合と反転した位置にその干渉回折光が得られる。即
ち同図(c)の(L1、L2)に示すように、その(−
1、−1)次の干渉回折光は光軸に対して左傾き回折光
位置(斜線塗りした矢印)に得られ、瞳面EP70上光軸
より左側にずれる。回折光が干渉状態になるのは、これ
以外に(−3、+1)次及び(+1、−3)次の位置に
もある。
On the other hand, another set of two light fluxes of frequency f 1 and f 2 (hatched arrows) is also shifted to the right about the optical axis at the time of the incident illumination, and therefore the above-mentioned center is set about the optical axis. The interference diffracted light is obtained at the position reversed from the case. That is, as shown in (L1, L2) of FIG.
The interference diffracted light of the 1st and -1) th order is obtained at the diffracted light position that is tilted to the left with respect to the optical axis (the hatched arrow) and is shifted to the left of the optical axis on the pupil plane EP70. In addition to this, the diffracted light enters the interference state also at the (-3, +1) th and (+1, -3) th positions.

【0035】以上のようにして得られた左傾き、右傾き
の干渉回折光は、同図(b)に示すように夫々の干渉回
折光が重なり合うことなく光軸に対して対称位置に得ら
れ、該干渉回折光を検出するディテクタ37等の手前で
は、同図(a)に示すように分離されて夫々別々に検出
することが可能となる。
The interference diffracted light having the left tilt and the right tilt obtained as described above is obtained at a symmetrical position with respect to the optical axis without the interference diffracted lights overlapping with each other, as shown in FIG. In front of the detector 37 or the like for detecting the interference diffracted light, they are separated as shown in FIG.

【0036】次にΔx方向の位相変動量とΔz方向の位
相変動量を所定の式の和と差により分離する原理につい
て説明する。図11乃至図13は、入射角をθとした左
右対称入射照明の場合(Symmetric、図11)
と、入射角をθ1、θ2として入射照明光が右にシフトし
た左非対称の場合(Left、図12)と、同様な条件
で入射照明光が左にシフトした右非対称の場合(Rig
ht、図13)とにおける−1次の干渉回折光の状態を
示している。同時に微小変動量ΔxとΔzがあった場合
における前記参照信号に対するビート信号の位相移動方
向を、黒塗りの矢印と白抜きの矢印とでこれらの図面に
併せて示した。
Next, the principle of separating the phase fluctuation amount in the Δx direction and the phase fluctuation amount in the Δz direction by the sum and difference of predetermined formulas will be described. 11 to 13 show left-right symmetrical incident illumination with an incident angle of θ (Symmetric, FIG. 11).
And the case where the incident illumination light is shifted to the right with the incident angles θ 1 and θ 2 (Left, FIG. 12) and the case where the incident illumination light is shifted to the left under the same conditions (Rig
ht, FIG. 13), and −1st order interference diffracted light. At the same time, the phase shift direction of the beat signal with respect to the reference signal when there are minute fluctuation amounts Δx and Δz are also shown in these drawings by a black arrow and a white arrow.

【0037】これらの図面から明らかなように、Δx方
向の移動に対しての位相移動方向が3つの場合とも同一
方向である。これは移動に伴う光路長変化が、後述の図
14乃至図16に示すように、周波数f1のものについ
ては常に長くなり、周波数f2のものについては常に短
くなることから判断できる。即ち周波数f2の照明光を
基準にした時の周波数f1の照明光に対する光路差[L
(1)−L(2)]は、L(1)の光路長が長くなり、
またL(2)の光路長が短くなるため、常に正になり、
従って位相移動方向が常に同一方向になる。
As is clear from these figures, the phase shift directions with respect to the shift in the Δx direction are the same in all three cases. This can be judged from the fact that the change in the optical path length due to the movement is always long for the frequency f 1 and is always short for the frequency f 2 as shown in FIGS. 14 to 16 described later. That is, the optical path difference [L] with respect to the illumination light of frequency f 1 when the illumination light of frequency f 2 is used as a reference
(1) -L (2)] has a long optical path length of L (1),
Also, since the optical path length of L (2) becomes short, it always becomes positive,
Therefore, the phase shift direction is always the same direction.

【0038】これに対してΔzの移動に対して図11の
左右対称入射の場合、周波数f1及びf2の入射照明光の
光路長変化量は常に等しく、光路差[L(1)−L
(2)]は0となり、振幅強度については変化するが、
位相は変化せず、位相ずれは起きない。これが、左右対
称光学配置にするとΔzギャップ方向に対する変動に対
し、影響を受けない利点であった。
On the other hand, in the case of symmetrical incidence of FIG. 11 with respect to the movement of Δz, the variation amounts of the optical path lengths of the incident illumination lights of the frequencies f 1 and f 2 are always equal, and the optical path difference [L (1) -L
(2)] becomes 0, and the amplitude intensity changes, but
The phase does not change and no phase shift occurs. This is an advantage that the symmetrical optical arrangement does not affect the variation in the Δz gap direction.

【0039】左非対称や右非対称の場合、光軸からの傾
き方向により夫々のΔz移動に伴う位相変動量が逆向き
に発生する(白抜き矢印→と←)。
In the case of left asymmetry or right asymmetry, the amount of phase fluctuation associated with each Δz movement occurs in the opposite direction depending on the inclination direction from the optical axis (white arrows → and ←).

【0040】以上のような場合の光路長変化の様子を、
図14乃至図16により具体的に示す。これらの図面は
周波数f1のビームと周波数f2のビームがΔx及びΔz
分移動するに伴い、位置PからP′に移動した時の光路
長L(1)とL(2)を示したものである。これらの図
面ではその時発生する入射光の光路変化長を丸A、丸B
で、また回折光の光路変化量を丸Cで各示し、光路長は
太い実線で表した。このうち回折光の光路長丸Cは周波
数f1、f2で同一方向に発生する光路長で、光路差[L
(1)−L(2)]=(丸A+丸C)−(丸B+丸C)
=(丸A−丸B)となり、丸Cは光路差に寄与しておら
ず、光路差の算出から除くことができる。即ち光路差は
周波数f1、f2の入射光に対して発生する光路長を考え
れば良い。
The change in optical path length in the above case is
This will be specifically shown in FIGS. 14 to 16. These drawings show that the beam of frequency f 1 and the beam of frequency f 2 are Δx and Δz.
It shows the optical path lengths L (1) and L (2) when moving from the position P to P ′ as the position moves by a minute. In these drawings, the optical path change length of the incident light generated at that time is circle A, circle B.
Also, the change amount of the optical path of the diffracted light is shown by a circle C, and the optical path length is shown by a thick solid line. Of these, the optical path length circle C of the diffracted light is the optical path length generated in the same direction at the frequencies f 1 and f 2 , and the optical path difference [L
(1) -L (2)] = (Circle A + Circle C) − (Circle B + Circle C)
= (Circle A−circle B), the circle C does not contribute to the optical path difference and can be excluded from the calculation of the optical path difference. That is, the optical path difference may be considered as the optical path length generated for incident light of frequencies f 1 and f 2 .

【0041】そこでまず振幅が略等しく周波数がわずか
に異なっており(数10KHz〜数100KHz)、且
つ同一方向に進行する2つの波u1とu2の重ね合わせを
考える。
Therefore, first, let us consider a superposition of two waves u 1 and u 2 which have substantially equal amplitudes and slightly different frequencies (several tens KHz to several hundred KHz) and which travel in the same direction.

【0042】u1、u2は下式数5及び数6の様な光波に
書ける。
U 1 and u 2 can be written as light waves represented by the following equations (5) and (6).

【0043】[0043]

【数5】 1=a1exp{i[ω1t−2πL(1)/λ1−φR(1)]}[Equation 5] u 1 = a 1 exp {i [ω 1 t−2πL (1) / λ 1 −φ R (1) ]}

【0044】[0044]

【数6】 2=a2exp{i[ω2t−2πL(2)/λ2−φR(2)]} ここで a1、a2 ……u1、u2の振幅 ω1 ……u1の角周波数 ω2 ……u2の角周波数 λ1、λ2 ……u1、u2の波長 φR(1)、φR(2) ……u1、u2の初期位相(一定
値) L(1) ……u1の光路長 L(2) ……u2の光路長
[Equation 6] u 2 = a 2 exp {i [ω 2 t−2πL (2) / λ 2 −φ R (2) ]} where a 1 , a 2 ...... u 1 , and the amplitude of u 2 ω 1 ...... u 1 Angular frequency ω 2 …… u 2 angular frequency λ 1 , λ 2 …… u 1 , u 2 wavelength φ R (1) , φ R (2) …… u 1 , u 2 initial phase (constant value ) L (1) ...... u 1 optical path length L (2) …… u 2 optical path length

【0045】又ビート周波数(うなり)は振幅の変動の
繰り返し周波数で下式数7で表わせる。
The beat frequency (beat) is a repetition frequency of amplitude fluctuation and can be expressed by the following equation (7).

【0046】[0046]

【数7】 Δf=(ω1−ω2)/2π[Equation 7] Δf = (ω 1 −ω 2 ) / 2π

【0047】u1とu2の2つの波の振幅の和を2乗して
波の重ね合せ強度を求めると次式数8が得られる。
When the sum of the amplitudes of the two waves u 1 and u 2 is squared to obtain the superposition strength of the waves, the following equation 8 is obtained.

【0048】[0048]

【数8】 [Equation 8]

【0049】上記数8の[L(1)/λ1−L(2)/
λ2]項から光路差[L(1)−L(2)]の変化によ
って位相項の遅れや進みが出ることがわかる。
[L (1) / λ 1 -L (2) /
It can be seen from the λ 2 ] term that the phase term is delayed or advanced due to the change in the optical path difference [L (1) -L (2)].

【0050】光ヘテロダインアライメント方式ではこの
位相差の測定を行なうことになるが、この位相差は±18
0゜以内と角度検出範囲が固定されてしまうため、数8
の[L(1)/λ1−L(2)/λ2]の項で示される光
路差[L(1)−L(2)]が検出範囲と位相の進み・
遅れの方向を左右する項目となる。使用される2つの周
波数f1、f2のレーザ光はわずかに波長が異なり、ビー
ト信号の周波数(f1−f2)は約2.4×105Hz
で、光周波数約5×1014Hzに比べ十分小さいので、
レーザ波長は、λ1=λ2≒λとおける。従って2π[L
(1)/λ1−L(2)/λ2]の項は2π[L(1)−
L(2)]/λと置き換えることができる。
In the optical heterodyne alignment method, this phase difference is measured, but this phase difference is ± 18.
Since the angle detection range is fixed within 0 °,
[L (1) / λ 1 −L (2) / λ 2 ], the optical path difference [L (1) −L (2)] is the detection range and the phase advance.
It is an item that affects the direction of delay. The two laser beams of the frequencies f 1 and f 2 used have slightly different wavelengths, and the frequency of the beat signal (f 1 −f 2 ) is about 2.4 × 10 5 Hz.
Since it is sufficiently smaller than the optical frequency of about 5 × 10 14 Hz,
The laser wavelength can be λ 1 = λ 2 ≈λ. Therefore, 2π [L
The term of (1) / λ 1 −L (2) / λ 2 ] is 2π [L (1) −
L (2)] / λ.

【0051】次に図14、図15、図16を基に図7の
場合の光軸方向にf1周波数成分の−1次回折光とf2
波数成分の−1次回折光で得られる光路差[L(1)−
L(2)]を求めてみる。
Next, based on FIGS. 14, 15 and 16, the optical path difference [-1st order diffracted light of f 1 frequency component and −1st order diffracted light of f 2 frequency component in the optical axis direction in the case of FIG. L (1)-
L (2)].

【0052】上記図14は、左右対称な入射光照明配置
の光路長変化を示した図である。ここで示されたθは、
周波数f1、f2の照明光を仮に光軸方向から入射させた
場合に得られる±1次回折光の方向から逆に入射させた
場合の入射角度である。周波数f1の光路L(1)の入
射光の光路長丸Aは、次式数9の様になる。
FIG. 14 is a diagram showing changes in the optical path length of a symmetrically arranged incident light illumination arrangement. Θ shown here is
It is the incident angle when the illumination lights of frequencies f 1 and f 2 are incident in the opposite directions from the directions of the ± first-order diffracted light obtained when the illumination light is incident in the optical axis direction. The optical path ellipse A of the incident light on the optical path L (1) having the frequency f 1 is represented by the following Expression 9.

【0053】[0053]

【数9】 L(1)=Δz/cosθ+(Δx−Δz・tanθ)sinθ =Δx・sinθ+Δz(1/cosθ−tanθ)sinθ =Δx・sinθ+Δz(1/cosθ−sin2θ/cosθ ) =Δx・sinθ+Δz・cosθ[Equation 9] L (1) = Δz / cos θ + (Δx−Δz · tan θ) sin θ = Δx · sin θ + Δz (1 / cos θ−tan θ) sin θ = Δx · sin θ + Δz (1 / cos θ−sin 2 θ / cos θ) = Δx · sin θ + Δz · cos θ

【0054】また周波数f2の光路L(2)の入射光の
光路長丸Bは、同様に次式数10の様になる。
Similarly, the optical path length circle B of the incident light on the optical path L (2) of the frequency f 2 is expressed by the following equation (10).

【0055】[0055]

【数10】 L(2)=Δz/cosθ−(Δx+Δz・tanθ)sinθ =−Δx・sinθ+Δz・cosθ[Equation 10] L (2) = Δz / cos θ− (Δx + Δz · tan θ) sin θ = −Δx · sin θ + Δz · cos θ

【0056】周波数f1と周波数f2の光の光路差[L
(1)−L(2)]は、上記数9及び数10から次式数
11となる。
Optical path difference [L of light of frequency f 1 and frequency f 2
(1) -L (2)] is given by the following equation 11 from the above equations 9 and 10.

【0057】[0057]

【数11】 L(1)−L(2)=Δx・sinθ+Δz・cosθ −(−Δx・sinθ+Δz・cosθ) =Δx(sinθ+sinθ)−Δz(cosθ−cosθ) =2Δx・sinθ[Equation 11] L (1) −L (2) = Δx · sin θ + Δz · cos θ − (− Δx · sin θ + Δz · cos θ) = Δx (sin θ + sin θ) −Δz (cos θ−cos θ) = 2Δx · sin θ

【0058】上記式から分かるように、左右対称の入射
の場合は入射角θが光軸に対して等しいので、Z方向に
は光路差は発生せず、Δxの変化のみとなる。これが左
右対称入射型の利点である。
As can be seen from the above equation, in the case of bilaterally symmetric incidence, the incident angles θ are equal to the optical axis, so no optical path difference occurs in the Z direction, and only Δx changes. This is the advantage of the bilaterally symmetrical incidence type.

【0059】これに対して図15や図16のように、左
シフト入射させ或いは右シフト入射させることで、光軸
に対して右傾き或いは左傾きした状態で回折光が取り出
された場合(右非対称或いは左非対称)、左右がアンバ
ランスになり、上記式11の(cosθ−cosθ)の
項で入射角θが実際にはθ1、θ2であることから明らか
なように、Δzの変位に対しても光路差が発生する。
On the other hand, as shown in FIG. 15 and FIG. 16, when the diffracted light is extracted with the light being left-shifted or right-shifted with respect to the optical axis (rightward or rightward). Asymmetry or left asymmetry), left and right are unbalanced, and as is clear from the fact that the incident angles θ are actually θ 1 and θ 2 in the term of (cos θ-cos θ) in the above equation 11, the displacement of Δz becomes The optical path difference also occurs.

【0060】この図15は左シフト入射光による右傾き
回折光の光路長変化(R)とその光路差を、また図16
は右シフト入射光による左傾き回折光の光路長変化
(L)とその光路差が各示されている。前述のように、
θ1、θ2は光軸に対しての入射光に対する夫々の入射角
度であり、内側入射角度θ1<外側入射角度θ2となる。
FIG. 15 shows the optical path length change (R) of diffracted light to the right due to the left-shift incident light and its optical path difference, and FIG.
Shows the optical path length change (L) of the left tilt diffracted light due to the right-shift incident light and the optical path difference. As aforementioned,
θ 1 and θ 2 are the respective incident angles with respect to the incident light with respect to the optical axis, and the inner incident angle θ 1 <the outer incident angle θ 2 .

【0061】両図における光路長丸A′丸A″は周波数
1入射光の光路長、丸B′丸B″は周波数f2入射光の
光路長、丸C′丸C″は周波数f1とf2回折光の光路長
を示している。前述のように光路差は[L(1)−L
(2)]であり、回折方向丸C′丸C″の光路長は、回
折方向が同方向なので光路差の計算から除くことができ
る。また両図とも回折光と光軸との回折角度は明記して
いない。このことは、周波数f1、f2の入射光の入射角
度で光路差が明記できることを示している。
Optical path length circle A'circle A "in both figures is the optical path length of the incident light of frequency f 1 , circle B'circle B" is the optical path length of the incident light of frequency f 2 and circle C'circle C "is the frequency f 1 And the optical path length of the f 2 diffracted light.
(2)], and the optical path length of the circle C ′ in the diffraction direction can be excluded from the calculation of the optical path difference because the diffraction directions are the same direction. In both figures, the diffraction angle between the diffracted light and the optical axis is Not specified, which means that the optical path difference can be specified by the incident angles of the incident lights of frequencies f 1 and f 2 .

【0062】そこでマスクMがPの位置からP′の位置
に移動した時、図15における周波数f1とf2の入射光
についての光路長L(1)とL(2)を夫々求めると、
次式数12及び数13の様になる。
Then, when the mask M moves from the position P to the position P ', the optical path lengths L (1) and L (2) for the incident lights of the frequencies f 1 and f 2 in FIG. 15 are obtained, respectively.
The following equations 12 and 13 are obtained.

【0063】[0063]

【数12】 L(1)=Δz/cosθ2+(Δx−Δz・tanθ2)sinθ2 =Δx・sinθ2+Δz・cosθ2 [Equation 12] L (1) = Δz / cos θ 2 + (Δx−Δz · tan θ 2 ) sin θ 2 = Δx · sin θ 2 + Δz · cos θ 2

【0064】[0064]

【数13】 L(2)=Δz/cosθ1−(Δx+Δz・tanθ1)sinθ1 =−Δx・sinθ1+Δz・cosθ1 [Equation 13] L (2) = Δz / cos θ 1 − (Δx + Δz · tan θ 1 ) sin θ 1 = −Δx · sin θ 1 + Δz · cos θ 1

【0065】以上の2式から周波数f2の入射光を基準
にしてみた光路差は次式数14の様になる。
From the above two equations, the optical path difference based on the incident light of frequency f 2 is as shown in the following equation (14).

