JPS60224115A - Magnetoresistance effect type head - Google Patents

Magnetoresistance effect type head

Info

Publication number
JPS60224115A
JPS60224115A JP8072784A JP8072784A JPS60224115A JP S60224115 A JPS60224115 A JP S60224115A JP 8072784 A JP8072784 A JP 8072784A JP 8072784 A JP8072784 A JP 8072784A JP S60224115 A JPS60224115 A JP S60224115A
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistance effect
elements
magnetostriction constant
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8072784A
Other languages
Japanese (ja)
Other versions
JPH0624048B2 (en
Inventor
Kazumasa Hosono
和真 細野
Kazuhiko Amemori
和彦 雨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8072784A priority Critical patent/JPH0624048B2/en
Publication of JPS60224115A publication Critical patent/JPS60224115A/en
Publication of JPH0624048B2 publication Critical patent/JPH0624048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Abstract

PURPOSE:To decrease the difference in the characteristics of two magnetoresistance effect elements and to decrease the waveform distortion to be generated in a reproduction signal by constituting the two magnetoresistance effect elements provided via a non-magnetic insulating layer between a magnetic substrate and high permeability member to the relation in which the magnetostriction constant of one thereof is smaller than the magnetostriction constant of the other. CONSTITUTION:The two magnetoresistance effect (MR) elements of a magnetoresistance effect type magnetic head having the two MR element layers are so constituted as to decrease the difference in the MR characteristic indicating the relation between the resistivity of the MR element and magnetic field intensity for example, an Ni-Fe material having 81.0% nickel content at which the magnetostriction constant lambda1 attains lambda1=+0.6X10<-6> is used as the 1st MR element and an Ni-Fe material having 80.8% nickel content at which the magnetostriction constant lambda2 attains lambda2=+0.7X10<-6> is used as the 2nd MR element. The MR characteristics of both elements are provided by making equal the magnetic elastic energy, by which the distortion of the reproduction signal is reduced.

Description

【発明の詳細な説明】 (81発明の技術分野 本発明は、磁気ディスク装置あるいは磁気テープ装置等
の再生ヘッドとして用いられる磁気抵抗効果型磁気ヘッ
ドの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (81) Technical Field of the Invention The present invention relates to an improvement in a magnetoresistive magnetic head used as a reproducing head in a magnetic disk device, a magnetic tape device, or the like.

(bl 従来技術と問題点 第1図は従来の磁気抵抗効果型磁気ヘッドの要部断面図
を示す。
(bl) Prior Art and Problems FIG. 1 shows a sectional view of essential parts of a conventional magnetoresistive magnetic head.

この図において、1はN1−Zn(フェライト)、Mn
−Zn(フェライト)等よりなる磁性基板、2及び2”
はN1−Be(パーマロイ) 、’Ni−Co等の磁性
体薄膜よりなる磁気抵抗効果素子(以下MR素子と略称
する)、3.3’、3”及び5は5t−OH等の非磁性
絶縁層、4はN1−Fe(パーマロイ)等の高透磁率部
材、6はカバーガラス、7は磁気抵抗効果型磁気ヘッド
(以下MRヘッドと略称する)に接触して移動する磁気
テープである。
In this figure, 1 is N1-Zn (ferrite), Mn
-Magnetic substrates made of Zn (ferrite), etc., 2 and 2"
is N1-Be (permalloy), 'a magnetoresistive element (hereinafter abbreviated as MR element) made of a magnetic thin film such as Ni-Co, and 3.3', 3'' and 5 are non-magnetic insulators such as 5t-OH. The layer 4 is a high magnetic permeability material such as N1-Fe (permalloy), 6 is a cover glass, and 7 is a magnetic tape that moves in contact with a magnetoresistive magnetic head (hereinafter abbreviated as MR head).

磁性基板1と高透磁率部材4は中間に非磁性絶縁層に被
包されたMR素子2.2′を挟むように形成されシール
ド磁性体として作用する。
The magnetic substrate 1 and the high magnetic permeability member 4 are formed so as to sandwich an MR element 2.2' surrounded by a non-magnetic insulating layer therebetween, and act as a shield magnetic body.

第2図はMR素子の抵抗率と磁界の強さの関係を示す特
性曲線図(以下MR特性と略称する)である。縦軸に抵
抗率ρ、横軸に磁界の強さHをとり、MR素子が受ける
外部磁界に対応して抵抗率ρが変化する状態を示してい
る。一般にMRヘッドでは、このMR特性の線形領域を
使用するためバイアス磁界Hbを印加する手段が用いら
れる。
FIG. 2 is a characteristic curve diagram (hereinafter abbreviated as MR characteristic) showing the relationship between the resistivity of the MR element and the strength of the magnetic field. The vertical axis represents the resistivity ρ, and the horizontal axis represents the magnetic field strength H, and shows the state in which the resistivity ρ changes in response to the external magnetic field that the MR element receives. Generally, in an MR head, means for applying a bias magnetic field Hb is used in order to use this linear region of MR characteristics.

