JPH0624048B2 - Magnetoresistive head - Google Patents

Magnetoresistive head

Info

Publication number
JPH0624048B2
JPH0624048B2 JP8072784A JP8072784A JPH0624048B2 JP H0624048 B2 JPH0624048 B2 JP H0624048B2 JP 8072784 A JP8072784 A JP 8072784A JP 8072784 A JP8072784 A JP 8072784A JP H0624048 B2 JPH0624048 B2 JP H0624048B2
Authority
JP
Japan
Prior art keywords
magnetoresistive
magnetic
film
head
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8072784A
Other languages
Japanese (ja)
Other versions
JPS60224115A (en
Inventor
和真 細野
和彦 雨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8072784A priority Critical patent/JPH0624048B2/en
Publication of JPS60224115A publication Critical patent/JPS60224115A/en
Publication of JPH0624048B2 publication Critical patent/JPH0624048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、磁気ディスク装置あるいは磁気テープ装置等
の再生ヘッドとして用いられる磁気抵抗効果型磁気ヘッ
ドの改良に関する。
Description: (a) Technical Field of the Invention The present invention relates to an improvement of a magnetoresistive effect magnetic head used as a reproducing head of a magnetic disk device, a magnetic tape device or the like.

(b)従来技術と問題点 第1図は従来の磁気抵抗効果型磁気ヘッドの要部断面図
を示す。
(b) Prior Art and Problems FIG. 1 is a sectional view of a main part of a conventional magnetoresistive head.

この図において、1はNi-Zn(フェライト),Mn-Zn(フ
ェライト)等よりなる磁性基板、2及び2′はNi-Fe
(パーマロイ),Ni-Co等の磁性体薄膜よりなる磁気抵
抗効果素子(以下MR素子と略称する)、3,3′,
3″及び5はSi-O2等の非磁性絶縁層、4はNi-Fe(パー
マロイ)等の高透磁率部材、6はカバーガラス、7は磁
気抵抗効果型磁気ヘッド(以下MRヘッドと略称する)
に接触して移動する磁気テープである。
In this figure, 1 is a magnetic substrate made of Ni-Zn (ferrite), Mn-Zn (ferrite), etc., and 2 and 2'are Ni-Fe.
(Permalloy), a magnetoresistive effect element (hereinafter abbreviated as MR element) made of a magnetic thin film such as Ni-Co, 3, 3 ',
3 ″ and 5 are non-magnetic insulating layers such as Si—O 2 , 4 are high magnetic permeability members such as Ni—Fe (permalloy), 6 is a cover glass, and 7 is a magnetoresistive effect magnetic head (hereinafter abbreviated as MR head). Do)
It is a magnetic tape that moves in contact with.

磁性基板1と高透磁率部材4は中間に非磁性絶縁層に被
包されたMR素子2,2′を挟むように形成されシール
ド磁性体として作用する。
The magnetic substrate 1 and the high-permeability member 4 are formed so as to sandwich the MR elements 2 and 2'encapsulated in the non-magnetic insulating layer between them, and act as a shield magnetic body.

第2図はMR素子の抵抗率と磁界の強さの関係を示す特
性曲線図(以下MR特性と略称する)である。縦軸に抵
抗率ρ、横軸に磁界の強さHをとり、MR素子が受ける
外部磁界に対応して抵抗率ρが変化する状態を示してい
る。一般にMRヘッドでは、このMR特性の線形領域を
使用するためバイアス磁界Hbを印加する手段が用いられ
る。
FIG. 2 is a characteristic curve diagram (hereinafter abbreviated as MR characteristic) showing the relationship between the resistivity of the MR element and the strength of the magnetic field. The vertical axis represents the resistivity ρ, and the horizontal axis represents the magnetic field strength H, showing the state in which the resistivity ρ changes in accordance with the external magnetic field received by the MR element. Generally, in the MR head, a means for applying the bias magnetic field Hb is used because the linear region of this MR characteristic is used.

第3図は二つのMR素子の動作原理を説明するための図
を示す。図において、二つのMR素子2と2′に同一方
向で大きさの等しい電流iを供給することにより磁気テ
ープに対し相互にバイアス磁界Hb1,Hb2を印加する。
又二つのMR素子2と2′からの再生信号は差動増幅器
8にて検出される。
FIG. 3 shows a diagram for explaining the operating principle of the two MR elements. In the figure, bias magnetic fields H b1 and H b2 are mutually applied to the magnetic tape by supplying a current i having the same magnitude in the same direction to the two MR elements 2 and 2 ′.
The reproduced signals from the two MR elements 2 and 2'are detected by the differential amplifier 8.