【0066】[0066]

【数14】 L(1)−L(2)=(sinθ1+sinθ2)Δx −(cosθ1−cosθ2)Δz[Equation 14] L (1) -L (2) = (sin θ 1 + sin θ 2 ) Δx − (cos θ 1 −cos θ 2 ) Δz

【0067】上記式の右辺第1項はΔxに関する項で、
sinθの和で示され、また第2項はΔzに関する項
で、cosθの差で示され、θ1<θ2なので、(cos
θ1−cosθ2)の項は正であり、それ故、−を入れる
と、負を示すことになる。前記数8の2π/λ[L
(1)−L(2)]の項が光路差変動による位相項(−
180゜〜+180゜)になるので、Δx、Δzの位相
項変化量は、前記数14式と同様に、下式数15の様に
表すことができる。
The first term on the right side of the above equation is a term relating to Δx, and
The second term is the term relating to Δz, and the second term is the difference of cosθ. Since θ 12 , (cos
The term [theta] 1- cos [theta] 2 ) is positive, so entering-indicates a negative sign. 2π / λ [L of the above equation 8
The term (1) -L (2)] is the phase term (-
180 ° to + 180 °), the amount of change in the phase terms of Δx and Δz can be expressed by the following expression 15, as in the expression 14 described above.

【0068】[0068]

【数15】 φxz′=φx−φz [Equation 15] φ xz ′ = φ x −φ z

【0069】同様に図16において、PからP′に移動
した時の光路長を求めると、数12及び数13のθ1
θ2を入れ換えた、次式数16及び数17の様になる。
Similarly, in FIG. 16, when the optical path length when moving from P to P ′ is obtained, the following equations 16 and 17 are obtained by exchanging θ 1 and θ 2 of the equations 12 and 13. .

【0070】[0070]

【数16】 L(1)=Δz/cosθ1+(Δx−Δz・tanθ1)sinθ1 =Δx・sinθ1+Δz・cosθ1 [Equation 16] L (1) = Δz / cos θ 1 + (Δx−Δz · tan θ 1 ) sin θ 1 = Δx · sin θ 1 + Δz · cos θ 1

【0071】[0071]

【数17】 L(2)=Δz/cosθ2−(Δx+Δz・tanθ2)sinθ2 =−Δx・sinθ2+Δz・cosθ2 [Equation 17] L (2) = Δz / cos θ 2 − (Δx + Δz · tan θ 2 ) sin θ 2 = −Δx · sin θ 2 + Δz · cos θ 2

【0072】よって光路L(2)を基準にしてみた光路
差[L(1)−L(2)]は、次式数18の様になる。
Therefore, the optical path difference [L (1) -L (2)] based on the optical path L (2) is as shown in the following expression 18.

【0073】[0073]

【数18】 L(1)−L(2)=(sinθ1+sinθ2)Δx +(cosθ1−cosθ2)Δz[Equation 18] L (1) -L (2) = (sin θ 1 + sin θ 2 ) Δx + (cos θ 1 −cos θ 2 ) Δz

【0074】これを前記数15式と同様に位相変化量で
表すと、次式数19式に示すようになる。
When this is represented by the amount of phase change as in the equation 15, the following equation 19 is obtained.

【0075】[0075]

【数19】 φxz=φx+φz [Formula 19] φ xz = φ x + φ z

【0076】本実施例では、同時に左シフト及び右シフ
トした照明光の入射を行なっているため、前記数15式
と数19式との和及び差より、位相変動量φxとφzが分
離して測定することができる。
In this embodiment, since the left-shifted and right-shifted illumination light beams are incident at the same time, the phase fluctuation amounts φ x and φ z are separated from each other by the sum and difference of the equations (15) and (19). Can be measured.

【0077】以上のように、左右対称入射の時はその入
射角がθ1=θ2=θとなり、前記数14及び数18の右
辺第2項目のΔzに関する項が0となる。また右辺第1
項目は2Δx・sinθとなる。即ちΔx、Δzの移動
に伴い、X方向の光路長は、周波数f1の入射光につい
ては長くなり、周波数f2の入射光については短くなる
のに対し、Z方向の光路長については、周波数f1及び
2とも長くなるが変化量は同じである。
As described above, the incident angle is θ 1 = θ 2 = θ in the case of bilaterally symmetric incidence, and the term relating to Δz in the second item on the right side of the equations 14 and 18 is 0. Also the first on the right side
The item is 2Δx · sin θ. That is, as Δx and Δz move, the optical path length in the X direction becomes longer for the incident light of frequency f 1 and becomes shorter for the incident light of frequency f 2 , whereas the optical path length in the Z direction becomes Both f 1 and f 2 are long, but the amount of change is the same.

【0078】一方、左シフト及び右シフトした照明光の
入射により右非対称及び左非対称の回折光を得ている場
合、非対称になることによって前記数14及び数18の
第2項のΔzに関する項が(cosθ1−cosθ2)の
θ1とθ2の傾き差に比例した量だけ発生し、入射角θ1
とθ2の非対称の組を、光軸に対し2組対称に入射照明
することにより、逆方向[(cosθ1−cosθ2)の
前に付く±が相違する]に同量[(cosθ1−cos
θ2)]だけ発生させることができる。また数14及び
数18の第1項はΔxに関して(sinθ1+sin
θ2)となり、傾き角に関係なくΔxの進行方向と同じ
方向になる。
On the other hand, when diffracted light having a right asymmetry and a left asymmetry is obtained by the incidence of the left-shifted and right-shifted illumination light, the asymmetry causes the term relating to Δz in the second term of the equations (14) and (18). (Cos θ 1 −cos θ 2 ) is generated in an amount proportional to the gradient difference between θ 1 and θ 2 and the incident angle θ 1
By illuminating two asymmetrical groups of θ and θ 2 symmetrically with respect to the optical axis, the same amount [(cos θ 1 − is different in the direction [(cos θ 1 −cos θ 2 ))] in the opposite direction. cos
θ 2 )] can be generated. Also, the first terms of the equations 14 and 18 are (sin θ 1 + sin
θ 2 ), which is the same as the traveling direction of Δx regardless of the tilt angle.

【0079】この時のΔxの検出範囲は(sinθ1
sinθ2)に比例した量となるが、Δzについて言え
ばその検出範囲は(cosθ1−cosθ2)というco
s差になるため、Δxに比較すると長くなり、一方逆に
検出分解能は落ちることになる。
At this time, the detection range of Δx is (sin θ 1 +
Although the amount is proportional to sin θ 2 ), the detection range for Δz is cos θ 1 −cos θ 2 ).
Since the difference is s, it becomes longer than Δx, and on the other hand, the detection resolution decreases.

【0080】以上の実施例は(−1、−1)次の回折光
による光ヘテロダイン干渉を利用するものであったが、
同様に(−1、0)次及び(0、−1)次の検出範囲長
が2倍の干渉によっても同様に、入射角θ1′とθ2′の
非対称の組を光軸に対し2組対称に入射照明することで
可能である。以下(−1、0)次及び(0、−1)次の
光ヘテロダイン干渉信号が得られる4光束の左右反転対
称にした別の実施例に付き説明する。
Although the above-described embodiment utilizes the optical heterodyne interference by the (-1, -1) th order diffracted light,
Similarly, due to the interference in which the detection range lengths of the (-1, 0) th order and the (0, -1) th order are doubled, similarly, an asymmetric set of the incident angles θ 1 ′ and θ 2 ′ is 2 with respect to the optical axis. It is possible to perform incident illumination in a pair symmetry. A description will be given below to another embodiment in which the (-4, 0) -th order and the (0, -1) -th order optical heterodyne interference signals are obtained and the four light fluxes are left-right inverted symmetrically.

【0081】図17及び図18に示されるように、周波
数f1(図18では白抜きの実線)の光束は角度θ2′で
入射され、反射の法則に従って光軸に対して反対位置
(同図では周波数f2′の光束を入射する位置)に正反
射光が戻る。回折光はこの正反射光を中心として−3次
〜+3次の回折光が得られ、図18(d)の(R1)に
その強度分布が示される。またもう一方の周波数f
2(同図白抜き実線)の光束は前記入射角度θ2′よりも
小さい角度θ1′で入射照明され、その正反射光は反対
位置(同図では周波数f1′の光束を入射する位置)に
戻る。回折光はこの正反射光を中心として−3次〜+3
次の回折光が得られ、図18(d)の(R2)にその強
度分布が示される。従って周波数f1の光束の回折次数
mと周波数f2の回折次数nとで表した場合、光軸に対
し非対称に(m=−1、n=0)次及び(m=0、n=
−1)次の干渉回折光が得られる。
As shown in FIGS. 17 and 18, a light beam having a frequency f 1 (indicated by a white solid line in FIG. 18) is incident at an angle θ 2 ′ and is positioned at the opposite position (the same position) with respect to the optical axis according to the law of reflection. In the figure, the specularly reflected light returns to the position where the light flux of frequency f 2 ′ is incident). As for the diffracted light, −3rd to + 3rd order diffracted light is obtained centered on this specularly reflected light, and the intensity distribution is shown in (R1) of FIG. 18D. The other frequency f
The light flux 2 (white solid line in the figure) is incident and illuminated at an angle θ 1 ′ smaller than the incident angle θ 2 ′, and the specularly reflected light is at the opposite position (at the position where the light flux having the frequency f 1 ′ is incident in the figure). ) Return to. Diffracted light is centered around this specularly reflected light and is −3rd to +3
The next diffracted light is obtained, and its intensity distribution is shown in (R2) of FIG. Therefore, when the diffraction order m of the light flux of frequency f 1 and the diffraction order n of frequency f 2 are expressed, the (m = −1, n = 0) order and (m = 0, n = asymmetrical with respect to the optical axis.
-1) The following interference diffracted light is obtained.

【0082】もう一組の周波数f1′及びf2′の2光束
は前記周波数f1及びf2の光束が回折された位置から逆
に入射する(図中斜線塗りした太い線)。同様に回折光
が夫々の正反射光位置を中心として得られ、図18
(c)の(L1、L2)にその強度分布が示されるよう
に、光軸に対し非対称に(m=−1、n=0)次及び
(m=0、n=−1)次の干渉回折光が得られる。その
ため、ディテクタ手前における干渉光は、混入すること
なく一直線上に光軸に対称的な配置で並ぶ。
Another set of two light fluxes having the frequencies f 1 ′ and f 2 ′ are incident from the positions where the light fluxes having the frequencies f 1 and f 2 are diffracted in the opposite direction (thick lines shaded in the figure). Similarly, the diffracted light is obtained centering on the respective specularly reflected light positions.
As shown in the intensity distribution at (L1, L2) in (c), the (m = -1, n = 0) and (m = 0, n = -1) -order interferences are asymmetric with respect to the optical axis. Diffracted light is obtained. Therefore, the interference light in front of the detector is arranged in a straight line and symmetrically arranged with respect to the optical axis without being mixed.

【0083】図19乃至図21は、入射角をθ′とした
左右対称入射照明の場合(S1/2、図19)と、入射
角をθ1′、θ2′として入射照明光が右にシフトした左
非対称の場合(L1/2、図20)と、同様な条件で入
射照明光が左にシフトした右非対称の場合(R1/2、
図21)とにおける(−1、0)次及び(0、−1)次
の干渉回折光の状態を示している。同時に微小変動量Δ
xとΔzがあった場合における前記参照信号に対するビ
ート信号の位相移動方向を、黒塗りの矢印と白抜きの矢
印とでこれらの図面に併せて示した。
19 to 21 show the case of bilaterally symmetric incident illumination where the incident angle is θ '(S1 / 2, FIG. 19), the incident illumination light is set to the right with incident angles θ 1 ′ and θ 2 ′. In the case of left asymmetry shifted (L1 / 2, FIG. 20) and in the case of right asymmetry incident illumination light shifted left under the same conditions (R1 / 2,
21) and (0, −1) -th order interference diffracted light states in FIG. At the same time, the minute variation Δ
The phase shift directions of the beat signal with respect to the reference signal in the case of x and Δz are also shown in these drawings by a black arrow and a white arrow.

【0084】図19に示すように、左右対称入射照明の
場合はZ方向の移動があっても位相は変化しない。これ
に対して図20に示す左非対称入射の場合は、Z方向に
移動があると同方向に同量だけ位相が進む。また図21
に示すように右非対称入射の場合は、Z方向に移動があ
るとこれとは逆方向に位相が同量だけ進む。このことを
利用すれば、前記実施例と同様に和と差によりX方向と
Z方向の位相を分離して測定することができる。
As shown in FIG. 19, in the case of bilaterally symmetric incident illumination, the phase does not change even if there is movement in the Z direction. On the other hand, in the case of the left asymmetrical incidence shown in FIG. 20, when there is a movement in the Z direction, the phase advances in the same direction by the same amount. Also in FIG.
In the case of right asymmetrical incidence, as shown in (4), when there is a movement in the Z direction, the phase advances in the opposite direction by the same amount. By utilizing this fact, the phases in the X direction and the Z direction can be separated and measured by the sum and the difference as in the above-mentioned embodiment.

【0085】図22乃至図24により、光路長変化によ
る位相変化量と位相の進み、遅れの方向を説明する。
22 to 24, the phase change amount due to the change in the optical path length and the phase advance / delay directions will be described.

【0086】図22は左右対称入射照明の場合を示して
おり、位置PからΔx、Δz移動してP′の位置に移動
したとすると、太い実線で示す光路差が発生する。ここ
では丸A1=丸A2、丸C1=丸C2の関係にあるが、これ
は光軸に対して対称に入射照明されるからである。この
時の入射角については、もし光軸方向から照明光が入射
照明されたならば得られるであろう±1次回折光の回折
角θの約半分の角度で、反対に入射照明しているので、
θ/2とする。この場合の光路長は、次式数20及び数
21で表せる。
FIG. 22 shows the case of bilaterally symmetric incident illumination. If the position P is moved by Δx, Δz to the position P ′, an optical path difference indicated by a thick solid line is generated. Here, there is a relationship of circle A 1 = circle A 2 and circle C 1 = circle C 2 because the incident illumination is symmetrical with respect to the optical axis. The incident angle at this time is about half of the diffraction angle θ of the ± first-order diffracted light that would be obtained if the illumination light was incident and illuminated from the optical axis direction. ,
θ / 2. The optical path length in this case can be expressed by the following equations 20 and 21.

【0087】[0087]

【数20】 丸A1=丸A2=Δz/cos(θ/2) +[Δx−Δz・tan(θ/2)]sin(θ/2) =Δx・sin(θ/2)+Δz・cos(θ/2)[Equation 20] Circle A 1 = Circle A 2 = Δz / cos (θ / 2) + [Δx−Δz · tan (θ / 2)] sin (θ / 2) = Δx · sin (θ / 2) + Δz · cos (θ / 2)

【0088】[0088]

【数21】 丸C1=丸C2=Δz/cos(θ/2) −[Δx+Δz・tan(θ/2)]sin(θ/2) =−Δx・sin(θ/2)+Δz・cos(θ/2)[Equation 21] Circle C 1 = Circle C 2 = Δz / cos (θ / 2)-[Δx + Δz · tan (θ / 2)] sin (θ / 2) = − Δx · sin (θ / 2) + Δz · cos (θ / 2) )

【0089】この時のf1周波数成分の回折次数をm、
2周波数成分の回折次数をnとして、2つの干渉回折
光(m=0、n=−1)次及び(m=−1、n=0)次
の2つの光路差を夫々計算すると、(m=0、n=−
1)次の干渉回折光の光路差は次式数22(2丸C2
2は往復を意味する)となり、更に前記数20及び数2
1より次式数23に示されるように、Δzの項が消去さ
れる。
At this time, the diffraction order of the f 1 frequency component is m,
When the diffraction order of the f 2 frequency component is n and two optical path differences of two interference diffracted lights (m = 0, n = −1) and (m = −1, n = 0) are calculated respectively, m = 0, n =-
1) The optical path difference of the next interference diffracted light is given by the following equation 22 (2 in the circle 2 of C 2 means round trip), and the equation 20 and the equation 2
From 1, the term of Δz is eliminated as shown in the following equation 23.

【0090】[0090]

【数22】 L(1)−L(2)=(丸A1+丸C1)−2丸C2 =丸A1−丸C2 [Equation 22] L (1) -L (2) = ( round A 1 + round C 1) -2 Round C 2 = round A 1 - Round C 2

【0091】[0091]

【数23】 L(1)−L(2)=2Δx・sin(θ/2)[Equation 23] L (1) -L (2) = 2Δx · sin (θ / 2)

【0092】また(m=−1、n=0)次の干渉回折光
の光路差は次式数24(2丸A1の2は往復を意味す
る)となり、前記数23と同じになる。
The optical path difference of the interference diffracted light of the (m = −1, n = 0) order is given by the following equation 24 (2 of 2 circles A 1 means round trip), which is the same as the above equation 23.

【0093】[0093]

【数24】 L(1)−L(2)=2丸A1−(丸A2+丸C2) =丸A1−丸C2 =2Δx・sin(θ/2)[Equation 24] L (1) -L (2) = 2 circle A 1- (circle A 2 + circle C 2 ) = circle A 1 -circle C 2 = 2Δx · sin (θ / 2)

【0094】このことは図19の左右非対称の場合に、
X方向の位相変化の方向と変化量が等しいことを示して
いる。またΔzの項が消去されるので、Δzによる位相
変動はない。
This means that in the case of left-right asymmetry in FIG.
This indicates that the direction of phase change in the X direction is equal to the amount of change. Further, since the term of Δz is deleted, there is no phase fluctuation due to Δz.

【0095】一方図23及び図24に左右非対称入射の
場合を示す。これらの図面で丸A1、丸B1、丸C1、丸
2、丸B2、丸C2、丸A1′丸B1′丸C1′丸A2′丸
2′丸C2′は太い実線で示した光路長を指し、丸A1
=丸A1′=丸A2′、 丸B1=丸A2=丸B1′、丸C1
=丸C2=丸C2′、丸B2=丸C1′=丸B2′の4組に
分かれる。この組み合わせにより光路差が発生する。光
軸に対して内側の入射角度をθ1′、外側の入射角度を
θ2′として、これらの光路長を以下にまとめて示し、
光路差を夫々算出する。
On the other hand, FIGS. 23 and 24 show the case of left-right asymmetrical incidence. In these drawings, circle A 1 , circle B 1 , circle C 1 , circle A 2 , circle B 2 , circle C 2 , circle A 1 ′ circle B 1 ′ circle C 1 ′ circle A 2 ′ circle B 2 ′ circle C 2 'refers to an optical path length indicated by the thick solid line, circles a 1
= Circle A 1 ′ = Circle A 2 ′, Circle B 1 = Circle A 2 = Circle B 1 ′, Circle C 1
= Circle C 2 = Circle C 2 ′, Circle B 2 = Circle C 1 ′ = Circle B 2 ′ are divided into four groups. This combination causes an optical path difference. The optical path lengths of these are summarized below, where the inner incident angle is θ 1 ′ and the outer incident angle is θ 2 ′ with respect to the optical axis.
The optical path difference is calculated respectively.