第3図は二つのMR素子の動作原理を説明するための図
を示す。図において、二つのMR素子2と2゛に同一方
向で大きさの等しい電流iを供給することにより磁気デ
ーゾに対し相互にバイアス磁界Hbl 、 H> 2を
印加する。又二つのMR素子2と2′からの再生信号は
差動増幅器8にて検出される。
FIG. 3 shows a diagram for explaining the operating principle of two MR elements. In the figure, a bias magnetic field Hbl, H>2 is mutually applied to the magnetic daso by supplying currents i of equal magnitude in the same direction to two MR elements 2 and 2'. Also, reproduced signals from the two MR elements 2 and 2' are detected by a differential amplifier 8.

一般にデジタル信号を再生するMRヘッドにおいては、
MR特性と再生信号の品質とは密接に関連しており、前
述した二層のMR素子を持つMRヘッドでは、第1のM
R素子2と第2のMR素子2゛のMR特性を揃える必要
がある。
Generally, in an MR head that reproduces digital signals,
The MR characteristics and the quality of the reproduced signal are closely related, and in the MR head with the two-layer MR element described above, the first M
It is necessary to match the MR characteristics of the R element 2 and the second MR element 2'.

MR特性に影響を与える要因としては、MR素子の成膜
方法、成膜条件の他にMR素子に印加される応力が考え
られる。以下応力の発生要因につき第1図を参照しなが
ら説明する。
Possible factors that affect the MR characteristics include the stress applied to the MR element in addition to the film formation method and film formation conditions of the MR element. The factors that cause stress will be explained below with reference to FIG.

MR素子2と2″の上に形成される非磁性絶縁層3’、
 3”及び5にはスパッタリング法によって形成した5
t−0□膜が用いられ、膜厚はそれぞれ 0.5゜0.
5及び1.0−程度である。スパッタリング法に基づき
所要のアルゴンガス圧力と高周波電力及び基板を所定温
度に保持して5i−0□膜を当該基板上に成膜した場合
、基板は5i−0□膜面が凸になるように反り、このこ
とから5t−0□膜の残留応力は圧縮応力であり、基板
表面には引張応力が作用することが分かる。
a non-magnetic insulating layer 3' formed on the MR elements 2 and 2'';
3” and 5 are formed by sputtering method.
A t-0□ film was used, and the film thickness was 0.5°0.
5 and about 1.0-. When a 5i-0□ film is formed on a substrate using the sputtering method using the required argon gas pressure, high-frequency power, and maintaining the substrate at a predetermined temperature, the 5i-0□ film surface of the substrate is convex. From this, it can be seen that the residual stress of the 5t-0□ film is compressive stress, and that tensile stress acts on the substrate surface.

またシールド磁性体として作用する高透磁率部材4もス
パッタリング法で膜厚2−程度のN1−Fe(パーマロ
イ)膜によって形成される。所要の成膜条件にてスパッ
タリングされた高透磁率部材4薄膜の残留応力は、前記
の5t−0□膜と同様に圧縮応力である。
The high magnetic permeability member 4, which acts as a shielding magnetic material, is also formed of an N1-Fe (permalloy) film with a thickness of approximately 2 mm by sputtering. The residual stress of the high magnetic permeability member 4 thin film sputtered under the required film forming conditions is a compressive stress similar to the 5t-0□ film described above.

従って、第1のMR素子2は非磁性絶縁層3′。Therefore, the first MR element 2 has a non-magnetic insulating layer 3'.

3″、5及び高透磁率部材4からの応力を受け、第2の
MR素子2゛は非磁性絶縁層3”、5及び高透磁率部材
4からの応力を受ける。此の応力受給形態によれば、M
R素子2と2”とは非磁性絶縁層3°がらの応力分だけ
の相違がある。このためMR特性に差が生じ、出力再生
信号に歪が発生する欠点があった。
The second MR element 2' receives stress from the nonmagnetic insulating layers 3'', 5 and the high magnetic permeability member 4. According to this stress receiving form, M
The difference between R elements 2 and 2'' is the stress of the non-magnetic insulating layer 3°.This causes a difference in MR characteristics, which has the drawback of causing distortion in the output reproduced signal.

ic) 発明の目的 本発明は上記従来の欠点に鑑み、二つのMR素子のMR
特性の差を少なくし、再生信号に波形歪の少ないMRヘ
ッドを提供することを目的とする。
ic) Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides an MR system for two MR elements.
It is an object of the present invention to provide an MR head that reduces the difference in characteristics and causes less waveform distortion in reproduced signals.