一般にデジタル信号を再生するMRヘッドにおいては、
MR特性と再生信号の品質とは密接に関連しており、前
述した二層のMR素子を持つMRヘッドでは、第1のM
R素子2と第2のMR素子2′のMR特性を揃える必要
がある。
Generally, in an MR head that reproduces a digital signal,
The MR characteristic and the quality of the reproduced signal are closely related, and in the MR head having the two-layer MR element described above, the first M
It is necessary to match the MR characteristics of the R element 2 and the second MR element 2 '.

MR特性に影響を与える要因としては、MR素子の成膜
方法、成膜条件の他にMR素子に印加される応力が考え
られる。以下応力の発生要因につき第1図を参照しなが
ら説明する。
As the factors that affect the MR characteristics, the stress applied to the MR element may be considered in addition to the method of forming the MR element and the film forming conditions. The cause of stress will be described below with reference to FIG.

MR素子2と2′の上に形成される第2、第3及び第4
の非磁性絶縁層3′,3″及び5にはスパッタリング法
によって形成したSi-O2膜が用いられ、膜厚はそれぞ
れ、0.5,0.5及び1.0μm程度である。スパッタリング
法に基づき所要のアルゴンガス圧力と高周波電力及び基
板を所定温度に保持してSi-O2膜を当該基板上に成膜し
た場合、基板はSi-O2膜面が凸になるように反り、この
ことからSi-O2膜の残留応力は圧縮応力であり、基板表
面には引張応力が作用することが分かる。
Second, third and fourth formed on the MR elements 2 and 2 '.
Si-O 2 films formed by the sputtering method are used for the non-magnetic insulating layers 3 ′, 3 ″, and 5 of the above, and the film thicknesses are about 0.5, 0.5, and 1.0 μm, respectively. When a Si-O 2 film is formed on the substrate while maintaining the gas pressure, the high frequency power and the substrate at a predetermined temperature, the substrate warps so that the Si-O 2 film surface becomes convex. It can be seen that the residual stress of the O 2 film is a compressive stress, and a tensile stress acts on the substrate surface.

またシールド磁性体として作用する高透磁率部材4もス
パッタリング法で膜厚2μm程度のNi-Fe(パーマロ
イ)膜によって形成される。所要の成膜条件にてスパッ
タリングされた高透磁率部材4薄膜の残留応力は、前記
のSi-O2膜と同様に圧縮応力である。
The high magnetic permeability member 4 acting as a shield magnetic body is also formed of a Ni—Fe (permalloy) film having a film thickness of about 2 μm by the sputtering method. The residual stress of the thin film of the high magnetic permeability member 4 sputtered under the required film forming conditions is a compressive stress like the Si-O 2 film.

従って、第1のMR素子2は第2、第3及び第4の非磁
性絶縁層3′,3″,5及び高透磁率部材4からの応力
を受け、第2のMR素子2′は第3、第4の非磁性絶縁
層3″,5及び高透磁率部材4からの応力を受ける。此
の応力受給形態によれば、MR素子2と2′とは第2の
非磁性絶縁層3′からの応力分だけの相違がある。この
ためMR特性に差が生じ、出力再生信号に歪が発生する
欠点があった。
Therefore, the first MR element 2 receives stress from the second, third and fourth non-magnetic insulating layers 3 ′, 3 ″, 5 and the high magnetic permeability member 4, and the second MR element 2 ′ receives the stress. It receives stress from the third and fourth non-magnetic insulating layers 3 ″ and 5 and the high magnetic permeability member 4. According to this stress receiving mode, the MR elements 2 and 2'are different from each other by the stress amount from the second nonmagnetic insulating layer 3 '. For this reason, there is a drawback that a difference occurs in the MR characteristics and the output reproduced signal is distorted.

(c)発明の目的 本発明は上記従来の欠点に鑑み、二つのMR素子のMR
特性の差を少なくし、再生信号に波形歪の少ないMRヘ
ッドを提供することを目的とする。
(c) Object of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides an MR of two MR elements.
It is an object of the present invention to provide an MR head in which the difference in characteristics is reduced and the reproduced signal has less waveform distortion.