【0096】[0096]

【数25】 丸A1=丸A1′=丸A2′=Δz/cosθ2′ +(Δx−Δz・tanθ2′)sinθ2′ =Δx・sinθ2′+Δz・cosθ2[Equation 25] Circle A 1 = Circle A 1 ′ = Circle A 2 ′ = Δz / cos θ 2 ′ + (Δx−Δz · tan θ 2 ′) sin θ 2 ′ = Δx · sin θ 2 ′ + Δz · cos θ 2

【0097】[0097]

【数26】 丸B1=丸A2=丸B1′=Δz/cosθ1′ +(Δx−Δz・tanθ1′)sinθ1′ =Δx・sinθ1′+Δz・cosθ1[Equation 26] Circle B 1 = Circle A 2 = Circle B 1 ′ = Δz / cos θ 1 ′ + (Δx−Δz · tan θ 1 ′) sin θ 1 ′ = Δx · sin θ 1 ′ + Δz · cos θ 1

【0098】[0098]

【数27】 丸C1=丸C2=丸C2′=Δz/cosθ2′ −(Δx+Δz・tanθ2′)sinθ2′ =−Δx・sinθ2′+Δz・cosθ2[Equation 27] Round C 1 = round C 2 = round C 2 '= Δz / cosθ 2 ' - (Δx + Δz · tanθ 2 ') sinθ 2' = -Δx · sinθ 2 '+ Δz · cosθ 2'

【0099】[0099]

【数28】 丸B2=丸C1′=丸B2′=Δz/cosθ1′ −(Δx+Δz・tanθ1′)sinθ1′ =−Δx・sinθ1′+Δz・cosθ1[Equation 28] Round B 2 = round C 1 '= round B 2' = Δz / cosθ 1 '- (Δx + Δz · tanθ 1') sinθ 1 '= -Δx · sinθ 1' + Δz · cosθ 1 '

【0100】これらの数25〜数28までの式から分か
ることは、Δzの係数は正であり、長くなる方向にある
が、Δxについては長くなったり、短くなるといった組
み合わせがあることである。
What can be understood from these equations (25) to (28) is that the coefficient of Δz is positive and tends to increase, but there is a combination of increasing or decreasing Δx.

【0101】図23における右シフト入射光による左非
対称の場合の光路差を求めると、(m=0、n=−1)
次の光路差は次式数29となり、(m=−1、n=0)
次の光路差は次式数30となる。
The optical path difference in the case of left asymmetry due to the right-shifted incident light in FIG. 23 is (m = 0, n = -1)
The next optical path difference is the following equation 29, (m = −1, n = 0)
The next optical path difference is given by the following equation (30).

【0102】[0102]

【数29】 L(1)−L(2)=(丸B1′+丸C1′)−(丸C2′+丸B2′) =丸B1′−丸C2′ =(sinθ1′+sinθ2′)Δx+(cosθ1′−cosθ2′)Δz[Equation 29] L (1) -L (2) = (Round B 1 ′ + Round C 1 ′) − (Round C 2 ′ + Round B 2 ′) = Round B 1 ′ −Round C 2 ′ = (sin θ 1 ′ + sin θ 2 ′) Δx + (cos θ 1 ′ −cos θ 2 ′) Δz

【0103】[0103]

【数30】 L(1)−L(2)=(丸B1′+丸A1′)−(丸C2′+丸A2′) =丸B1′−丸C2′ =(sinθ1′+sinθ2′)Δx+(cosθ1′−cosθ2′)Δz[Equation 30] L (1) -L (2) = (Round B 1 ′ + Round A 1 ′) − (Round C 2 ′ + Round A 2 ′) = Round B 1 ′ −Round C 2 ′ = (sin θ 1 ′ + sin θ 2 ′) Δx + (cos θ 1 ′ −cos θ 2 ′) Δz

【0104】また図24における左シフト入射光による
右非対称の場合の光路差を求めると、(m=0、n=−
1)次の光路差は次式数31となり、(m=−1、n=
0)次の光路差は次式数32となる。
When the optical path difference in the case of right asymmetry due to the left shift incident light in FIG. 24 is calculated, (m = 0, n = −
1) The next optical path difference is given by the following equation 31, and (m = −1, n =
0) The next optical path difference is given by the following equation 32.

【0105】[0105]

【数31】 L(1)−L(2)=(丸A1+丸C1)−(丸B2+丸C2)=丸A1−丸B2 =(sinθ1′+sinθ2′)Δx−(cosθ1′−cosθ2′)Δz[Equation 31] L (1) -L (2) = ( round A 1 + round C 1) - (Round B 2 + round C 2) = round A 1 - circle B 2 = (sinθ 1 '+ sinθ 2') Δx- (cosθ 1 ′ -cos θ 2 ′) Δz

【0106】[0106]

【数32】 L(1)−L(2)=(丸A1+丸B1)−(丸B2+丸A2)=丸A1−丸B2 =(sinθ1′+sinθ2′)Δx−(cosθ1′−cosθ2′)Δz[Equation 32] L (1) -L (2) = ( round A 1 + round B 1) - (Round B 2 + round A 2) = round A 1 - circle B 2 = (sinθ 1 '+ sinθ 2') Δx- (cosθ 1 ′ -cos θ 2 ′) Δz

【0107】以上をまとめると、図24の左シフト入射
光による右非対称の場合は、光路丸A1と丸B2の差で光
路差が決まり、Δxの位相移動方向は右向き矢印方向
(太い実線矢印)、またΔzの位相移動方向はそれと逆
の方向(白抜き矢印)であって、(0、−1)次及び
(−1、0)次共その変動量は同じである。またΔxの
変動量は、前記数31及び数32から明らかなように、
右辺第1項のsinの和から、更にΔzの変動量は、そ
の第2項のcosの差から分かる。一方図23の右シフ
ト入射光による左非対称の場合は、Δxの位相移動方向
は右向き矢印方向(太い実線矢印)、またΔzの位相移
動方向それと同じ方向(白抜き矢印)である。よってこ
れらの位相検出を行なうことによって、その和からΔx
方向の位相変動量が、またその差からΔz方向の位相変
動量が分離して検出することが可能となる。
To summarize the above, in the case of right asymmetry due to the left-shift incident light in FIG. 24, the optical path difference is determined by the difference between the optical path circles A 1 and B 2 , and the phase shift direction of Δx is the rightward arrow direction (thick solid line). (Arrow), and the phase shift direction of Δz is the opposite direction (white arrow), and the variation amount thereof is the same for both the (0, -1) th order and the (-1, 0) th order. Further, the variation amount of Δx is, as is clear from the above equations 31 and 32,
From the sum of sin of the first term on the right side, the variation amount of Δz can be known from the difference of cos of the second term. On the other hand, in the case of left asymmetry due to the right-shift incident light in FIG. 23, the phase shift direction of Δx is the rightward arrow direction (thick solid arrow) and the same as the phase shift direction of Δz (white arrow). Therefore, by detecting these phases, Δx can be calculated from the sum.
It is possible to detect the phase fluctuation amount in the direction and the phase fluctuation amount in the Δz direction separately from the difference.

【0108】[0108]

【発明の効果】以上詳述した本発明の位置ずれ検出方法
によれば、光学系の構成及びその調整が複雑とならず、
広い検出範囲を持ちながら検出分解能も高く、2次元方
向の位置ずれ量ΔxとΔzを分離検出することが可能と
なる。また光軸の傾きがある場合やZ方向の振幅がある
場合でもその補正を行なうことができるようになる。
尚、本位置ずれ検出方法を用いれば、装置の走査・振動
状態の測定や試料等の検出物体の振動の測定を行なう振
動検出方法乃至装置にも適用することが可能となる。
According to the position shift detecting method of the present invention described in detail above, the structure of the optical system and its adjustment are not complicated,
The detection resolution is high while having a wide detection range, and it becomes possible to separately detect the positional deviation amounts Δx and Δz in the two-dimensional direction. Further, even if there is an inclination of the optical axis or there is an amplitude in the Z direction, the correction can be performed.
It should be noted that the use of this position shift detection method can also be applied to a vibration detection method or device for measuring the scanning / vibration state of the device or measuring the vibration of a detection object such as a sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】光軸左側入射時の回折光回折次数の説明図であ
る。
FIG. 1 is an explanatory diagram of diffraction orders of diffracted light when incident on the left side of the optical axis.

【図2】同じく光軸右側入射時の回折光回折次数の説明
図である。
FIG. 2 is an explanatory diagram of a diffraction order of diffracted light when the light is incident on the right side of the optical axis.

【図3】光軸に対しθ1、θ2の入射角で周波数f1、f2
の照明光の組を2組光軸に対し両側反転対称の位置から
入射せしめた時の干渉回折光の状態を示す本発明構成の
一例を示す説明図である。
FIG. 3 shows frequencies f 1 and f 2 at incident angles of θ 1 and θ 2 with respect to the optical axis.
FIG. 3 is an explanatory diagram showing an example of the configuration of the present invention showing a state of interference diffracted light when two sets of the illumination light are made incident from positions of two-sided inversion symmetry with respect to the optical axis.

【図4】右シフト入射照明及び左シフト入射照明した場
合の回折光ヘテロダイン位置と位相移動方向を示す説明
図である。
FIG. 4 is an explanatory diagram showing a diffracted light heterodyne position and a phase shift direction when right shift incident illumination and left shift incident illumination are performed.

【図5】本発明法の実施に使用される光学系装置構成の
一例を示す斜視図である。
FIG. 5 is a perspective view showing an example of the configuration of an optical system device used for carrying out the method of the present invention.

【図6】該光学系光路詳細図である。FIG. 6 is a detailed view of the optical path of the optical system.

【図7】上記本実施例で照明光を入射し、フーリエ変換
レンズにより回折格子に該光の照射を行なった時の光ヘ
テロダイン干渉モデルを示す説明図である。
FIG. 7 is an explanatory diagram showing an optical heterodyne interference model when illuminating light is incident and a diffraction grating is irradiated with the light by a Fourier transform lens in the present embodiment.

【図8】回折格子を用いて平行光束を得る場合の原理を
説明する説明図である。
FIG. 8 is an explanatory diagram illustrating the principle of obtaining a parallel light flux using a diffraction grating.

【図9】その具体的構成を示す光学系詳細図である。FIG. 9 is a detailed view of an optical system showing the specific configuration thereof.

【図10】光軸に対し左シフト及び右シフトした2光束
の組2組を左右反転対称な4光束にしてマスク及びウェ
ハの各回折格子に入射照明した時の斜視図である。
FIG. 10 is a perspective view when two sets of two light beams that are left-shifted and right-shifted with respect to the optical axis are made into four light beams that are symmetrical in left-right inversion and are incident on the diffraction gratings of the mask and the wafer.

【図11】入射角をθとした左右対称入射照明の場合に
おける−1次の干渉回折光の状態を示す説明図である。
FIG. 11 is an explanatory diagram showing a state of −1st order interference diffracted light in the case of left-right symmetric incident illumination with an incident angle of θ.

【図12】入射角をθ1、θ2として入射照明光が右にシ
フトした左非対称の場合における−1次の干渉回折光の
状態を示す説明図である。
FIG. 12 is an explanatory diagram showing a state of −1st order interference diffracted light in the case of left asymmetry in which incident illumination light is shifted to the right with incident angles of θ 1 and θ 2 .

【図13】入射角をθ1、θ2として入射照明光が左にシ
フトした右非対称の場合における−1次の干渉回折光の
状態を示す説明図である。
FIG. 13 is an explanatory diagram showing a state of −1st order diffracted diffracted light in the case where the incident illumination light is shifted to the left and is asymmetrical to the right when the incident angles are θ 1 and θ 2 .

【図14】左右対称入射照明した場合の光路L(1)と光
路L(2)間の光路差を示す説明図である。
FIG. 14 is an explanatory diagram showing an optical path difference between an optical path L (1) and an optical path L (2) in the case of bilaterally symmetrical incident illumination.

【図15】本実施例において左シフト入射照明した場合
の光路L(1)と光路L(2)間の光路差を示す説明図であ
る。
FIG. 15 is an explanatory diagram showing an optical path difference between an optical path L (1) and an optical path L (2) when left-shift incident illumination is performed in the present embodiment.

【図16】本実施例において右シフト入射照明した場合
の光路L(1)と光路L(2)間の光路差を示す説明図であ
る。
FIG. 16 is an explanatory diagram showing an optical path difference between an optical path L (1) and an optical path L (2) when right-shift incident illumination is performed in this example.

【図17】光軸に対し左シフト及び右シフトした2光束
の組2組を左右反転対称にマスク及びウェハの各回折格
子に入射照明した時に(−1、0)(0、−1)次の干
渉回折光が得られる場合の斜視図である。
FIG. 17 is a (−1, 0) (0, −1) order when two sets of two light beams that are left-shifted and right-shifted with respect to the optical axis are incident on the diffraction gratings of the mask and the wafer in a left-right inverted symmetrical manner. FIG. 6 is a perspective view when the interference diffracted light of is obtained.

【図18】上記本実施例で照明光を入射し、フーリエ変
換レンズにより回折格子に該光の照射を行なった時の光
ヘテロダイン干渉モデルを示す説明図である。
FIG. 18 is an explanatory diagram showing an optical heterodyne interference model when illuminating light is incident and a diffraction grating is irradiated with the light by a Fourier transform lens in the present embodiment.

【図19】入射角をθ′とした左右対称入射照明の場合
における(−1、0)(0、−1)次の干渉回折光の状
態を示す説明図である。
FIG. 19 is an explanatory diagram showing a state of interference diffracted light of (−1,0) (0, −1) order in the case of left-right symmetric incident illumination with an incident angle of θ ′.

【図20】入射角をθ1′、θ2′として入射照明光が右
にシフトした左非対称の場合における(−1、0)
(0、−1)次の干渉回折光の状態を示す説明図であ
る。
FIG. 20 shows (−1,0) in the case of left asymmetry in which incident illumination light is shifted to the right with incident angles of θ 1 ′ and θ 2 ′.
It is explanatory drawing which shows the state of the interference diffraction light of a (0, -1) order.

【図21】入射角をθ1′、θ2′として入射照明光が左
にシフトした右非対称の場合における(−1、0)
(0、−1)次の干渉回折光の状態を示す説明図であ
る。
FIG. 21 shows (−1,0) in the case of right asymmetry in which incident illumination light is shifted to the left with incident angles θ 1 ′ and θ 2 ′.
It is explanatory drawing which shows the state of the interference diffraction light of a (0, -1) order.

【図22】左右対称入射照明した場合の両光路間の光路
差を示す説明図である。
FIG. 22 is an explanatory diagram showing an optical path difference between both optical paths when symmetrically incident illumination is performed.

【図23】本実施例において左シフト入射照明した場合
の両光路間の光路差を示す説明図である。
FIG. 23 is an explanatory diagram showing an optical path difference between both optical paths when left-shift incident illumination is performed in this example.

【図24】本実施例において右シフト入射照明した場合
の両光路間の光路差を示す説明図である。
FIG. 24 is an explanatory diagram showing an optical path difference between both optical paths when right-shift incident illumination is performed in this example.

【符号の説明】[Explanation of symbols]

31 フーリエ変換レンズ 32、50 回折格子 37 4分割ディテクタ 70 瞳面EP M マスク W ウェハ 31 Fourier transform lens 32, 50 Diffraction grating 37 4-division detector 70 Pupil plane EP M mask W wafer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月20日[Submission date] April 20, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 位置ずれ及びギャップ検出方法Patent application title: Position shift and gap detection method

【特許請求の範囲】[Claims]

【数1】 [Equation 1]

【数2】 [Equation 2]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体超微細加工装
置(SORアライナ・ステッパ、液晶ステッパ等のプロ
キシミティ露光装置)や感光基板に露光されたパターン
の重ね合せ精度を測定するレジストレーション超精密測
定等において光ヘテロダイン干渉光を利用する位置ずれ
及びギャップ検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ultra-fine processing apparatus (proximity exposure apparatus such as SOR aligner / stepper, liquid crystal stepper) and a registration ultra-precision registration measuring superposition accuracy of a pattern exposed on a photosensitive substrate. Position shift using optical heterodyne interference light in measurement etc.
And a gap detection method.

【0002】[0002]

【従来の技術】シンクロトロン放射光リソグラフィ用ア
ライナやフォトステッパ等の超精密位置合せにあっては
位置合せすべき2つの物体のX方向(面内方向)位置ず
れ検出を高精度に行なう必要があり、そのために例えば
特開昭62−261003号や特開昭64−89323
号等では、光ヘテロダイン干渉光を利用した2つの物体
のX方向(面内方向)の高精度な位置ずれ検出方法が提
案されている。一方、特開昭63−38102号では、
Z方向(面外ギャップ方向)の測定も併せて行うため、
位置検出光学系に3次回折角方向からの入射光系を付加
する構成が提案されている。
2. Description of the Related Art In the ultra-precision alignment of aligners for synchrotron radiation photolithography, photosteppers, etc., it is necessary to accurately detect the positional deviation of two objects to be aligned in the X direction (in-plane direction). Therefore, for that purpose, for example, JP-A-62-261003 and JP-A-64-89323.
Issue, two objects using optical heterodyne interference light
There has been proposed a highly accurate position deviation detection method in the X direction (in-plane direction) . On the other hand, in JP-A-63-38102,
Since the measurement in the Z direction (out-of-plane gap direction) is also performed,
A configuration has been proposed in which an incident light system from the third-order diffraction angle direction is added to the position detection optical system.

【0003】これらはいずれも2つの物体の各回折格子
から取り出された−1次、−1次回折光を干渉させ、こ
れらの両物体の夫々において生成されたビート信号の位
相差を検出することで両物体の位置ずれ量を測るもので
あり、ギャップ変動による強度変化を受けないので、
置ずれ検出精度と分解能が飛躍的に向上するとして期待
されている。
[0003] These were taken out from the diffraction grating of the two objects both -1st order, causing interference -1-order diffracted light, detecting the phase difference of the beat signal produced in each of these two objects Since it measures the amount of positional deviation between both objects and does not undergo intensity change due to gap fluctuation , it is expected that the positional deviation detection accuracy and resolution will be dramatically improved.