(dl 発明の構成 そしてこの目的は本発明によれば、磁性体よりなる基板
上に非磁性層を挟んで第1の磁気抵抗効果素子及び第2
の磁気抵抗効果素子を設け、これら再磁気抵抗効果素子
を高透磁率を有する磁性体で挟んでなる磁気抵抗効果型
磁気ヘッドにおいて、前記第1の磁気抵抗効果素子の磁
歪定数を前記第2の磁気抵抗効果素子の磁歪定数より小
さくなる関係に構成したことを特徴とする磁気抵抗効果
型ヘッドを提供することにより達成される。
According to the present invention, a first magnetoresistive element and a second magnetoresistive element are sandwiched between a nonmagnetic layer on a substrate made of a magnetic material.
In the magnetoresistive head, the magnetoresistive element is provided with magnetoresistive elements, and these re-magnetoresistive elements are sandwiched between magnetic materials having high magnetic permeability. This is achieved by providing a magnetoresistive head characterized in that the magnetoresistive constant is smaller than the magnetostriction constant of the magnetoresistive element.

(81発明の実施例 以下本発明の実施例を図面によって詳述する。(81 Examples of inventions Embodiments of the present invention will be described in detail below with reference to the drawings.

両図において第1図乃至第3図との対応部位には同一符
号を付してその重複説明を省略する。
In both figures, parts corresponding to those in FIGS. 1 to 3 are designated by the same reference numerals, and redundant explanation thereof will be omitted.

第4図はスパッタリング法にて堆積されたSi−〇□膜
及びNi−Fe膜による膜厚と基板の反り量の関係を示
すグラフであり、直線(llはNi−Fe膜、(2)は
5i−(h膜を示している。この反り量は、基準となる
短冊状の水晶基板(例えば長さ32m、幅211m。
Figure 4 is a graph showing the relationship between the film thickness and the amount of warpage of the substrate due to the Si-〇□ film and Ni-Fe film deposited by the sputtering method. 5i-(h film is shown. This amount of warpage is calculated using a standard rectangular crystal substrate (for example, length 32 m, width 211 m).

厚さ0.4m)に成膜した場合に膜厚の変化に対応する
反り量δを長さの単位で計測したものである。
When a film is formed to a thickness of 0.4 m), the amount of warpage δ corresponding to the change in film thickness is measured in units of length.

反り量δは前記の圧縮応力σに比例する性質の値である
The amount of warpage δ is a value proportional to the compressive stress σ.

第5図は応力とMR特性との関係を示すグラフである。FIG. 5 is a graph showing the relationship between stress and MR characteristics.

一方MR素子2と2゛は所定の膜厚、基板温度。On the other hand, MR elements 2 and 2' have a predetermined film thickness and substrate temperature.

蒸着レート等の条件で蒸着法によって形成され、また−
軸異方性を付与するため磁場中蒸着を行う。
It is formed by vapor deposition method under conditions such as vapor deposition rate, and -
Deposition is performed in a magnetic field to impart axial anisotropy.

いま、MR素子2と2“を形成するNi−Fe膜の磁歪
定数をそれぞれλl、 A2、印加される応力をそれぞ
れσl、62とすると、MR素子2と2゛にはそれぞれ
一3λ1σl/2.−3に屹/2という異なる磁気弾性
エネルギーを持つことになる。
Now, assuming that the magnetostriction constants of the Ni-Fe films forming MR elements 2 and 2'' are λl and A2, respectively, and the applied stresses are σl and 62, respectively, then the MR elements 2 and 2'' have -3λ1σl/2. -3 has a different magnetoelastic energy of 屹/2.

また、第4図の特性から第1のMR素子2の反り量が第
2のMR素子2“の反り量より大となるので、これに比
例して画素子に印加される圧縮応力はσ1〉句となる。
Furthermore, from the characteristics shown in FIG. 4, the amount of warpage of the first MR element 2 is larger than the amount of warpage of the second MR element 2'', so the compressive stress applied to the pixel element is proportional to σ1> It becomes a phrase.

第5図は応力とMR特性との関係を示すグラフである。FIG. 5 is a graph showing the relationship between stress and MR characteristics.