(d)発明の構成 そしてこの目的は本発明によれば、磁性体よりなる基板
上に第1の非磁性絶縁層を介して第1の磁気抵抗効果素
子、第2の非磁性絶縁層、第2の磁気抵抗効果素子を積
層し、さらにこの上に第3の非磁性絶縁層を介して高透
磁率を有する磁性体を積層し、前記第2及び第3の非磁
性絶縁層がスパッタリング法で形成されてなる磁気抵抗
効果型ヘッドにおいて、前記両磁気抵抗効果素子夫々が
保持する磁気弾性エネルギーを略同一にするよう基板側
の前記第1の磁気抵抗効果素子の磁歪定数を前記第2の
磁気抵抗効果素子の磁歪定数より小さくなる関係に構成
したことを特徴とする磁気抵抗効果型ヘッドを提供する
ことにより達成される。
(d) Structure of the Invention According to the present invention, there is provided a first magnetoresistive effect element, a second nonmagnetic insulating layer, a second nonmagnetic insulating layer, No. 2 magnetoresistive element is laminated, and a magnetic material having a high magnetic permeability is further laminated on the magnetoresistive element by means of a third nonmagnetic insulating layer, and the second and third nonmagnetic insulating layers are formed by a sputtering method. In the formed magnetoresistive head, the magnetostriction constant of the first magnetoresistive element on the substrate side is set to the second magnetic so that the magnetoelastic energies held by the magnetoresistive elements are substantially the same. This is achieved by providing a magnetoresistive head having a structure in which the magnetostriction constant of the resistance element is smaller than that of the magnetoresistive element.

(e)発明の実施例 以下本発明の実施例を図面によって詳述する。尚図にお
いて第1図乃至第3図との対応部位には同一符号を付し
てその重複説明を省略する。
(e) Embodiments of the Invention Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, the corresponding parts to those in FIGS. 1 to 3 are designated by the same reference numerals, and the duplicate description thereof will be omitted.

第4図はスパッタリング法にて堆積されたSi-O2膜及びN
i-Fe膜による膜厚と基板の反り量の関係を示すグラフで
あり、直線(1)はNi-Fe膜,(2)はSi-O2膜を示している。
この反り量は、基準となる短冊状の水晶基板(例えば長
さ32mm,幅2mm,厚さ0.4mm)に成膜した場合に膜厚の
変化に対応する反り量δを長さの単位で計測したもので
ある。反り量δは前記の圧縮応力σに比例する性質の値
である。
Figure 4 shows Si-O 2 film and N deposited by the sputtering method.
It is a graph showing the relationship between the film thickness of the i-Fe film and the amount of warpage of the substrate. The straight line (1) shows the Ni-Fe film and (2) shows the Si-O 2 film.
The amount of warpage is measured by measuring the amount of warpage δ, which corresponds to the change in film thickness, when the film is formed on a reference strip-shaped quartz substrate (eg, length 32 mm, width 2 mm, thickness 0.4 mm). It was done. The amount of warpage δ is a value of a property proportional to the above-mentioned compressive stress σ.

第5図は応力とMR特性との関係を示すグラフである。FIG. 5 is a graph showing the relationship between stress and MR characteristics.

一方MR素子2と2′は所定の膜厚,基板温度,蒸着レ
ート等の条件で蒸着法によって形成され、また一軸異方
性を付与するため磁場中蒸着を行う。
On the other hand, the MR elements 2 and 2'are formed by a vapor deposition method under the conditions of a predetermined film thickness, substrate temperature, vapor deposition rate, etc., and vapor deposition is performed in a magnetic field to impart uniaxial anisotropy.

いま、MR素子2と2′を形成するNi-Fe膜の磁歪定数
をそれぞれλ,λ、印加される応力をそれぞれ
σ,σとすると、MR素子2と2′にはそれぞれ−
3λσ/2,−3λσ/2という異なる磁気弾
性エネルギーを持つことになる。
Now, assuming that the magnetostriction constants of the Ni—Fe films forming the MR elements 2 and 2 ′ are λ 1 and λ 2 , respectively, and the applied stresses are σ 1 and σ 2 , respectively, the MR elements 2 and 2 ′ are −
1 σ 1/2, will have a magnetoelastic energy different that -3λ 2 σ 2/2.

また、第4図の特性から第1のMR素子2の反り量が第
2のMR素子2′の反り量より大となるので、これに比
例して両素子に印加される圧縮応力はσ>σとな
る。
Further, from the characteristics shown in FIG. 4, the warp amount of the first MR element 2 becomes larger than the warp amount of the second MR element 2 ', so that the compressive stress applied to both elements is proportional to σ 1 > Σ 2 .