【0004】[0004]

【発明が解決しようとする課題】ところがこれらの方法
では、位相ずれが1周期以上になると位置合せにおける
ピッチ跳び・ずれ等が起こり不正確なものとなるため、
その位置ずれが予めある範囲内に納まっていなければな
らないという検出範囲の限定がある。特に回折格子の格
子ピッチを小さくすれば検出分解能は向上するが、検出
範囲が狭くなり、反対に上記ピッチを大きくすればその
逆の関係となる。
However, in these methods, when the phase shift is more than one cycle, pitch jumping / shifting in alignment occurs, which is inaccurate.
There is a limit to the detection range in which the displacement must be within a certain range in advance. In particular, if the grating pitch of the diffraction grating is reduced, the detection resolution is improved, but the detection range is narrowed, and conversely, if the pitch is increased, the opposite relationship occurs.

【0005】このため本出願人により相反する関係にあ
る検出分解能の向上と検出範囲の拡大を達成するため、
2つの物体に夫々格子ピッチの異なる回折格子を複数並
べて検出を行なう構成の提案を行なった。
Therefore, in order to achieve the improvement of the detection resolution and the expansion of the detection range, which are contradictory to each other by the present applicant,
We proposed a structure in which a plurality of diffraction gratings with different grating pitches are arranged side by side on two objects for detection.

【0006】又仮りに光軸方向より光を入射させた場合
に得られる回折光の±1次方向、±2次方向、±3次方
向……(該光軸を中心に対称的な2方向)から反対に光
を入射させた場合(その入射方向をこの回折次数を借り
て入射次数とここでは表現するとすると)、入射次数が
0に近い程、光路差変化量が少なくなるので前記検出範
囲が広がり、且つ低次数回折光の干渉なので回折光強度
も強いものが得られる一方で前記検出分解能は低下する
ことになる。反対にその入射次数が0から離れた値にな
る程、上記の場合とは全く逆になる。
Further, if the light is incident from the direction of the optical axis, the ± 1st order, ± 2nd order, ± 3rd order of the diffracted light obtained (two directions symmetrical about the optical axis) ) From the opposite direction (when the incident direction is referred to as the incident order here by borrowing this diffraction order), the closer the incident order is to 0, the smaller the change amount of the optical path difference becomes. Is wide and the interference of low-order diffracted light is strong, so that a strong diffracted light intensity can be obtained, but the detection resolution is lowered. On the contrary, the farther the incident order is from 0, the opposite of the above case.

【0007】そこで本出願人等は入射次数が複数となる
方式を採用した構成の提案を行ない、且つその次数の絶
対値が大きくなった場合に、回折光強度が低下する欠点
を補うため、回折格子に特殊形状のもの(ブレーズド格
子)を用いることで特定次数の回折光に0次回折光を重
ねて回折光強度を高める別の提案も行なった。
[0007] The present applicants have conducted a proposal configuration employing the method of entering orders becomes more and if the absolute value of the next number is large, to compensate for the disadvantages diffracted light intensity decreases, the diffraction Another proposal has been made to increase the intensity of diffracted light by superposing the 0th-order diffracted light on the diffracted light of a specific order by using a specially shaped grating (blazed grating).

【0008】しかし、格子ピッチの異なる複数の回折格
子を並べる最初の方法では、そのような回折格子の形成
に手間がかかり実用的ではないこと、又入射次数が複数
となる2つめの提案では、光学系が複雑となり過ぎるこ
と、更に特殊形状の回折格子を用いる3つめの提案は光
学系の複雑化以外に、その様な形状の回折格子の形成が
非常に難しく実用的ではないこと等の問題点が指摘され
た。
However, the first method of arranging a plurality of diffraction gratings having different grating pitches is not practical because it takes time to form such a diffraction grating, and the second proposal in which a plurality of incident orders are provided is as follows. The problem is that the optical system becomes too complicated, and the third proposal using a specially shaped diffraction grating is very difficult to form a diffraction grating with such a shape, and is not practical, in addition to the complicated optical system. A point was pointed out.

【0009】また前記特開昭63−38102号のよう
に別の入射光系を付加しない限りZ方向の位置ずれ測定
は不可能であり、光軸の傾きや振動により発生するZ方
向のアライメント誤差要因を十分に補正することができ
なくなって、問題となることも多かった。更に同号に示
す入射光系を付加する構成でも、高次入射は2光束の波
面調整が難しく、且つ他の次数の回折光(例えば−3次
回折光等)がX方向の検出信号に重畳して検出精度を低
下させたり、検出信号のS/N比が低下したり、更には
多重干渉の影響も受け、アライメントに悪影響を与えて
いた。
Further, it is impossible to measure the displacement in the Z direction unless another incident light system is added as in JP-A-63-38102, and an alignment error in the Z direction caused by the tilt or vibration of the optical axis. There were often problems because the factors could not be corrected sufficiently. Even with the configuration in which the incident light system shown in the same item is added, it is difficult to adjust the wavefront of the two light beams for high-order incidence, and diffracted light of another order (for example, -3rd order diffracted light) is superimposed on the detection signal in the X direction. As a result, the detection accuracy is lowered, the S / N ratio of the detection signal is lowered, and multiple interference is also exerted, which adversely affects the alignment.

【0010】本発明は従来技術の以上の様な問題に鑑み
創案されたもので、光学系の構成及びその調整が複雑と
ならず、広い検出範囲を持ちながら検出分解能も高く、
面内位置ずれ(Δx)検出と共に、露光中でも安定継続
的に直接2つの物体のギャップ(Δz)を直接分離検出
することが可能な位置ずれ及びギャップ検出方法を提供
し、光軸の傾きがある場合やZ方向の振幅がある場合で
もその補正が可能なようにせんとするものである。
The present invention was devised in view of the above problems of the prior art, and does not complicate the configuration and adjustment of the optical system, has a wide detection range and high detection resolution,
In-plane position shift (Δx) is detected and stable during exposure
Provide a method for detecting the position shift and gap that can directly separate and detect the gap (Δz) between two objects, and can correct the gap even when there is an inclination of the optical axis or there is an amplitude in the Z direction. It is something like this.

【0011】[0011]

【課題を解決するための手段】ここで本発明の構成を説
明する前に、本願における回折格子から得られる回折光
の回折次数につき予め定義しておく。
Before describing the structure of the present invention, the diffraction order of the diffracted light obtained from the diffraction grating of the present application will be defined in advance.

【0012】図1及び図2は反射回折格子の入射角・回
折角の符合の状態を示している。まず周波数fの単色光
が格子ピッチPの反射回折格子32に対し、光軸から入射
角θiの傾きを持って入射した場合、正反射となる回折
次数m、n=0の回折光を中心にそれより光軸側に回折す
るものはm、n=−1、−2、−3……というようにマイ
ナス次数又その反対側に回折するものはm、n=+1、+
2、+3……というようにプラス次数(これらの回折次
数に対応する回折角をθm、θnとする)になる。この時
の入射角θiと回折角θm、θnとの関係は、回折格子の
基礎公式により、次式数3及び数4の様になる。
FIG. 1 and FIG. 2 show the states of coincidence of the incident angle and the diffraction angle of the reflection diffraction grating. First, when monochromatic light having a frequency f is incident on the reflection diffraction grating 32 having a grating pitch P with an inclination of an incident angle θi from the optical axis, the diffracted light with a diffraction order of m and n = 0 is specularly reflected. Those diffracting to the optical axis side are m, n = -1, -2, -3, and so on. Those diffracting to the minus order or the opposite side are m, n = +1 and +.
2, +3, and so on, plus order (diffraction angles corresponding to these diffraction orders are denoted by θm and θn). The relationship between the incident angle θi and the diffraction angles θm and θn at this time is expressed by the following formulas 3 and 4 according to the basic formula of the diffraction grating.

【0013】[0013]

【数3】 [Equation 3]

【0014】[0014]

【数4】 [Equation 4]

【0015】以上の定義を基に本発明の位置ずれ及びギ
ャップ検出方法につき説明すると、図3に示される様
に、周波数のわずかに異なる(即ち、f1、 f2の)2
つの単色光の組を2組(即ち計4光束)用い、これらの
各組の2光束については光軸の両側で該光軸に対して入
射角の異なる(即ちθ1とθ2であってθ1<θ2)非対称
な方向からであって且つ該組間では前記光軸の両側で反
転対称となる方向(即ち、白抜き矢印のf1とf2の組と
斜線書きのf1とf2の組は光軸に対し図面上左右反転対
称になっている)から夫々第1の物体M及び第2の物体
Wの各回折格子32a、32b(これらの格子ピッチはPとす
る)に入射させ、光軸の夫々両側対称な位置から2ビー
ム以上の光ヘテロダイン干渉させた回折光を取り出した
上で、両回折格子32a、32bのX方向位置ずれ及びZ方向
ギャップによる光路差変動量に基づき生じる光ヘテロダ
イン検出信号の下式数1及び数2に示される位相変動量
Δφxz及びΔφxzからこれらの2式の和と差によって
X方向及びZ方向の2次元位相変動量Δφx及びΔφz
夫々分離算出することで、両物体M、Wの変位量を求め
ることを基本的特徴としている。尚同図において回析格
子32から後面焦点距離Fの位置にある前記対物レンズ31
により回析格子32の回析格子像が得られる面を瞳面EP
と呼ぶ(この面は回析格子32のフーリエ変換像を得た面
なのでフーリエ面とも呼ばれる)。そしてこの瞳面EP
は対物レンズ31の前面焦点距離Fの位置にある。
Based on the above definitions, the positional deviation and
The cap detection method will be described. As shown in FIG. 3, the frequencies are slightly different (that is, f 1 and f 2 ).
Two monochromatic light groups (that is, a total of four luminous fluxes) are used, and the two luminous fluxes of each of these groups have different incident angles with respect to the optical axis on both sides of the optical axis (that is, θ 1 and θ 2 θ 12 ) From the asymmetrical direction, and between the pairs, there is a direction of reversal symmetry on both sides of the optical axis (that is, a pair of blank arrows f 1 and f 2 and a hatched f 1 ). (The set of f 2 is symmetrical with respect to the optical axis in the left-right inversion in the drawing) to each of the diffraction gratings 32a and 32b (these grating pitches are P) of the first object M and the second object W, respectively. Diffracted light that is made incident and has two or more beams of light heterodyne interfered with each other from the positions symmetrical on both sides of the optical axis, and then the X-direction position shift and Z direction of both diffraction gratings 32a and 32b are extracted.
Phase variation amount shown in the following equations 1 and 2 of the optical heterodyne detection signal generated based on the variation amount of the optical path difference due to the gap
From [Delta] [phi xz and [Delta] [phi xz 'by calculating two-dimensional phase deviation delta phi x and delta phi z respectively separation of X and Z directions by the sum and difference of these two equations, the amount of displacement of both objects M, W The basic feature is to seek. In the figure, the diffraction grade
The objective lens 31 located at the rear focal length F from the child 32
The surface on which the diffraction grating image of the diffraction grating 32 is obtained by
(This surface is the surface on which the Fourier transform image of the diffraction grating 32 was obtained.
So it is also called the Fourier plane). And this pupil EP
Is at the front focal length F of the objective lens 31.

【0016】[数1]Δφxz=Δφx+Δφz [Equation 1] Δφ xz = Δφ x + Δφ z

【0017】[数2]Δφxz′=Δφx−Δφz [Equation 2] Δφ xz ′ = Δφ x −Δφ z

【0018】上記発明法のように、光軸に対して左シフ
ト及び右シフトした2光束の2組を左右反転対称な4光
束にしてその両側から入射させると、図4(a)に示さ
れる様に左側の周波数f1の光束と右側の周波数f2の光
束が全体として右側にシフトした組から得られる1以上
の光ヘテロダイン干渉された回折光は左傾きの状態のも
のが得られ(光軸両側に干渉回折光が出る場合は全体的
に左シフトした状態となる)、他方同図(b)に示され
るように、左側の周波数f1の光束と右側の周波数f2
光束が全体として左側にシフトした別の組から得られる
1以上の光ヘテロダイン干渉された回折光は右傾きの状
態のものが得られる(光軸両側に干渉回折光が出る場合
は全体的に右シフトした状態となる)ことになる。こう
して得られた干渉回折光から検出されるビート信号に
は、両物体M、WにX方向の位置ずれがある場合、左傾
きの回折光由来のビート信号及び右傾きの回折光由来の
ビート信号共、参照信号に対して常に一定方向に位相の
ずれ(位相変動量)Δφxを生じ、またZ方向のギャッ
プ変動がある場合、左傾きの回折光由来のビート信号と
右傾きの回折光由来のビート信号では、参照信号に対し
て反対方向に位相のずれΔφzを生じる。その結果実際
に検出される左傾きの回折光由来のビート信号の参照信
号に対する位相のずれΔφxzは前記数1で示されたもの
が得られ、また右傾きの回折光由来のビート信号の参照
信号に対する位相のずれΔφxz′は前記数2で示された
ものが得られることになる。従って、両式の和と差か
ら、X方向及びZ方向の2次元位相変動量Δφx及びΔ
φzを夫々分離算出することが可能となる。
As in the above-mentioned method of the invention, when two sets of two light beams shifted left and right with respect to the optical axis are made into four light beams having left-right inversion symmetry and are made incident from both sides thereof, it is shown in FIG. 4 (a). As described above, one or more optical heterodyne-interfered diffracted lights obtained from a set in which the light flux of the left side frequency f 1 and the right side light of the frequency f 2 are shifted to the right side as a whole are obtained in the state of the left tilt (light When the interfering diffracted light emerges on both sides of the axis, the entire light beam is shifted to the left. On the other hand, as shown in FIG. 7B, the light flux with the frequency f 1 on the left side and the light flux with the frequency f 2 on the right side are totally One or more optical heterodyne interference diffracted light obtained from another set that is shifted to the left is obtained in the state of right tilt (if interference diffracted light appears on both sides of the optical axis, it is shifted to the right as a whole. Will be). In the beat signal detected from the interference diffracted light thus obtained, when both objects M and W have a positional deviation in the X direction, the beat signal derived from the diffracted light with the left tilt and the beat signal derived from the diffracted light with the right tilt In both cases, a phase shift (amount of phase fluctuation) Δφ x is always generated in a fixed direction with respect to the reference signal, and the gap in the Z direction is
When there is a fluctuation, the beat signal derived from the diffracted light with the left tilt and the beat signal derived from the diffracted light with the right tilt cause a phase shift Δφ z in the opposite direction with respect to the reference signal. As a result, the phase shift Δφ xz of the beat signal derived from the diffracted light with the left tilt that is actually detected is obtained as shown in the above equation 1, and the beat signal derived from the diffracted light with the right tilt is obtained. As the phase shift Δφ xz ′ with respect to the reference signal, the one expressed by the equation 2 is obtained. Therefore, from the sum and difference of both equations, the two-dimensional phase fluctuations Δφ x and Δ in the X and Z directions are obtained.
It is possible to separately calculate φ z .

【0019】[0019]

【実施例】以下本発明法の具体的実施例につき詳述す
る。
EXAMPLES Hereinafter, specific examples of the method of the present invention will be described in detail.

【0020】図5及び図6はマスクMとウェハWの位置
ずれ及びギャップ検出を行なう本発明法の実施に使用さ
れる光学系装置構成の一例を示す斜視図と、該光学系光
路詳細図である。
FIG. 5 and FIG. 6 are a perspective view showing an example of the configuration of an optical system device used for carrying out the method of the present invention for detecting the positional deviation and the gap between the mask M and the wafer W, and a detailed view of the optical path of the optical system. is there.

【0021】図5において、まず2波長直交偏光レーザ
光源12より偏光面が直交し、且つ周波数がわずかに異な
る(f1、f2)単色レーザ光(即ち、周波数f1成分に
ついては→で表わすP偏光、又周波数f2成分について
は↑で表わすS偏光)を発生させる。10は該光源12のコ
ントローラであり、電気的な処理を施して第1REF11
aから|f1−f2|の周波数の参照ビート信号が出力さ
れるようになる。尚、該光源12については音響光学素子
(AOM)2つからなる周波数シフタ等で2周波数のも
のを得る構成に置き換えてもよい。
In FIG. 5, first, a monochromatic laser light whose polarization planes are orthogonal to each other from the two-wavelength orthogonal polarization laser light source 12 and whose frequencies are slightly different (f 1 , f 2 ) (that is, the frequency f 1 component is represented by →). P-polarized light, or S-polarized light represented by ↑ for the frequency f 2 component) is generated. Reference numeral 10 is a controller for the light source 12, which is electrically processed to produce a first REF 11
The reference beat signal having the frequency of | f 1 −f 2 | is output from a. The light source 12 may be replaced with a structure in which a frequency shifter including two acousto-optic elements (AOM) is used to obtain a light source having two frequencies.

【0022】この光源12から射出されたアライメント光
は通常3〜4%程度レーザ射出口で楕円偏光になってお
り、これをλ/4板13という位相板(回転補正光学部
品)によって2周波成分の直交状態をより正しい姿勢に
直す。そしてアライメント光のビームは偏光ビームスプ
リッタ(PBS)14に至り、そこからS偏光(f2周波
数)成分がλ/2板15に至る。λ/2板15に対して結晶
軸と45°の方向から入射させ、周波数f2のS偏光を
90°回転させたf1周波数と同じP偏光にする。該λ
/2板15より出たf2周波数のP偏光は、ミラー16によ
り光路を変へ、f2周波数のアライメントビームは図上
Z方向、X方向に移動可能であり、あおりやθ回転もで
きるミラー17により光軸方向を変えてレンズ18に至る。
このレンズ18はレーザビーム2を絞り込み(集収)を
して図上24、25のビームウェストBWで示す2箇所の位
置でビーム径が最も絞られた状態位置を作成する。これ
は後述する視野絞りAS27上で平行交差する光束とする
ためであり、テレセントリック光学系を構成するためで
ある。
The alignment light emitted from the light source 12 is normally elliptically polarized at a laser emission port of about 3 to 4%, and this is converted into a two-frequency component by a phase plate (rotation correction optical component) called a λ / 4 plate 13. Correct the orthogonal state of to a more correct posture. Then, the beam of alignment light reaches the polarization beam splitter (PBS) 14, and the S-polarized (f 2 frequency) component reaches the λ / 2 plate 15 from there. It is incident on the λ / 2 plate 15 from the direction of 45 ° with respect to the crystal axis, and the S-polarized light of frequency f 2 is rotated 90 ° to be P-polarized light which is the same as f 1 frequency. The λ
The F 2 frequency P-polarized light emitted from the / 2 plate 15 has its optical path changed by the mirror 16, and the f 2 frequency alignment beam can be moved in the Z and X directions in the figure, and can also be tilted or rotated by θ. The optical axis direction is changed by 17 to reach the lens 18.
The lens 18 narrows (collects) the laser beam f 2 to create a state position where the beam diameter is most narrowed at two positions indicated by the beam waist BW of 24 and 25 in the figure. This is for forming a light flux that crosses in parallel on a field stop AS27, which will be described later, and for configuring a telecentric optical system.

【0023】一方、偏光ビームスプリッタ14を透過した
P偏光の周波数f1のアライメントビームは、レンズ19
に至る。このレンズ19は、前記レンズ18と同様に2カ所
のビームウェストBW24、25の位置にレーザビームを絞
り込むものである。レンズ18、19で絞り込まれたレーザ
ビームは入射位置が調整され、無偏光ビームスプリッタ
NPBS20に夫々入射される。この無偏光ビームスプリ
ッタNPBS20上でf1とf2周波数のビームの間隔は後
に所望の回折次数(−1、−1)の干渉回折光が得られ
る間隔になるようミラー17により調整される。後述の対
物レンズ31により回折格子32への入射照明角度は、この
周波数f1とf2のビーム間隔で決定するので精密に調整
する。無偏光ビームスプリッタNPBS20の反射透過面
はあおりや回軸により2光束の波面を調整でき、2光束
の波面が同一になるように波面収差を取り除く。無偏光
ビームスプリッタNPBS20に入射された周波数f1
2の両アライメントビームは、平行光束として一緒に
2方向に分岐される。
On the other hand, the P-polarized alignment beam of frequency f 1 transmitted through the polarization beam splitter 14 is reflected by the lens 19
Leading to. Like the lens 18, the lens 19 narrows the laser beam to two beam waists BW 24 and 25. Laser focused by lenses 18 and 19
The incident positions of the beams are adjusted and are made incident on the non-polarization beam splitter NPBS20. On the non-polarizing beam splitter NPBS20, the distance between the beams of the frequencies f 1 and f 2 is adjusted by the mirror 17 so that the interference diffracted light of the desired diffraction order (-1, -1) can be obtained later. The incident illumination angle on the diffraction grating 32 by the objective lens 31 which will be described later is determined by the beam interval between the frequencies f 1 and f 2 and is therefore adjusted precisely. The reflection / transmission surface of the non-polarization beam splitter NPBS20 can adjust the wavefronts of the two light beams by tilting and rotating axes, and removes the wavefront aberration so that the wavefronts of the two light beams become the same. Both alignment beams of frequencies f 1 and f 2 incident on the non-polarizing beam splitter NPBS20 are branched into two directions together as a parallel light beam.

【0024】ミラー21に至った周波数f1とf2の2光束
は光軸方向を変え、無偏光ビームスプリッタNPBS23
に至る。同様にミラー22に至った2光束は光軸方向を変
え、X方向、Z方向に回転・あおりが可能なミラー22に
より所定量ずらし、無偏光ビームスプッリタNPBS23
上で4光束のビーム(f2211)配置となり、光軸
に対して左右反転対称になるよう精密に調整する。もし
光軸に対して横ずれが発生すると非テレセントリック状
態になり、結像面となる回折格子32で微小なずれが発生
し、2組の検出範囲長が異なってしまう。図上無偏光ビ
ームスプリッタNPBS23より右側に射出される4光束
は他軸用としたが、もしキューブ状でミラー面が2カ所
あるビームスプリッタが作成できるのであれば、置き換
えることが望ましい。
The two light fluxes of frequencies f 1 and f 2 reaching the mirror 21 change the optical axis direction, and the non-polarizing beam splitter NPBS23
Leading to. Similarly, the two light fluxes reaching the mirror 22 change the optical axis direction and are shifted by a predetermined amount by the mirror 22 which can be rotated and tilted in the X and Z directions, and a non-polarized beam splitter NPBS23.
The four light beams (f 2 f 2 f 1 f 1 ) are arranged above, and are precisely adjusted so as to be symmetrical left and right with respect to the optical axis. If a lateral shift occurs with respect to the optical axis, a non-telecentric state occurs, and a minute shift occurs in the diffraction grating 32 that is the image plane, and the two detection range lengths differ. In the figure, the four light beams emitted to the right of the non-polarizing beam splitter NPBS23 are used for the other axes, but if a cube-shaped beam splitter having two mirror surfaces can be formed, it is desirable to replace them.

【0025】無偏光ビームスプリッタNPBS23より射
出された4光束は、光軸に対して夫々左右反転対称な配
置となり、レンズ26に至る。レンズ26、28、31、33は両
テレセントリック光学系になっていて、視野絞りAS27
の像がマスクM、ウェハWの回折格子32上に像を作る共
役(結像)関係になっている。このようなテレセントリ
ック配置により視野絞りAS27の像が回折格子32上に結
像すると、デフォーカス(焦点位置ずれ)があってもそ
の像の結像倍率が一定となる。例えば光学系の傾きやレ
ンズの偏心があった場合発生する視野絞りAS27からの
フランホーファ回折像は、アライメント誤差要因になる
が、両テレセントリック光学系で結像されているので、
その影響がより低減できる。レンズ26より射出された4
光束は該レンズ26の後面焦点位置に配置された視野絞り
AS27上で4光束が平行交差するように絞り込まれて、
視野絞り径のアライメントビームが成形射出され、レン
ズ28の後面焦点位置にある後述の瞳面EP70で4光束の
平行光となる。この4光束平行光はレンズ28から射出さ
れ光軸に対して平行に進み、対物レンズ31の前面焦点位
置にあり回折格子32のフーリエ変換像が得られる瞳面E
P70で集光されあたかも点光源のようになる。この瞳面
EP70上の4光束の並びはレンズ26、28により反転され
るので、4光束の並びが(f2211)から(f11
22)となり、逆位置になる。
The four light beams emitted from the non-polarization beam splitter NPBS23 are arranged symmetrically with respect to the optical axis in the left-right direction and reach the lens 26. The lenses 26, 28, 31, 33 are both telecentric optics and have a field stop AS27.
Image has a conjugate (image forming) relationship for forming an image on the diffraction grating 32 of the mask M and the wafer W. When the image of the field stop AS27 is formed on the diffraction grating 32 by such a telecentric arrangement, the image forming magnification of the image becomes constant even if there is defocus (focal position shift). For example, if there is tilt of the optical system or decentering of the lens,
The Franhofer diffraction image causes alignment errors, but since it is imaged by both telecentric optical systems,
The effect can be further reduced. 4 emitted from the lens 26
The light flux is focused on a field diaphragm AS27 arranged at the focal point of the rear surface of the lens 26 so that the four light fluxes intersect in parallel,
An alignment beam having a field stop diameter is formed and ejected, and becomes four parallel light beams on a pupil plane EP70, which will be described later, at the focal point of the rear surface of the lens 28. The four-beam parallel light is emitted from the lens 28, travels in parallel to the optical axis, is at the front focal point of the objective lens 31, and the Fourier transform image of the diffraction grating 32 is obtained.
It is condensed at P70 and looks like a point light source. Since the arrangement of the four light fluxes on the pupil plane EP70 is inverted by the lenses 26 and 28, the arrangement of the four light fluxes is changed from (f 2 f 2 f 1 f 1 ) to (f 1 f 1
f 2 f 2 ) and the reverse position.

【0026】全てP偏光(→)である4光束は偏光ビー
ムスプリッタPBS29を透過し、λ/4板30に至る。こ
のλ/4板30を通過した4光束は左回りの円偏光とな
り、対物レンズ31に平行光としてのビーム径を拡大して
進む。ここを透過した4光束は図7に示されるように、
この対物レンズ31によって光軸に対して外側の角度
θ2、内側の角度θ1で入射照明される。このような入射
照明が行われる時、4光束は光軸に対し瞳面EP70上で
Fb・Sinθ2とFb・Sinθ1の位置に配置されて
おり(Fbは対物レンズ31の後面焦点距離である)、光
軸に対して左右反転対称となる角度で回折格子32に入射
照明されることになる。
The four beams of P-polarized light (→) all pass through the polarization beam splitter PBS29 and reach the λ / 4 plate 30. The four light fluxes that have passed through the λ / 4 plate 30 become counterclockwise circularly polarized light, and travel by expanding the beam diameter as parallel light to the objective lens 31. As shown in FIG. 7, the four light fluxes transmitted through here are
The objective lens 31 makes incident illumination with an outer angle θ 2 and an inner angle θ 1 with respect to the optical axis. When such incident illumination is performed, four-beam is arranged in a position of Fb · sin [theta 2 and Fb · sin [theta 1 on the pupil plane EP70 respect to the optical axis (Fb is the surface focal length of the objective lens 31 ), The light is incident on the diffraction grating 32 at an angle which is symmetrical with respect to the optical axis.

【0027】更に本実施例では次のような受光光学系で
干渉回折光を受光する。2組の2光束を照明して得られ
る回折光は前記図7に示されるような状態となる。即ち
入射角度θ1、θ2と反対方向の正反射光(0次光)を中
心として高次の回折光が前記ピッチP間隔に並ぶため、
2光束の2組が混入することなく回折される。この図面
では干渉ビート信号が得られる回折次数(−1、−1)
(−1、−1)(−3、+1)(−3、+1)(+1、
−3)(+1、−3)のみを明記してある。ここでビー
ト信号を検出している干渉回折光は上記の6光束とした
が、これはレンズ31の有効径によって決めたもので、高
NA(開口比)のレンズであれば高次の干渉回折光を集
光することが可能である。
Furthermore, in this embodiment, the interference diffracted light is received by the following light receiving optical system. Diffracted light obtained by illuminating two sets of two light fluxes is in a state as shown in FIG. That is, since the high-order diffracted light is centered on the specularly reflected light (0th-order light) in the direction opposite to the incident angles θ 1 and θ 2 , the pitch P intervals are arranged.
Two sets of two light beams are diffracted without being mixed. In this figure, the diffraction orders (-1, -1) from which the interference beat signal is obtained
(-1, -1) (-3, +1) (-3, +1) (+1,
Only -3) (+1, -3) is specified. Here, the interference diffracted light that detects the beat signal is the above-mentioned six light beams, but this is determined by the effective diameter of the lens 31, and if the lens has a high NA (aperture ratio), the higher order interference diffraction light is used. It is possible to collect light.

【0028】次に以上の入射照明光と干渉回折光のアイ
ソレーション(分離)方法について説明する。得られる
回折光は光軸に対称な角度で回折され、入射時の円偏光
と逆に回る右回りの円偏光となり、対物レンズ31で集光
される。干渉6光束は平行光となり、λ/4板30を通過
すると、偏光方向がS偏光(↑)(図6では紙面に垂直
な偏光◎で図示)となり、入射時とその偏光方向を変
え、偏光ビームスプリッタPBS29の分離面で反射され
る。ここで偏光ビームスプリッタPBS29とλ/4板30
によって入射光と回折光が完全に分離される。進行方向
を変えた反射回折光はその前面焦点距離が瞳面EP70上
にあるレンズ33に至り、更にその後面焦点距離の位置に
結像する。この位置は前記視野絞りAS27と共役(結
像)関係にある。レンズ33、34はアホーカル系拡大レン
ズであり、前面の結像面を拡大してリレーするものであ
る。この拡大像はレンズ34の後面でフーリエ像となる。
Next, a method for isolating the incident illumination light and the interference diffracted light will be described. The obtained diffracted light is diffracted at an angle symmetric with respect to the optical axis, becomes circularly polarized light that rotates in the opposite direction to the circularly polarized light when incident, and is condensed by the objective lens 31. The interference 6 light beams become parallel light, and when passing through the λ / 4 plate 30, the polarization direction becomes S-polarized (↑) (shown by the polarized light ◎ perpendicular to the paper surface in FIG. 6). It is reflected by the separation surface of the beam splitter PBS29. Here, polarizing beam splitter PBS 29 and λ / 4 plate 30
The incident light and diffracted light are completely separated by. The reflected diffracted light whose traveling direction is changed reaches the lens 33 having the front focal length on the pupil plane EP70, and is further imaged at the position of the rear focal length. This position has a conjugate (image forming) relationship with the field stop AS27. Lenses 33 and 34 are afocal magnifying lenses, which magnify and relay the image forming surface on the front surface. This magnified image becomes a Fourier image on the rear surface of the lens 34.

【0029】レンズ34を通過した6光束は穴開きミラー
35により中央の(−1、−1)(−1、−1)次回折光
のみが通過し、他の光束は反射される。通過した2光束
はレンズ36に至り、スリット38で迷光や外乱光が遮断さ
れて四分割ディテクタ37に至る。四分割ディテクタ37面
上では前記回折格子32の像が拡大投影された面であり、
ここでウェハWとマスクMの夫々のビート信号が分離さ
れ、夫々の検出面で受光される。一方穴開きミラー35で
反射された高次の回折光は空間フィルタ39で所望の回折
光のみが取り出され、その後図示しないレンズとディテ
クタにより夫々受光される。
The six light fluxes that have passed through the lens 34 are perforated mirrors.
By (35), only the central (-1, -1) (-1, -1) th order diffracted light passes through and the other light beams are reflected. The two passed light fluxes reach the lens 36, stray light and ambient light are blocked by the slit 38, and reach the four-divided detector 37. On the surface of the four-divided detector 37 is a surface on which the image of the diffraction grating 32 is enlarged and projected,
Here, the beat signals of the wafer W and the mask M are separated and received by the respective detection surfaces. On the other hand, as for the high-order diffracted light reflected by the perforated mirror 35, only the desired diffracted light is taken out by the spatial filter 39, and thereafter, it is received by a lens and a detector (not shown), respectively.

【0030】平行4光束を作成するため本実施例では2
個の無偏光スプリッタNPBS20、25を用いたが、マス
クM、ウェハWの回折格子32と同一ピッチの回折格子の
透過光を用いても平行4光束が作成できる。図8(a)
は平行2光束を作成する従来法を示す図面であり、又同
図(b)は回折格子を用いた平行4光束を作成する方法
を説明する図面である。従来法では光軸に沿ったレーザ
光が回折格子50を照明すると、透過側に回折光が発生す
る。これをレンズ51で集光できる(−1、0、+1)の
回折光を取り出し、空間フィルタ52で0次(正反射光)
をカットし、−1次、+1次平行光束を作成している。
平行4光束はこの構成を応用しており、光軸に対して夫
々異なる方向からレーザ2光束を回折格子50に照明し、
夫々の回折光が所望の間隔で並ぶようにし、レンズ51で
平行光として空間フィルタ52で同様に−1次、+1次の
4光束を取り出して平行4光束を作成するものである。
実際の構成としては、図9に示すように、直行する方向
から周波数f1とf2の2つのP偏光レーザビームをレン
ズ18、19を介して無偏光ビームスプリッタNPBS20に
入射せしめ、平行な2光束として2つに分岐されてから
1、f2周波数のレーザビームは図上ビームウェストB
W53の位置で絞り込まれ、ここで所望の平行光が得られ
る間隔にする。レンズ54で平行2光束となり、回折格子
50を照明して得られる透過側の回折光は、周波数f1
ものについては斜線の入った線で又周波数f2のものに
ついては白抜きの線で示しているが、レンズ51を通過し
て平行光になり、空間フィルタ52で0次光が夫々カット
され、+1、−1、−1、+1次の4光束の平行光が取
り出される。尚、回折格子50はマスクM及びウェハWと
共役な位置に配置する。前記実施例の構成では視野絞り
AS27に回折格子50を配置する。この他の実施例ではウ
ォラストンプリズム(P偏光、S偏光分離取り出し素
子)を使用して平行4光束を作成しても良い。
In this embodiment, two beams are used to create four parallel light beams.
Although the non-polarizing splitters NPBS20 and 25 are used, four parallel light fluxes can be created by using the transmitted light of the diffraction grating having the same pitch as the diffraction grating 32 of the mask M and the wafer W. Figure 8 (a)
Is a drawing showing a conventional method for producing parallel 2 light fluxes, and FIG. 7B is a drawing for explaining a method for producing parallel 4 light fluxes using a diffraction grating. In the conventional method, when laser light along the optical axis illuminates the diffraction grating 50, diffracted light is generated on the transmission side. The (51, 0, +1) diffracted light that can be condensed by the lens 51 is extracted, and the spatial filter 52 extracts the 0th order (regular reflection light).
Is cut to create −1st and + 1st order parallel light fluxes.
This configuration is applied to four parallel light fluxes, which illuminate the diffraction grating 50 with two laser light fluxes from different directions with respect to the optical axis.
The respective diffracted lights are arranged at desired intervals, and the parallel light is extracted by the lens 51 as the parallel light by the spatial filter 52 in the same manner to extract the −1st and + 1st order light fluxes.
As an actual configuration, as shown in FIG. 9, two P-polarized laser beams of frequencies f 1 and f 2 are made incident on a non-polarized beam splitter NPBS20 through lenses 18 and 19 in a direction orthogonal to each other and are made parallel to each other. A laser beam of frequencies f 1 and f 2 after being split into two as a light beam has a beam waist B in the figure.
The aperture is narrowed down at the position of W53, and the interval is set so that desired parallel light can be obtained. Two parallel light beams are formed by the lens 54, and the diffraction grating
The diffracted light on the transmission side obtained by illuminating 50 passes through the lens 51 though it is shown by the shaded line for the frequency f 1 and the white line for the frequency f 2. Are converted into parallel light, and the spatial filter 52 cuts the 0th-order light, respectively, and the +1, -1, -1, and + first-order four-beam parallel light is extracted. The diffraction grating 50 is arranged at a position conjugate with the mask M and the wafer W. In the configuration of the above embodiment, the diffraction grating 50 is arranged in the field stop AS27. In another embodiment, a Wollaston prism (P-polarized light, S-polarized light separation / extraction element) may be used to create four parallel light beams.

【0031】本実施例に示すように、光軸に対し左シフ
ト及び右シフトした2光束の組2組を左右反転対称な4
光束にして、図10に示すようにマスクM及びウェハW
の各回折格子32に入射照明すると、光軸に対して対称な
位置に(−1、−1)次回折光をマスクM・ウェハW共
に2つずつ得る(図面上他の回折次数のものは省略され
ている)。前記図4(b)に示されたように、光軸に対
して左シフトした入射光に対しては、反射の法則により
光軸に対して入射方向と逆向きの右傾きの回折光が得ら
れる。同様に光軸に対して右シフトした入射光に対して
は、同図(a)に示すように、左傾きした回折光が得ら
れる。このように4光束照明したのは2次元方向(X方
向、Z方向)の位相変化を同時に測定するためであり、
2光束の組を2組にして光軸に対し対称に入射照明した
のは得られるΔx、Δzの移動量に対応する位相変動量
を同量にするためである。
As shown in this embodiment, two pairs of two light fluxes which are left-shifted and right-shifted with respect to the optical axis are left-right inverted symmetrically.
As a light flux, as shown in FIG. 10, the mask M and the wafer W
When each of the diffraction gratings 32 is illuminated, two (-1, -1) th order diffracted lights are obtained at positions symmetrical to the optical axis for both the mask M and the wafer W (other diffraction orders are omitted in the drawing). Has been). As shown in FIG. 4B, with respect to the incident light that is left-shifted with respect to the optical axis, diffracted light having a right tilt opposite to the incident direction with respect to the optical axis is obtained according to the law of reflection. To be Similarly, for incident light that is shifted to the right with respect to the optical axis, diffracted light that is tilted to the left is obtained as shown in FIG. The reason why the four-beam illumination is performed is to measure the phase change in the two-dimensional direction (X direction, Z direction) at the same time.
The reason why two sets of two light fluxes are incident and illuminated symmetrically with respect to the optical axis is to make the amount of phase fluctuation corresponding to the obtained amount of movement of Δx and Δz the same.