第5図は応力とMR特性との関係を示すグラフである。
このグラフは磁歪定数が何れも正の値の場合であって、
σ>σのときσの特性曲線の方が立ち上がりが急
峻になる。
FIG. 5 is a graph showing the relationship between stress and MR characteristics.
This graph shows the case where all magnetostriction constants are positive values,
When σ 1 > σ 2, the rising of the characteristic curve of σ 2 is steeper.

従って第1のMR素子2と第2のMR素子2′との両者
のMR特性を揃えるためには前記の磁気弾性エネルギー
が等しくなるようにすればよい。この場合スパッタリン
グ法にて堆積されたSi-O2膜即ち第2、第3及び第4の
非磁性絶縁層3′,3″,5及び高透磁率部材4の膜厚
は変えられないので、磁歪定数λ,λを選べばよ
い。しかもσ>σであるからλ<λとなる。
Therefore, in order to equalize the MR characteristics of both the first MR element 2 and the second MR element 2 ', the above-mentioned magnetoelastic energies may be made equal. In this case, since the film thickness of the Si—O 2 film deposited by the sputtering method, that is, the second, third and fourth non-magnetic insulating layers 3 ′, 3 ″, 5 and the high magnetic permeability member 4 cannot be changed, The magnetostriction constants λ 1 and λ 2 may be selected, and since σ 1 > σ 2 , λ 12 .

第6図は本発明の実施例によるNi-Fe組成と磁歪定数と
の関係を示したグラフであって、第4図のデータに鑑み
て、σ>σであるため、1.2λ≒λの関係にあ
るNi-Fe組成(パーマロイに含まれるニッケルの含有
率)を適用している。例えば、第1のMR素子としてλ
=+0.6×10-6となるニッケル含有率81.0%のNi-Fe材
料を使用し、第2のMR素子としてλ=+0.7×10-6
なるニッケル含有率80.8%のNi-Fe材料を使用する。
FIG. 6 is a graph showing the relationship between the Ni—Fe composition and the magnetostriction constant according to the example of the present invention. In view of the data in FIG. 4, σ 1 > σ 2 , so 1.2λ 1 ≈ The Ni-Fe composition (content of nickel contained in permalloy) having the relationship of λ 2 is applied. For example, as the first MR element, λ
1- + 0.6 × 10 -6 Ni-Fe material with a nickel content of 81.0% is used, and the second MR element is λ 2 = + 0.7 × 10 -6 Ni-Fe with a nickel content of 80.8% Use material.