【0032】次に本実施例において、光軸に対して対称
位置に(−1、−1)次回折光が2つ得られることを説
明する。前記図7は、ウェハWに形成された回折格子に
対する入射光と(−3次〜+3次)までの回折光をもっ
て、2波長の干渉モデルを示す原理説明図である。本実
施例では同図(f)に示すように、その回折格子32の
ューティ比として、1次回折効率が一番良い(P−a)
/P=1/2の1:1のものを用いた。同図(c)
(d)に示すものは、前記回折格子32からの(−3次〜
+3次)までの対物レンズ31で集光できる次数のf1
2のm次、n次回折光の強度分布である。
Next, in the present embodiment, it will be described that two (-1, -1) th order diffracted lights are obtained at symmetrical positions with respect to the optical axis. FIG. 7 is a principle explanatory diagram showing an interference model of two wavelengths with incident light to the diffraction grating formed on the wafer W and diffracted light up to (−3rd to + 3rd). As shown in FIG. (F) In the present embodiment, data of the diffraction grating 32
The first-order diffraction efficiency is the best as the duty ratio ( Pa )
A 1: 1 ratio of / P = 1/2 was used. The same figure (c)
The one shown in (d) is from the diffraction grating 32.
F 1 of the order that can be condensed by the objective lens 31 up to + 3rd order,
It is the intensity distribution of the m-th and n-th order diffracted light of f 2 .

【0033】まず光軸から左側にシフトした2光束(周
波数f1、f2)の組から説明する。同図(e)に示した
対物レンズ31の前面焦点距離にある瞳面EP70は、回折
格子32のフーリエ変換像が得られる面であり、照明系の
光学配置ではこの面で点光源となるよう4光束を絞り込
む。外側入射角度θ2で入射する周波数f1の照明光(白
抜き矢印)は回折格子32に入射照明され、その正反射光
(0次光)が瞳面EP70上で光軸に対して入射位置と反
対位置に戻る。この位置を中心にして、同図(d)の
(R1)に示されるように、−3次〜+1次の回折光が
得られる。同様に内側入射角度θ1で入射する周波数f2
の照明光(白抜き矢印)も回折格子32に入射照明され、
その正反射光は瞳面EP70上で光軸に対して入射位置と
反対位置に正反射光(0次光)が戻り、同図(d)の
(R2)に示されるように、これを中心として+1次〜
−3次の回折光が得られる。この時、瞳面EP70上での
周波数f1の入射照明光(白抜き矢印)と同周波数f2
入射照明光(白抜き矢印)の間隔は、この回折光のうち
(m=−1、n=−1)次の回折光が干渉する(重なり
合う)ように設定する。このような状況にして得られる
(−1、−1)次の干渉回折光は光軸に対して右傾き回
折光位置(黒実線矢印)に得られ、光軸より右側にずれ
る。回折光が干渉状態になるのは、これ以外に(−3、
+1)次及び(+1、−3)次の位置にもある。
First, a set of two light beams (frequency f 1 and f 2 ) shifted leftward from the optical axis will be described. The pupil plane EP70 at the front focal length of the objective lens 31 shown in (e) of the figure is a plane on which the Fourier transform image of the diffraction grating 32 is obtained, and this plane serves as a point light source in the optical arrangement of the illumination system. 4 Narrow the light flux. Illumination light (white arrow) having a frequency f 1 incident at an outer incident angle θ 2 is incident and illuminated on the diffraction grating 32, and its specularly reflected light (0th order light) is incident on the pupil plane EP70 with respect to the optical axis. And return to the opposite position. With this position as the center, as shown in (R1) of FIG. Similarly, the frequency f 2 incident at the inner incident angle θ 1
Illumination light (white arrow) is also incident on the diffraction grating 32 and illuminated.
The specularly reflected light returns to the position opposite to the incident position with respect to the optical axis on the pupil plane EP70 as the specularly reflected light (0th order light), and as shown in (R2) of FIG. As +1 order ~
-3rd order diffracted light is obtained. At this time, the interval between the incident illumination light having the frequency f 1 (white arrow) and the incident illumination light having the same frequency f 2 (white arrow) on the pupil plane EP70 is (m = −1, It is set so that the n = −1) th order diffracted light interferes (overlaps). The interference diffracted light of the (-1, -1) th order obtained in such a situation is obtained at the diffracted light position tilted to the right (black solid line arrow) with respect to the optical axis, and is shifted to the right of the optical axis. Other than this, the diffracted light enters the interference state (-3,
It is also in the (+1) th and (+ 1, -3) th positions.

【0034】一方もう一組の周波数f1、f2の2光束
(斜線塗りの矢印)の組も、その入射照明時に光軸を中
心として右にシフトしており、従って光軸を中心に前記
の場合と反転した位置にその干渉回折光が得られる。即
ち同図(c)の(L1、L2)に示すように、その(−
1、−1)次の干渉回折光は光軸に対して左傾き回折光
位置(斜線塗りした矢印)に得られ、瞳面EP70上光軸
より左側にずれる。回折光が干渉状態になるのは、これ
以外に(−3、+1)次及び(+1、−3)次の位置に
もある。
On the other hand, another set of two light fluxes of frequency f 1 and f 2 (hatched arrows) is also shifted to the right about the optical axis at the time of the incident illumination, and therefore the above-mentioned center is set about the optical axis. The interference diffracted light is obtained at the position reversed from the case. That is, as shown in (L1, L2) of FIG.
The interference diffracted light of the 1st and -1) th order is obtained at the diffracted light position that is tilted to the left with respect to the optical axis (the hatched arrow) and is shifted to the left of the optical axis on the pupil plane EP70. In addition to this, the diffracted light enters the interference state also at the (-3, +1) th and (+1, -3) th positions.

【0035】以上のようにして得られた左傾き、右傾き
の干渉回折光は、同図(b)に示すように夫々の干渉回
折光が重なり合うことなく光軸に対して対称位置に得ら
れ、該干渉回折光を検出するディテクタ37等の手前で
は、同図(a)に示すように分離されて夫々別々に検出
することが可能となる。
The interference diffracted light having the left tilt and the right tilt obtained as described above is obtained at a symmetrical position with respect to the optical axis without the interference diffracted lights overlapping with each other, as shown in FIG. In front of the detector 37 or the like for detecting the interference diffracted light, they are separated as shown in FIG.

【0036】次にΔx方向の位相変動量とΔz方向の位
相変動量を所定の式の和と差により分離する原理につい
て説明する。図11乃至図13は、入射角をθとした左
右対称入射照明の場合(Symmetric、図11)
と、入射角をθ1、θ2として入射照明光が右にシフトし
た左非対称の場合(Left、図12)と、同様な条件
で入射照明光が左にシフトした右非対称の場合(Rig
ht、図13)とにおける−1次の干渉回折光の状態を
示している。同時に微小変動量ΔxとΔzがあった場合
における前記参照信号に対するビート信号の位相移動方
向を、黒塗りの矢印と白抜きの矢印とでこれらの図面に
併せて示した。
Next, the principle of separating the phase fluctuation amount in the Δx direction and the phase fluctuation amount in the Δz direction by the sum and difference of predetermined formulas will be described. 11 to 13 show left-right symmetrical incident illumination with an incident angle of θ (Symmetric, FIG. 11).
And the case where the incident illumination light is shifted to the right with the incident angles θ 1 and θ 2 (Left, FIG. 12) and the case where the incident illumination light is shifted to the left under the same conditions (Rig
ht, FIG. 13), and −1st order interference diffracted light. At the same time, the phase shift direction of the beat signal with respect to the reference signal when there are minute fluctuation amounts Δx and Δz are also shown in these drawings by a black arrow and a white arrow.

【0037】これらの図面から明らかなように、Δx方
向の移動に対しての位相移動方向が3つの場合とも同一
方向である。これは移動に伴う光路長変化が、後述の図
14乃至図16に示すように、周波数f1のものについ
ては常に長くなり、周波数f2のものについては常に短
くなることから判断できる。即ち周波数f2の照明光を
基準にした時の周波数f1の照明光に対する光路差[L
(1)−L(2)]は、L(1)の光路長が長くなり、
またL(2)の光路長が短くなるため、常に正になり、
従って位相移動方向が常に同一方向になる。
As is clear from these figures, the phase shift directions with respect to the shift in the Δx direction are the same in all three cases. This can be judged from the fact that the change in the optical path length due to the movement is always long for the frequency f 1 and is always short for the frequency f 2 as shown in FIGS. 14 to 16 described later. That is, the optical path difference [L] with respect to the illumination light of frequency f 1 when the illumination light of frequency f 2 is used as a reference
(1) -L (2)] has a long optical path length of L (1),
Also, since the optical path length of L (2) becomes short, it always becomes positive,
Therefore, the phase shift direction is always the same direction.

【0038】これに対してΔzの移動に対して図11の
左右対称入射の場合、周波数f1及びf2の入射照明光の
光路長変化量は常に等しく、光路差[L(1)−L
(2)]は0となり、振幅強度については変化するが、
位相は変化せず、位相ずれは起きない。これが、左右対
称光学配置にするとΔzギャップ方向に対する変動に対
し、影響を受けない利点であった。
On the other hand, in the case of symmetrical incidence of FIG. 11 with respect to the movement of Δz, the variation amounts of the optical path lengths of the incident illumination lights of the frequencies f 1 and f 2 are always equal, and the optical path difference [L (1) -L
(2)] becomes 0, and the amplitude intensity changes, but
The phase does not change and no phase shift occurs. This is an advantage that the symmetrical optical arrangement does not affect the variation in the Δz gap direction.

【0039】左非対称や右非対称の場合、光軸からの傾
き方向により夫々のΔz移動に伴う位相変動量が逆向き
に発生する(白抜き矢印→と←)。
In the case of left asymmetry or right asymmetry, the amount of phase fluctuation associated with each Δz movement occurs in the opposite direction depending on the inclination direction from the optical axis (white arrows → and ←).

【0040】以上のような場合の光路長変化の様子を、
図14乃至図16により具体的に示す。これらの図面は
周波数f1のビームと周波数f2のビームがΔx及びΔz
分移動するに伴い、位置PからP′に移動した時の光路
長L(1)とL(2)を示したものである。これらの図
面ではその時発生する入射光の光路変化長を丸A、丸B
で、また回折光の光路変化量を丸Cで各示し、光路長は
太い実線で表した。このうち回折光の光路長丸Cは周波
数f1、f2で同一方向に発生する光路長で、光路差[L
(1)−L(2)]=(丸A+丸C)−(丸B+丸C)
=(丸A−丸B)となり、丸Cは光路差に寄与しておら
ず、光路差の算出から除くことができる。即ち光路差は
周波数f1、f2の入射光に対して発生する光路長を考え
れば良い。
The change in optical path length in the above case is
This will be specifically shown in FIGS. 14 to 16. These drawings show that the beam of frequency f 1 and the beam of frequency f 2 are Δx and Δz.
It shows the optical path lengths L (1) and L (2) when moving from the position P to P ′ as the position moves by a minute. In these drawings, the optical path change length of the incident light generated at that time is circle A, circle B.
Also, the change amount of the optical path of the diffracted light is shown by a circle C, and the optical path length is shown by a thick solid line. Of these, the optical path length circle C of the diffracted light is the optical path length generated in the same direction at the frequencies f 1 and f 2 , and the optical path difference [L
(1) -L (2)] = (Circle A + Circle C) − (Circle B + Circle C)
= (Circle A−circle B), the circle C does not contribute to the optical path difference and can be excluded from the calculation of the optical path difference. That is, the optical path difference may be considered as the optical path length generated for incident light of frequencies f 1 and f 2 .

【0041】そこでまず振幅が略等しく周波数がわずか
に異なっており(数10KHz〜数100KHz)、且
つ同一方向に進行する2つの波u1とu2の重ね合わせを
考える。
Therefore, first, let us consider a superposition of two waves u 1 and u 2 which have substantially equal amplitudes and slightly different frequencies (several tens KHz to several hundred KHz) and which travel in the same direction.

【0042】u1、u2は下式数5及び数6の様な波動方
程式に書ける。
U 1 and u 2 are wave forms as shown in the following formulas 5 and 6.
You can write in a formula .

【0043】[0043]

【数5】 [Equation 5]

【0044】[0044]

【数6】 [Equation 6]

【0045】又ビート周波数(うなり)は振幅の変動の
繰り返し周波数で下式数7で表わせる。
The beat frequency (beat) is a repetition frequency of amplitude fluctuation and can be expressed by the following equation (7).

【0046】[0046]

【数7】 [Equation 7]

【0047】u1とu2の2つの波の振幅の和を2乗して
波の重ね合せ強度を求めると次式数8が得られる。
When the sum of the amplitudes of the two waves u 1 and u 2 is squared to obtain the superposition strength of the waves, the following equation 8 is obtained.

【0048】[0048]

【数8】 [Equation 8]

【0049】上記数8の[L(1)/λ1−L(2)/
λ2]項から光路差[L(1)−L(2)]の変化によ
って位相項の遅れや進みが出ることがわかる。
[L (1) / λ 1 -L (2) /
It can be seen from the λ 2 ] term that the phase term is delayed or advanced due to the change in the optical path difference [L (1) -L (2)].

【0050】光ヘテロダインアライメント方式ではこの
位相差の測定を行なうことになるが、この位相差は±18
0゜以内と角度検出範囲が固定されてしまうため、数8
の[L(1)/λ1−L(2)/λ2]の項で示される光
路差[L(1)−L(2)]が検出範囲と位相の進み・
遅れの方向を左右する項目となる。使用される2つの周
波数f1、f2のレーザ光はわずかに波長が異なり、ビー
ト信号の周波数(f1−f2)は約2.4×105Hz
で、光周波数約5×1014Hzに比べ十分小さいので、
高速をCとすると、ビート周波数Δfは、|C/λ1
C/λ2|であり、Δf<<Cであるため、レーザ波長
は、λ1=λ2≒λとおける。従って2π[L(1)/λ1
−L(2)/λ2]の項は2π[L(1)−L(2)]/
λと置き換えることができる。
In the optical heterodyne alignment method, this phase difference is measured, but this phase difference is ± 18.
Since the angle detection range is fixed within 0 °,
[L (1) / λ 1 −L (2) / λ 2 ], the optical path difference [L (1) −L (2)] is the detection range and the phase advance.
It is an item that affects the direction of delay. The two laser beams of the frequencies f 1 and f 2 used have slightly different wavelengths, and the frequency of the beat signal (f 1 −f 2 ) is about 2.4 × 10 5 Hz.
Since it is sufficiently smaller than the optical frequency of about 5 × 10 14 Hz,
When the high speed is C, the beat frequency Δf is | C / λ 1
Since C / λ 2 | and Δf << C, the laser wavelength can be set as λ 1 = λ 2 ≈λ. Therefore, 2π [L (1) / λ 1
The term of −L (2) / λ 2 ] is 2π [L (1) −L (2)] /
can be replaced with λ.

【0051】次に図14、図15、図16を基に図7の
場合の光軸方向にf1周波数成分の−1次回折光とf2
波数成分の−1次回折光で得られる光路差[L(1)−
L(2)]を求めてみる。
Next, based on FIGS. 14, 15 and 16, the optical path difference [-1st order diffracted light of f 1 frequency component and −1st order diffracted light of f 2 frequency component in the optical axis direction in the case of FIG. L (1)-
L (2)].

【0052】上記図14は、左右対称な入射光照明配置
の光路長変化を示した図である。ここで示されたθは、
周波数f1、f2の照明光を仮に光軸方向から入射させた
場合に得られる±1次回折光の方向から逆に入射させた
場合の入射角度である。周波数f1の光路L(1)の入
射光の光路長丸Aは、次式数9の様になる。
FIG. 14 is a diagram showing changes in the optical path length of a symmetrically arranged incident light illumination arrangement. Θ shown here is
It is the incident angle when the illumination lights of frequencies f 1 and f 2 are incident in the opposite directions from the directions of the ± first-order diffracted light obtained when the illumination light is incident in the optical axis direction. The optical path ellipse A of the incident light on the optical path L (1) having the frequency f 1 is represented by the following Expression 9.

【0053】[0053]

【数9】 [Equation 9]

【0054】また周波数f2の光路L(2)の入射光の
光路長丸Bは、同様に次式数10の様になる。
Similarly, the optical path length circle B of the incident light on the optical path L (2) of the frequency f 2 is expressed by the following equation (10).

【0055】[0055]

【数10】 [Equation 10]

【0056】周波数f1と周波数f2の光の光路差[L
(1)−L(2)]は、上記数9及び数10から次式数
11となる。
Optical path difference [L of light of frequency f 1 and frequency f 2
(1) -L (2)] is given by the following equation 11 from the above equations 9 and 10.

【0057】[0057]

【数11】 [Equation 11]

【0058】上記式から分かるように、左右対称の入射
の場合は入射角θが光軸に対して等しいので、Z方向に
は光路差は発生せず、Δxの変化のみとなる。これが左
右対称入射型の利点である。
As can be seen from the above equation, in the case of bilaterally symmetric incidence, the incident angles θ are equal to the optical axis, so no optical path difference occurs in the Z direction, and only Δx changes. This is the advantage of the bilaterally symmetrical incidence type.

【0059】これに対して図15や図16のように、左
シフト入射させ或いは右シフト入射させることで、光軸
に対して右傾き或いは左傾きした状態で回折光が取り出
された場合(右非対称或いは左非対称)、左右がアンバ
ランスになり、上記式11の(cosθ−cosθ)の
項で入射角θが実際にはθ1、θ2であることから明らか
なように、Δzの変位に対しても光路差が発生する。
On the other hand, as shown in FIG. 15 and FIG. 16, when the diffracted light is extracted with the light being left-shifted or right-shifted with respect to the optical axis (rightward or rightward). Asymmetry or left asymmetry), left and right are unbalanced, and as is clear from the fact that the incident angles θ are actually θ 1 and θ 2 in the term of (cos θ-cos θ) in the above equation 11, the displacement of Δz becomes The optical path difference also occurs.