(f)発明の効果 以上詳細に説明したように本発明の磁気抵抗効果型ヘッ
ドによれば、第1のMR素子と第2のMR素子との両者
のMR特性を揃えることが出来るため、再生信号の歪を
低減出来るという効果がある。
(f) Effects of the Invention As described in detail above, according to the magnetoresistive head of the present invention, since the MR characteristics of both the first MR element and the second MR element can be made uniform, reproduction This has the effect of reducing signal distortion.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の磁気抵抗効果型磁気ヘッドの要部断面
図、第2はMR素子の抵抗率と磁界の強さの関係を示す
特性曲線図、第3図は二つのMR素子の動作原理を説明
するための図、第4図はスパッタリング法で堆積された
Si-O2膜及びNi-Fe膜による膜厚と基板の反り量の関係を
示すグラフ、第5図は応力とMR特性との関係を示すグ
ラフ、第6図は本発明の実施例によるNi-Fe組成と磁歪
定数との関係を示したグラフを示す。 図において、1は基板、2は第1のMR素子、2′は第
2のMR素子、3,3′,3″及び5は第1、第2、第
3及び第4の非磁性絶縁薄膜4は高透磁率部材の薄膜、
λは第1のMR素子の磁歪定数、λは第2のMR素
子の磁歪定数を示す。
FIG. 1 is a sectional view of a main part of a conventional magnetoresistive effect magnetic head, FIG. 2 is a characteristic curve diagram showing the relationship between the MR element resistivity and the magnetic field strength, and FIG. 3 is the operating principle of two MR elements. FIG. 4 is a diagram for explaining the above, and FIG. 4 was deposited by a sputtering method.
FIG. 5 is a graph showing the relationship between the film thickness of the Si—O 2 film and the Ni—Fe film and the amount of warpage of the substrate, FIG. 5 is a graph showing the relationship between stress and MR characteristics, and FIG. -A graph showing the relationship between the Fe composition and the magnetostriction constant is shown. In the figure, 1 is a substrate, 2 is a first MR element, 2'is a second MR element, 3, 3 ', 3 "and 5 are first, second, third and fourth non-magnetic insulating thin films. 4 is a thin film of high magnetic permeability member,
λ 1 is the magnetostriction constant of the first MR element, and λ 2 is the magnetostriction constant of the second MR element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁性体よりなる基板(1)上に第1の非磁
性絶縁層(3)を介して第1の磁気抵抗効果素子
(2),第2の非磁性絶縁層(3′),第2の磁気抵抗
効果素子(2′)を積層し、さらにこの上に第3の非磁
性絶縁層(3″)を介して高透磁率を有する磁性体
(4)を積層し、前記第2及び第3の非磁性絶縁層
(3′,3″)がスパッタリング法で形成されてなる磁
気抵抗効果型ヘッドにおいて、 前記両磁気抵抗効果素子(2,2′)夫々が保持する磁
気弾性エネルギーを略同一にするよう基板(1)側の前
記第1の磁気抵抗効果素子(2)の磁歪定数(λ)を
前記第2の磁気抵抗効果素子(2′)の磁歪定数
(λ)より小さくなる関係に構成したことを特徴とす
る磁気抵抗効果型ヘッド。
1. A first magnetoresistive element (2) and a second nonmagnetic insulating layer (3 ') on a substrate (1) made of a magnetic material with a first nonmagnetic insulating layer (3) interposed therebetween. , A second magnetoresistive effect element (2 ') is laminated, and a magnetic material (4) having a high magnetic permeability is further laminated on the second magnetoresistive effect element (2') via the third nonmagnetic insulating layer (3 "). In a magnetoresistive effect head in which the second and third non-magnetic insulating layers (3 ', 3 ") are formed by a sputtering method, the magnetoelastic energy held by each of the magnetoresistive elements (2, 2'). the magnetostriction constant of the substrate (1) side of the first magnetoresistive element (2) to substantially the same (lambda 1) the second magnetoresistive element (2 ') magnetostriction constant of (lambda 2) A magnetoresistive head having a smaller relationship.
JP8072784A 1984-04-20 1984-04-20 Magnetoresistive head Expired - Lifetime JPH0624048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8072784A JPH0624048B2 (en) 1984-04-20 1984-04-20 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8072784A JPH0624048B2 (en) 1984-04-20 1984-04-20 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPS60224115A JPS60224115A (en) 1985-11-08
JPH0624048B2 true JPH0624048B2 (en) 1994-03-30

Family

ID=13726398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8072784A Expired - Lifetime JPH0624048B2 (en) 1984-04-20 1984-04-20 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JPH0624048B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192011A (en) * 1985-02-20 1986-08-26 Hitachi Ltd Thin film magnetic head

Also Published As

Publication number Publication date
JPS60224115A (en) 1985-11-08

Similar Documents

Publication Publication Date Title
US5014147A (en) Magnetoresistive sensor with improved antiferromagnetic film
US4755897A (en) Magnetoresistive sensor with improved antiferromagnetic film
US5891586A (en) Multilayer thin-film for magnetoresistive device
US5225951A (en) Thin film magnetic head with reduced internal stresses
JPH0473201B2 (en)
US5155644A (en) Yoke thin film magnetic head constructed to avoid Barkhausen noises
JPH0624048B2 (en) Magnetoresistive head
US5032943A (en) Magnetoresistive head having controlled reproduction output characteristics
JP3164736B2 (en) Thin film magnetic head
US4928188A (en) Magnetoresistive element sandwiched between a sal ferrite substrateand a cover containing an easy axis biasing magnet
JPH0473210B2 (en)
JPS61134913A (en) Magnetoresistance type thin film head
JP2510625B2 (en) Magnetoresistive magnetic head
JPS61134912A (en) Thin film type magnetic head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPS59221824A (en) Magnetoresistance effect type magnetic head
JP2569623B2 (en) Magnetoresistive thin film magnetic head
JPS62154317A (en) Thin film magnetic head
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JPS5987615A (en) Manufacture of magnetic thin film head
JP2947658B2 (en) Magnetic head
JPH01116915A (en) Magneto-resistance type magnetic head
JPH07107732B2 (en) Magnetoresistive thin film head
JPH0115927B2 (en)
JPS60205814A (en) Production of magneto-resistance effect type magnetic head