【0060】この図15は左シフト入射光による右傾き
回折光の光路長変化(R)とその光路差を、また図16
は右シフト入射光による左傾き回折光の光路長変化
(L)とその光路差が各示されている。前述のように、
θ1、θ2は光軸に対しての入射光に対する夫々の入射角
度であり、内側入射角度θ1<外側入射角度θ2となる。
FIG. 15 shows the optical path length change (R) of diffracted light to the right due to the left-shift incident light and its optical path difference, and FIG.
Shows the optical path length change (L) of the left tilt diffracted light due to the right-shift incident light and the optical path difference. As aforementioned,
θ 1 and θ 2 are the respective incident angles with respect to the incident light with respect to the optical axis, and the inner incident angle θ 1 <the outer incident angle θ 2 .

【0061】両図における光路長丸A′丸A″は周波数
1入射光の光路長、丸B′丸B″は周波数f2入射光の
光路長、丸C′丸C″は周波数f1とf2回折光の光路長
を示している。前述のように光路差は[L(1)−L
(2)]であり、回折方向丸C′丸C″の光路長は、回
折方向が同方向なので光路差の計算から除くことができ
る。また両図とも回折光と光軸との回折角度は明記して
いない。このことは、周波数f1、f2の入射光の入射角
度で光路差が明記できることを示している。
Optical path length circle A'circle A "in both figures is the optical path length of the incident light of frequency f 1 , circle B'circle B" is the optical path length of the incident light of frequency f 2 and circle C'circle C "is the frequency f 1 And the optical path length of the f 2 diffracted light.
(2)], and the optical path length of the circle C ′ in the diffraction direction can be excluded from the calculation of the optical path difference because the diffraction directions are the same direction. In both figures, the diffraction angle between the diffracted light and the optical axis is Not specified, which means that the optical path difference can be specified by the incident angles of the incident lights of frequencies f 1 and f 2 .

【0062】そこでマスクMがPの位置からP′の位置
に移動した時、図15における周波数f1とf2の入射光
についての光路長L(1)とL(2)を夫々求めると、
次式数12及び数13の様になる。
Then, when the mask M moves from the position P to the position P ', the optical path lengths L (1) and L (2) for the incident lights of the frequencies f 1 and f 2 in FIG. 15 are obtained, respectively.
The following equations 12 and 13 are obtained.

【0063】[0063]

【数12】 [Equation 12]

【0064】[0064]

【数13】 [Equation 13]

【0065】以上の2式から周波数f2の入射光を基準
にしてみた光路差は次式数14の様になる。
From the above two equations, the optical path difference based on the incident light of frequency f 2 is as shown in the following equation (14).

【0066】[0066]

【数14】 [Equation 14]

【0067】上記式の右辺第1項はΔxに関する項で、
sinθの和で示され、また第2項はΔzに関する項
で、cosθの差で示され、θ1<θ2なので、(cos
θ1−cosθ2)の項は正であり、それ故、−を入れる
と、負を示すことになる。前記数8の2π/λ[L
(1)−L(2)]の項が光路差変動による位相項(−
180゜〜+180゜)になるので、Δx、Δzの位相
変動量は、前記数14式と同様に、下式数15の様に表
すことができる。
The first term on the right side of the above equation is a term relating to Δx, and
The second term is the term relating to Δz, and the second term is the difference of cosθ. Since θ 12 , (cos
The term [theta] 1- cos [theta] 2 ) is positive, so entering-indicates a negative sign. 2π / λ [L of the above equation 8
The term (1) -L (2)] is the phase term (-
180 ° to + 180 °), the phase of Δx and Δz
The fluctuation amount can be expressed as in the following Expression 15, as in Expression 14 above.

【0068】[0068]

【数15】 [Equation 15]

【0069】同様に図16において、PからP′に移動
した時の光路長を求めると、数12及び数13のθ1
θ2を入れ換えた、次式数16及び数17の様になる。
Similarly, in FIG. 16, when the optical path length when moving from P to P ′ is obtained, the following equations 16 and 17 are obtained by exchanging θ 1 and θ 2 of the equations 12 and 13. .

【0070】[0070]

【数16】 [Equation 16]

【0071】[0071]

【数17】 [Equation 17]

【0072】よって光路L(2)を基準にしてみた光路
差[L(1)−L(2)]は、次式数18の様になる。
Therefore, the optical path difference [L (1) -L (2)] based on the optical path L (2) is as shown in the following expression 18.

【0073】[0073]

【数18】 [Equation 18]

【0074】これを前記数15式と同様に位相変化量で
表すと、次式数19式に示すようになる。
When this is represented by the amount of phase change as in the equation 15, the following equation 19 is obtained.

【0075】[0075]

【数19】 [Formula 19]

【0076】本実施例では、同時に左シフト及び右シフ
トした照明光の入射を行なっているため、前記数15式
と数19式との和及び差より、位相変動量ΔφxΔφz
が分離して測定することができる。
In this embodiment, since the left-shifted and right-shifted illumination lights are incident at the same time, the phase fluctuation amounts Δ φ x and Δ φ z can be calculated from the sum and difference of the above equations (15) and (19).
Can be measured separately.

【0077】以上のように、左右対称入射の時はその入
射角がθ1=θ2=θとなり、前記数14及び数18の右
辺第2項目のΔzに関する項が0となる。また右辺第1
項目は2Δx・sinθとなる。即ちΔx、Δzの移動
に伴い、X方向の光路長は、周波数f1の入射光につい
ては長くなり、周波数f2の入射光については短くなる
のに対し、Z方向の光路長については、周波数f1及び
2とも長くなるが変化量は同じである。
As described above, the incident angle is θ 1 = θ 2 = θ in the case of bilaterally symmetric incidence, and the term relating to Δz in the second item on the right side of the equations 14 and 18 is 0. Also the first on the right side
The item is 2Δx · sin θ. That is, as Δx and Δz move, the optical path length in the X direction becomes longer for the incident light of frequency f 1 and becomes shorter for the incident light of frequency f 2 , whereas the optical path length in the Z direction becomes Both f 1 and f 2 are long, but the amount of change is the same.

【0078】一方、左シフト及び右シフトした照明光の
入射により右非対称及び左非対称の回折光を得ている場
合、非対称になることによって前記数14及び数18の
第2項のΔzに関する項が(cosθ1−cosθ2)の
θ1とθ2の傾き差に比例した量だけ発生し、入射角θ1
とθ2の非対称の組を、光軸に対し2組対称に入射照明
することにより、逆方向[(cosθ1−cosθ2)の
前に付く±が相違する]に同量[(cosθ1−cos
θ2)]だけ発生させることができる。また数14及び
数18の第1項はΔxに関して(sinθ1+sin
θ2)となり、傾き角に関係なくΔxの進行方向と同じ
方向になる。
On the other hand, when diffracted light having a right asymmetry and a left asymmetry is obtained by the incidence of the left-shifted and right-shifted illumination light, the asymmetry causes the term relating to Δz in the second term of the equations (14) and (18). (Cos θ 1 −cos θ 2 ) is generated in an amount proportional to the gradient difference between θ 1 and θ 2 and the incident angle θ 1
By illuminating two asymmetrical groups of θ and θ 2 symmetrically with respect to the optical axis, the same amount [(cos θ 1 − is different in the direction [(cos θ 1 −cos θ 2 ))] in the opposite direction. cos
θ 2 )] can be generated. Also, the first terms of the equations 14 and 18 are (sin θ 1 + sin
θ 2 ), which is the same as the traveling direction of Δx regardless of the tilt angle.

【0079】この時のΔxの検出範囲は(sinθ1
sinθ2)に比例した量となるが、Δzについて言え
ばその検出範囲は(cosθ1−cosθ2)というco
s差になるため、Δxに比較すると長くなり、一方逆に
検出分解能は落ちることになる。
At this time, the detection range of Δx is (sin θ 1 +
Although the amount is proportional to sin θ 2 ), the detection range for Δz is cos θ 1 −cos θ 2 ).
Since the difference is s, it becomes longer than Δx, and on the other hand, the detection resolution decreases.

【0080】以上の実施例は(−1、−1)次の回折光
による光ヘテロダイン干渉を利用するものであったが、
同様に(−1、0)次及び(0、−1)次の検出範囲長
が2倍の干渉によっても同様に、入射角θ1′とθ2′の
非対称の組を光軸に対し2組対称に入射照明することで
可能である。以下(−1、0)次及び(0、−1)次の
光ヘテロダイン干渉信号が得られる4光束の左右反転対
称にした別の実施例に付き説明する。
Although the above-described embodiment utilizes the optical heterodyne interference by the (-1, -1) th order diffracted light,
Similarly, due to the interference in which the detection range lengths of the (-1, 0) th order and the (0, -1) th order are doubled, similarly, an asymmetric set of the incident angles θ 1 ′ and θ 2 ′ is 2 with respect to the optical axis. It is possible to perform incident illumination in a pair symmetry. A description will be given below to another embodiment in which the (-4, 0) -th order and the (0, -1) -th order optical heterodyne interference signals are obtained and the four light fluxes are left-right inverted symmetrically.

【0081】図17及び図18に示されるように、周波
数f1(図18では白抜きの実線)の光束は角度θ2′で
入射され、反射の法則に従って光軸に対して反対位置
(同図では周波数f2′の光束を入射する位置)に正反
射光が戻る。回折光はこの正反射光を中心として−3次
〜+3次の回折光が得られ、図18(d)の(R1)に
その強度分布が示される。またもう一方の周波数f
2(同図白抜き実線)の光束は前記入射角度θ2′よりも
小さい角度θ1′で入射照明され、その正反射光は反対
位置(同図では周波数f1′の光束を入射する位置)に
戻る。回折光はこの正反射光を中心として−3次〜+3
次の回折光が得られ、図18(d)の(R2)にその強
度分布が示される。従って周波数f1の光束の回折次数
mと周波数f2の回折次数nとで表した場合、光軸に対
し非対称に(m=−1、n=0)次及び(m=0、n=
−1)次の干渉回折光が得られる。
As shown in FIGS. 17 and 18, a light beam having a frequency f 1 (indicated by a white solid line in FIG. 18) is incident at an angle θ 2 ′ and is positioned at the opposite position (the same position) with respect to the optical axis according to the law of reflection. In the figure, the specularly reflected light returns to the position where the light flux of frequency f 2 ′ is incident). As for the diffracted light, −3rd to + 3rd order diffracted light is obtained centered on this specularly reflected light, and the intensity distribution is shown in (R1) of FIG. 18D. The other frequency f
The light flux 2 (white solid line in the figure) is incident and illuminated at an angle θ 1 ′ smaller than the incident angle θ 2 ′, and the specularly reflected light is at the opposite position (at the position where the light flux having the frequency f 1 ′ is incident in the figure). ) Return to. Diffracted light is centered around this specularly reflected light and is −3rd to +3
The next diffracted light is obtained, and its intensity distribution is shown in (R2) of FIG. Therefore, when the diffraction order m of the light flux of frequency f 1 and the diffraction order n of frequency f 2 are expressed, the (m = −1, n = 0) order and (m = 0, n = asymmetrical with respect to the optical axis.
-1) The following interference diffracted light is obtained.

【0082】もう一組の周波数f1′及びf2′の2光束
は前記周波数f1及びf2の光束が回折された位置から逆
に入射する(図中斜線塗りした太い線)。同様に回折光
が夫々の正反射光位置を中心として得られ、図18
(c)の(L1、L2)にその強度分布が示されるよう
に、光軸に対し非対称に(m=−1、n=0)次及び
(m=0、n=−1)次の干渉回折光が得られる。その
ため、ディテクタ手前における干渉光は、混入すること
なく一直線上に光軸に対称的な配置で並ぶ。
Another set of two light fluxes having the frequencies f 1 ′ and f 2 ′ are incident from the positions where the light fluxes having the frequencies f 1 and f 2 are diffracted in the opposite direction (thick lines shaded in the figure). Similarly, the diffracted light is obtained centering on the respective specularly reflected light positions.
As shown in the intensity distribution at (L1, L2) in (c), the (m = -1, n = 0) and (m = 0, n = -1) -order interferences are asymmetric with respect to the optical axis. Diffracted light is obtained. Therefore, the interference light in front of the detector is arranged in a straight line and symmetrically arranged with respect to the optical axis without being mixed.

【0083】図19乃至図21は、入射角をθ′とした
左右対称入射照明の場合(S1/2、図19)と、入射
角をθ1′、θ2′として入射照明光が右にシフトした左
非対称の場合(L1/2、図20)と、同様な条件で入
射照明光が左にシフトした右非対称の場合(R1/2、
図21)とにおける(−1、0)次及び(0、−1)次
の干渉回折光の状態を示している。同時に微小変動量Δ
xとΔzがあった場合における前記参照信号に対するビ
ート信号の位相移動方向を、黒塗りの矢印と白抜きの矢
印とでこれらの図面に併せて示した。
19 to 21 show the case of bilaterally symmetric incident illumination where the incident angle is θ '(S1 / 2, FIG. 19), the incident illumination light is set to the right with incident angles θ 1 ′ and θ 2 ′. In the case of left asymmetry shifted (L1 / 2, FIG. 20) and in the case of right asymmetry incident illumination light shifted left under the same conditions (R1 / 2,
21) and (0, −1) -th order interference diffracted light states in FIG. At the same time, the minute variation Δ
The phase shift directions of the beat signal with respect to the reference signal in the case of x and Δz are also shown in these drawings by a black arrow and a white arrow.

【0084】図19に示すように、左右対称入射照明の
場合はZ方向の移動があっても位相は変化しない。これ
に対して図20に示す左非対称入射の場合は、Z方向に
移動があると同方向に同量だけ位相が進む。また図21
に示すように右非対称入射の場合は、Z方向に移動があ
るとこれとは逆方向に位相が同量だけ進む。このことを
利用すれば、前記実施例と同様に和と差によりX方向と
Z方向の位相を分離して測定することができる。
As shown in FIG. 19, in the case of bilaterally symmetric incident illumination, the phase does not change even if there is movement in the Z direction. On the other hand, in the case of the left asymmetrical incidence shown in FIG. 20, when there is a movement in the Z direction, the phase advances in the same direction by the same amount. Also in FIG.
In the case of right asymmetrical incidence, as shown in (4), when there is a movement in the Z direction, the phase advances in the opposite direction by the same amount. By utilizing this fact, the phases in the X direction and the Z direction can be separated and measured by the sum and the difference as in the above-mentioned embodiment.

【0085】図22乃至図24により、光路長変化によ
位相変動量と位相の進み、遅れの方向を説明する。
22 to 24, the phase variation amount due to the change in the optical path length and the phase advance and delay directions will be described.

【0086】図22は左右対称入射照明の場合を示して
おり、位置PからΔx、Δz移動してP′の位置に移動
したとすると、太い実線で示す光路差が発生する。ここ
では丸A1=丸A2、丸C1=丸C2の関係にあるが、これ
は光軸に対して対称に入射照明されるからである。この
時の入射角については、もし光軸方向から照明光が入射
照明されたならば得られるであろう±1次回折光の回折
角θの約半分の角度で、反対に入射照明しているので、
θ/2とする。この場合の光路長は、次式数20及び数
21で表せる。
FIG. 22 shows the case of bilaterally symmetric incident illumination. If the position P is moved by Δx, Δz to the position P ′, an optical path difference indicated by a thick solid line is generated. Here, there is a relationship of circle A 1 = circle A 2 and circle C 1 = circle C 2 because the incident illumination is symmetrical with respect to the optical axis. The incident angle at this time is about half of the diffraction angle θ of the ± first-order diffracted light that would be obtained if the illumination light was incident and illuminated from the optical axis direction. ,
θ / 2. The optical path length in this case can be expressed by the following equations 20 and 21.

【0087】[0087]

【数20】 [Equation 20]

【0088】[0088]

【数21】 [Equation 21]

【0089】この時のf1周波数成分の回折次数をm、
2周波数成分の回折次数をnとして、2つの干渉回折
光(m=0、n=−1)次及び(m=−1、n=0)次
の2つの光路差を夫々計算すると、(m=0、n=−
1)次の干渉回折光の光路差は次式数22(2丸C2
2は往復を意味する)となり、更に前記数20及び数2
1より次式数23に示されるように、Δzの項が消去さ
れる。
At this time, the diffraction order of the f 1 frequency component is m,
When the diffraction order of the f 2 frequency component is n and two optical path differences of two interference diffracted lights (m = 0, n = −1) and (m = −1, n = 0) are calculated respectively, m = 0, n =-
1) The optical path difference of the next interference diffracted light is given by the following equation 22 (2 in the circle 2 of C 2 means round trip), and the equation 20 and the equation 2
From 1, the term of Δz is eliminated as shown in the following equation 23.

【0090】[0090]

【数22】 [Equation 22]

【0091】[0091]

【数23】 [Equation 23]

【0092】また(m=−1、n=0)次の干渉回折光
の光路差は次式数24(2丸A1の2は往復を意味す
る)となり、前記数23と同じになる。
The optical path difference of the interference diffracted light of the (m = −1, n = 0) order is given by the following equation 24 (2 of 2 circles A 1 means round trip), which is the same as the above equation 23.

【0093】[0093]

【数24】 [Equation 24]

【0094】このことは図19の左右対称の場合に、X
方向の位相変化の方向と変化量が等しいことを示してい
る。またΔzの項が消去されるので、Δzによる位相変
動はない。
This means that in the case of left-right symmetry in FIG.
It indicates that the direction of phase change in the direction and the amount of change are the same. Further, since the term of Δz is deleted, there is no phase fluctuation due to Δz.

【0095】一方図23及び図24に左右非対称入射の
場合を示す。これらの図面で丸A1、丸B1、丸C1、丸
2、丸B2、丸C2、丸A1′丸B1′丸C1′丸A2′丸
2′丸C2′は太い実線で示した光路長を指し、丸A1
=丸A1′=丸A2′、 丸B1=丸A2=丸B1′、丸C1
=丸C2=丸C2′、丸B2=丸C1′=丸B2′の4組に
分かれる。この組み合わせにより光路差が発生する。光
軸に対して内側の入射角度をθ1′、外側の入射角度を
θ2′として、これらの光路長を以下にまとめて示し、
光路差を夫々算出する。
On the other hand, FIGS. 23 and 24 show the case of left-right asymmetrical incidence. In these drawings, circle A 1 , circle B 1 , circle C 1 , circle A 2 , circle B 2 , circle C 2 , circle A 1 ′ circle B 1 ′ circle C 1 ′ circle A 2 ′ circle B 2 ′ circle C 2 'refers to an optical path length indicated by the thick solid line, circles a 1
= Circle A 1 ′ = Circle A 2 ′, Circle B 1 = Circle A 2 = Circle B 1 ′, Circle C 1
= Circle C 2 = Circle C 2 ′, Circle B 2 = Circle C 1 ′ = Circle B 2 ′ are divided into four groups. This combination causes an optical path difference. The optical path lengths of these are summarized below, where the inner incident angle is θ 1 ′ and the outer incident angle is θ 2 ′ with respect to the optical axis.
The optical path difference is calculated respectively.

【0096】[0096]

【数25】 [Equation 25]

【0097】[0097]

【数26】 [Equation 26]

【0098】[0098]

【数27】 [Equation 27]

【0099】[0099]

【数28】 [Equation 28]

【0100】これらの数25〜数28までの式から分か
ることは、Δzの係数は正であり、長くなる方向にある
が、Δxについては長くなったり、短くなるといった組
み合わせがあることである。
What can be understood from these equations (25) to (28) is that the coefficient of Δz is positive and tends to increase, but there is a combination of increasing or decreasing Δx.

【0101】図23における右シフト入射光による左非
対称の場合の光路差を求めると、(m=0、n=−1)
次の光路差は次式数29となり、(m=−1、n=0)
次の光路差は次式数30となる。
The optical path difference in the case of left asymmetry due to the right-shifted incident light in FIG. 23 is (m = 0, n = -1)
The next optical path difference is the following equation 29, (m = −1, n = 0)
The next optical path difference is given by the following equation (30).

【0102】[0102]

【数29】 [Equation 29]

【0103】[0103]

【数30】 [Equation 30]

【0104】また図24における左シフト入射光による
右非対称の場合の光路差を求めると、(m=0、n=−
1)次の光路差は次式数31となり、(m=−1、n=
0)次の光路差は次式数32となる。
When the optical path difference in the case of right asymmetry due to the left shift incident light in FIG. 24 is calculated, (m = 0, n = −
1) The next optical path difference is given by the following equation 31, and (m = −1, n =
0) The next optical path difference is given by the following equation 32.

【0105】[0105]

【数31】 [Equation 31]

【0106】[0106]

【数32】 [Equation 32]

【0107】以上をまとめると、図24の左シフト入射
光による右非対称の場合は、光路丸A1と丸B2の差で光
路差が決まり、Δxの位相移動方向は右向き矢印方向
(太い実線矢印)、またΔzの位相移動方向はそれと逆
の方向(白抜き矢印)であって、(0、−1)次及び
(−1、0)次共その変動量は同じである。またΔxの
変動量は、前記数31及び数32から明らかなように、
右辺第1項のsinの和から、更にΔzの変動量は、そ
の第2項のcosの差から分かる。一方図23の右シフ
ト入射光による左非対称の場合は、Δxの位相移動方向
は右向き矢印方向(太い実線矢印)、またΔzの位相移
動方向それと同じ方向(白抜き矢印)である。よってこ
れらの位相検出を行なうことによって、その和からΔx
方向の位相変動量が、またその差からΔz方向の位相変
動量が分離して検出することが可能となる。
To summarize the above, in the case of right asymmetry due to the left-shift incident light in FIG. 24, the optical path difference is determined by the difference between the optical path circles A 1 and B 2 , and the phase shift direction of Δx is the rightward arrow direction (thick solid line). (Arrow), and the phase shift direction of Δz is the opposite direction (white arrow), and the variation amount thereof is the same for both the (0, -1) th order and the (-1, 0) th order. Further, the variation amount of Δx is, as is clear from the above equations 31 and 32,
From the sum of sin of the first term on the right side, the variation amount of Δz can be known from the difference of cos of the second term. On the other hand, in the case of left asymmetry due to the right-shift incident light in FIG. 23, the phase shift direction of Δx is the rightward arrow direction (thick solid arrow) and the same as the phase shift direction of Δz (white arrow). Therefore, by detecting these phases, Δx can be calculated from the sum.
It is possible to detect the phase fluctuation amount in the direction and the phase fluctuation amount in the Δz direction separately from the difference.

【0108】[0108]

【発明の効果】以上詳述した本発明の位置ずれ及びギャ
ップ検出方法によれば、光学系の構成及びその調整が複
雑とならず、広い検出範囲を持ちながら検出分解能も高
く、面内位置ずれ検出と共に、露光中でも安定継続的に
直接2つの物体のギャップを検出することができるよう
になる。また光軸の傾きがある場合やZ方向の振幅があ
る場合でもその補正を行なうことができるようになる。
尚、本位置ずれ及びギャップ検出方法を用いれば、装置
の走査・振動状態の測定や試料等の検出物体の振動の測
定を行なう振動検出方法乃至装置にも適用することが可
能となる。
The position shift and the gap of the present invention described in detail above.
According to-up detection method, construction and adjustment of the optical system does not become complicated, large detection resolution while having a detection range is high, the in-plane positional displacement detection, stably continuously even during exposure
To be able to directly detect the gap between two objects
become. Further, even if there is an inclination of the optical axis or there is an amplitude in the Z direction, the correction can be performed.
By using this position shift and gap detection method, it is possible to apply it to a vibration detection method or device for measuring the scanning / vibration state of the device or measuring the vibration of a detection object such as a sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】光軸左側入射時の回折光回折次数の説明図であ
る。
FIG. 1 is an explanatory diagram of diffraction orders of diffracted light when incident on the left side of the optical axis.

【図2】同じく光軸右側入射時の回折光回折次数の説明
図である。
FIG. 2 is an explanatory diagram of a diffraction order of diffracted light when the light is incident on the right side of the optical axis.

【図3】光軸に対しθ1、θ2の入射角で周波数f1、f2
の照明光の組を2組光軸に対し両側反転対称の位置から
入射せしめた時の干渉回折光の状態を示す本発明構成の
一例を示す説明図である。
FIG. 3 shows frequencies f 1 and f 2 at incident angles of θ 1 and θ 2 with respect to the optical axis.
FIG. 3 is an explanatory diagram showing an example of the configuration of the present invention showing a state of interference diffracted light when two sets of the illumination light are made incident from positions of two-sided inversion symmetry with respect to the optical axis.

【図4】右シフト入射照明及び左シフト入射照明した場
合の回折光ヘテロダイン位置と位相移動方向を示す説明
図である。
FIG. 4 is an explanatory diagram showing a diffracted light heterodyne position and a phase shift direction when right shift incident illumination and left shift incident illumination are performed.

【図5】本発明法の実施に使用される光学系装置構成の
一例を示す斜視図である。
FIG. 5 is a perspective view showing an example of the configuration of an optical system device used for carrying out the method of the present invention.

【図6】該光学系光路詳細図である。FIG. 6 is a detailed view of the optical path of the optical system.

【図7】上記本実施例で照明光を入射し、フーリエ変換
レンズにより回折格子に該光の照射を行なった時の光ヘ
テロダイン干渉モデルを示す説明図である。
FIG. 7 is an explanatory diagram showing an optical heterodyne interference model when illuminating light is incident and a diffraction grating is irradiated with the light by a Fourier transform lens in the present embodiment.

【図8】回折格子を用いて平行光束を得る場合の原理を
説明する説明図である。
FIG. 8 is an explanatory diagram illustrating the principle of obtaining a parallel light flux using a diffraction grating.

【図9】その具体的構成を示す光学系詳細図である。FIG. 9 is a detailed view of an optical system showing the specific configuration thereof.

【図10】光軸に対し左シフト及び右シフトした2光束
の組2組を左右反転対称な4光束にしてマスク及びウェ
ハの各回折格子に入射照明した時の斜視図である。
FIG. 10 is a perspective view when two sets of two light beams that are left-shifted and right-shifted with respect to the optical axis are made into four light beams that are symmetrical in left-right inversion and are incident on the diffraction gratings of the mask and the wafer.

【図11】入射角をθとした左右対称入射照明の場合に
おける−1次の干渉回折光の状態を示す説明図である。
FIG. 11 is an explanatory diagram showing a state of −1st order interference diffracted light in the case of left-right symmetric incident illumination with an incident angle of θ.

【図12】入射角をθ1、θ2として入射照明光が右にシ
フトした左非対称の場合における−1次の干渉回折光の
状態を示す説明図である。
FIG. 12 is an explanatory diagram showing a state of −1st order interference diffracted light in the case of left asymmetry in which incident illumination light is shifted to the right with incident angles of θ 1 and θ 2 .

【図13】入射角をθ1、θ2として入射照明光が左にシ
フトした右非対称の場合における−1次の干渉回折光の
状態を示す説明図である。
FIG. 13 is an explanatory diagram showing a state of −1st order diffracted diffracted light in the case where the incident illumination light is shifted to the left and is asymmetrical to the right when the incident angles are θ 1 and θ 2 .

【図14】左右対称入射照明した場合の光路L(1)と光
路L(2)間の光路差を示す説明図である。
FIG. 14 is an explanatory diagram showing an optical path difference between an optical path L (1) and an optical path L (2) in the case of bilaterally symmetrical incident illumination.

【図15】本実施例において左シフト入射照明した場合
の光路L(1)と光路L(2)間の光路差を示す説明図であ
る。
FIG. 15 is an explanatory diagram showing an optical path difference between an optical path L (1) and an optical path L (2) when left-shift incident illumination is performed in the present embodiment.

【図16】本実施例において右シフト入射照明した場合
の光路L(1)と光路L(2)間の光路差を示す説明図であ
る。
FIG. 16 is an explanatory diagram showing an optical path difference between an optical path L (1) and an optical path L (2) when right-shift incident illumination is performed in this example.

【図17】光軸に対し左シフト及び右シフトした2光束
の組2組を左右反転対称にマスク及びウェハの各回折格
子に入射照明した時に(−1、0)(0、−1)次の干
渉回折光が得られる場合の斜視図である。
FIG. 17 is a (−1, 0) (0, −1) order when two sets of two light beams that are left-shifted and right-shifted with respect to the optical axis are incident on the diffraction gratings of the mask and the wafer in a left-right inverted symmetrical manner. FIG. 6 is a perspective view when the interference diffracted light of is obtained.

【図18】上記本実施例で照明光を入射し、フーリエ変
換レンズにより回折格子に該光の照射を行なった時の光
ヘテロダイン干渉モデルを示す説明図である。
FIG. 18 is an explanatory diagram showing an optical heterodyne interference model when illuminating light is incident and a diffraction grating is irradiated with the light by a Fourier transform lens in the present embodiment.

【図19】入射角をθ′とした左右対称入射照明の場合
における(−1、0)(0、−1)次の干渉回折光の状
態を示す説明図である。
FIG. 19 is an explanatory diagram showing a state of interference diffracted light of (−1,0) (0, −1) order in the case of left-right symmetric incident illumination with an incident angle of θ ′.

【図20】入射角をθ1′、θ2′として入射照明光が右
にシフトした左非対称の場合における(−1、0)
(0、−1)次の干渉回折光の状態を示す説明図であ
る。
FIG. 20 shows (−1,0) in the case of left asymmetry in which incident illumination light is shifted to the right with incident angles of θ 1 ′ and θ 2 ′.
It is explanatory drawing which shows the state of the interference diffraction light of a (0, -1) order.

【図21】入射角をθ1′、θ2′として入射照明光が左
にシフトした右非対称の場合における(−1、0)
(0、−1)次の干渉回折光の状態を示す説明図であ
る。
FIG. 21 shows (−1,0) in the case of right asymmetry in which incident illumination light is shifted to the left with incident angles θ 1 ′ and θ 2 ′.
It is explanatory drawing which shows the state of the interference diffraction light of a (0, -1) order.

【図22】左右対称入射照明した場合の両光路間の光路
差を示す説明図である。
FIG. 22 is an explanatory diagram showing an optical path difference between both optical paths when symmetrically incident illumination is performed.

【図23】本実施例において左シフト入射照明した場合
の両光路間の光路差を示す説明図である。
FIG. 23 is an explanatory diagram showing an optical path difference between both optical paths when left-shift incident illumination is performed in this example.

【図24】本実施例において右シフト入射照明した場合
の両光路間の光路差を示す説明図である。
FIG. 24 is an explanatory diagram showing an optical path difference between both optical paths when right-shift incident illumination is performed in this example.

【符号の説明】 31 フーリエ変換レンズ 32、50 回折格子 37 4分割ディテクタ 70 瞳面EP M マスク W ウェハ[Explanation of symbols] 31 Fourier transform lens 32, 50 Diffraction grating 37 Quadrant detector 70 Pupil plane EP M mask W wafer

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図16[Correction target item name] Fig. 16

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図16】 FIG. 16

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図18[Name of item to be corrected] Fig. 18

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図18】 FIG. 18

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図22[Correction target item name] Fig. 22

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図22】 FIG. 22

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図23[Correction target item name] Fig. 23

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図23】 FIG. 23

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 H01S 3/00 F 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication H01L 21/027 H01S 3/00 F 8934-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周波数のわずかに異なる2つの単色光の
組を2組用い、これらの各組の2光束については光軸の
両側で該光軸に対して入射角の異なる非対称な方向から
であって且つ該組間では前記光軸の両側で反転対称とな
る方向から、夫々第1の物体及び第2の物体の各回折格
子にこれら2組の光束を入射させ、光軸の夫々両側対称
な位置から2ビーム以上の光ヘテロダイン干渉させた回
折光を取り出し、両回折格子のX方向位置ずれ及びZ方
向位置ずれによる光路差変動量に基づき生じる光ヘテロ
ダイン検出信号の下式数1及び数2に示される位相φxz
及びφxz′からこれらの2式の和と差によってX方向及
びZ方向の2次元位相変動量φx及びφzを夫々分離算出
することを特徴とする位置ずれ検出方法。 【数1】 φxz=φx+φz 【数2】 φxz′=φx−φz
1. Two sets of two monochromatic lights having slightly different frequencies are used, and two light fluxes of each set are generated from asymmetrical directions having different incident angles with respect to the optical axis on both sides of the optical axis. In addition, between these sets, these two sets of light fluxes are made incident on the diffraction gratings of the first object and the second object, respectively, from the directions in which they are inversion symmetry on both sides of the optical axis, and the two sides of the optical axis are symmetrical on both sides. Diffracted light of two or more beams caused by optical heterodyne interference is extracted from any position, and the following equations (1) and (2) are used for the optical heterodyne detection signal generated based on the optical path difference fluctuation amount due to the X-direction position shift and the Z-direction position shift of both diffraction gratings. Phase φ xz shown in
And φ xz ′, the two-dimensional phase fluctuation amounts φ x and φ z in the X direction and the Z direction are separately calculated from the sum and difference of these two equations, respectively, to detect the positional deviation. [Equation 1] φ xz = φ x + φ z [ Equation 2] φ xz ′ = φ x −φ z
JP5047138A 1993-02-15 1993-02-15 Detection method for position deviation and gap Pending JPH06241728A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5047138A JPH06241728A (en) 1993-02-15 1993-02-15 Detection method for position deviation and gap
PCT/JP1994/000178 WO1994018522A1 (en) 1993-02-15 1994-02-07 Method for detecting positional shift and gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047138A JPH06241728A (en) 1993-02-15 1993-02-15 Detection method for position deviation and gap

Publications (1)

Publication Number Publication Date
JPH06241728A true JPH06241728A (en) 1994-09-02

Family

ID=12766757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047138A Pending JPH06241728A (en) 1993-02-15 1993-02-15 Detection method for position deviation and gap

Country Status (1)

Country Link
JP (1) JPH06241728A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229080A (en) * 2005-02-18 2006-08-31 Olympus Corp Ultrashort pulse-laser transmitter
DE102011052995A1 (en) 2010-08-31 2012-03-01 Mori Seiki Co., Ltd. Displacement detecting device
US20120257214A1 (en) * 2011-04-05 2012-10-11 Mori Seiki Co. Ltd Optical displacement measurement device
JP2013003146A (en) * 2011-06-13 2013-01-07 Mitsutoyo Corp Displacement sensor
KR20190033366A (en) * 2017-09-21 2019-03-29 (주)테크윙 Shape measuring appratus
US10775704B2 (en) 2016-02-19 2020-09-15 Asml Netherlands B.V. Method of measuring a structure, inspection apparatus, lithographic system, device manufacturing method and wavelength-selective filter for use therein

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229080A (en) * 2005-02-18 2006-08-31 Olympus Corp Ultrashort pulse-laser transmitter
DE102011052995A1 (en) 2010-08-31 2012-03-01 Mori Seiki Co., Ltd. Displacement detecting device
US20120050748A1 (en) * 2010-08-31 2012-03-01 Mori Seiki Co., Ltd. Displacement detecting device
US9175987B2 (en) 2010-08-31 2015-11-03 Dmg Mori Seiki Co., Ltd. Displacement detecting device
US20120257214A1 (en) * 2011-04-05 2012-10-11 Mori Seiki Co. Ltd Optical displacement measurement device
US8780357B2 (en) * 2011-04-15 2014-07-15 DMG Mori Seike Co., Ltd Optical displacement measurement device with optimization of the protective film
JP2013003146A (en) * 2011-06-13 2013-01-07 Mitsutoyo Corp Displacement sensor
US10775704B2 (en) 2016-02-19 2020-09-15 Asml Netherlands B.V. Method of measuring a structure, inspection apparatus, lithographic system, device manufacturing method and wavelength-selective filter for use therein
KR20190033366A (en) * 2017-09-21 2019-03-29 (주)테크윙 Shape measuring appratus
KR20220070186A (en) * 2017-09-21 2022-05-30 (주)테크윙 Shape measuring appratus

Similar Documents

Publication Publication Date Title
US10794689B2 (en) Autofocus system and method
EP0689030B1 (en) Displacement measuring method and apparatus
EP0634702B1 (en) Measuring method and apparatus
JPH0590126A (en) Position detection equipment
EP0534757B1 (en) Method and device for measuring displacement
JPH03272406A (en) Alignment apparatus
US5682239A (en) Apparatus for detecting positional deviation of diffraction gratings on a substrate by utilizing optical heterodyne interference of light beams incident on the gratings from first and second light emitters
JPH05272914A (en) Method and apparatus for measurement
JP2009004711A (en) Measurement equipment, exposure equipment, and device manufacturing method
JP2003227914A (en) Wave front division element for extreme-ultraviolet radiation and phase measurement device having the same
JPH06241728A (en) Detection method for position deviation and gap
JP3029133B2 (en) Measurement method and device
JPH0749926B2 (en) Alignment method and alignment device
TW201736810A (en) Phase shift amount measurement device
JPH04361103A (en) Method and apparatus for detecting relative position
JP3270206B2 (en) Position shift and gap detection method
JP2548068B2 (en) Position shift and gap detection method
JP2773779B2 (en) Displacement measuring method and displacement measuring device using diffraction grating
JP2947920B2 (en) Optical device using acousto-optic element
JPH06147827A (en) Positional shift detecting method
JP2683385B2 (en) Alignment method and alignment device
JPH06323812A (en) Method for detecting positional shift and gap
JP3323666B2 (en) Apparatus and method for detecting rotational deviation of object using periodic pattern
JPH0340417A (en) Projection aligner
JP2809439B2 (en) Positioning device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020416