このグラフは磁歪定数が何れも正の値の場合であって、
σ1>7F2のとき句の特性曲線の方が立ち上がりが急
峻になる。
This graph is for the case where all the magnetostriction constants are positive values,
When σ1>7F2, the rise of the phrase characteristic curve becomes steeper.

従って第1のMR素子2と第2のMR素子2゛との両者
のMR特性を揃えるためには前記の磁気弾性エネルギー
が等しくなるようにすればよい。この場合スパッタリン
グ法にて堆積されたSi−0□膜即ち非磁性絶縁層3゛
、3”、5及び高透磁率部材4の膜厚は変えられないの
で、磁歪定数λ1.A2を選べばよい。しかもσ1〉句
であるからλ1〈々となる、第6図は本発明の実施例に
よるNi−Fe組成と磁歪定数との関係を示したグラフ
であって、第4図のデータに鑑みて、σl#屹であるた
め1.2λ1鳩々の関係にあるNi−Fe組成(パーマ
ロイに含まれるニッケルの含有率)を適用している。例
えば、第1のMR素子としてλ1= +0.6 X 1
0−6となるニッケル含有率81.0%のNi−Fe材
料を使用し、第2のMR素子として々=補、7XlO−
’となるニッケル含有率80.8%のNi−Fe材料を
使用する。
Therefore, in order to equalize the MR characteristics of both the first MR element 2 and the second MR element 2', it is sufficient to make the magnetoelastic energy equal to each other. In this case, since the thickness of the Si-0□ film deposited by sputtering, that is, the nonmagnetic insulating layers 3'', 3'', 5 and the high magnetic permeability member 4, cannot be changed, the magnetostriction constant λ1.A2 can be selected. Moreover, since it is a σ1〉 phrase, it becomes λ1〈. Fig. 6 is a graph showing the relationship between the Ni-Fe composition and the magnetostriction constant according to the embodiment of the present invention, and in view of the data in Fig. 4. , σl#, so a Ni-Fe composition (nickel content in permalloy) with a relationship of 1.2λ1 is applied. For example, for the first MR element, λ1 = +0.6 1
A Ni-Fe material with a nickel content of 81.0%, which is 0-6, is used as the second MR element.
' A Ni-Fe material with a nickel content of 80.8% is used.

(f) 発明の効果 以上詳細に説明したように本発明の磁気抵抗効果型ヘッ
ドによれば、第1のMR素子と第2のMR素子との両者
のMR特性を揃えることが出来るため、再生信号の歪を
低減出来るという効果がある。
(f) Effects of the Invention As explained in detail above, according to the magnetoresistive head of the present invention, the MR characteristics of both the first MR element and the second MR element can be made equal, so that reproduction is improved. This has the effect of reducing signal distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気抵抗効果型磁気ヘッドの要部断面図
、第2図はMR素子の抵抗率と磁界の強さの関係を示す
特性曲線図、第3図は二つのMR素子の動作原理を説明
するための図、第4図はスパッタリング法で堆積された
Si−0□膜及びNi−Fe膜による膜厚と基板の反り
量の関係を示すグラフ、第5図は応力とMR特性との関
係を示すグラフ、第6図は本発明の実施例によるNi−
Fe組成と磁歪定数との関係を示したグラフを示す。 図において、1は基板、2は第1のMR素子、2゛は第
2のMR素子、3.3’、 3”及び5は非磁性薄膜、
4は高透磁率部材の薄膜、λ1は第1のMR素子の磁歪
定数、々は第2のMR素子の磁歪定数を示す。 第1図 第2図 第4図 旺房 (μm)
Figure 1 is a cross-sectional view of the main parts of a conventional magnetoresistive magnetic head, Figure 2 is a characteristic curve diagram showing the relationship between the resistivity of the MR element and the strength of the magnetic field, and Figure 3 is the operation of the two MR elements. A diagram for explaining the principle. Figure 4 is a graph showing the relationship between the film thickness of the Si-0□ film and the Ni-Fe film deposited by sputtering and the amount of warpage of the substrate. Figure 5 is a graph showing the stress and MR characteristics. FIG. 6 is a graph showing the relationship between Ni-
A graph showing the relationship between Fe composition and magnetostriction constant is shown. In the figure, 1 is a substrate, 2 is a first MR element, 2゛ is a second MR element, 3.3', 3'' and 5 are nonmagnetic thin films,
4 is a thin film of a high magnetic permeability member, λ1 is a magnetostriction constant of the first MR element, and λ1 is a magnetostriction constant of the second MR element. Figure 1 Figure 2 Figure 4 Obo (μm)

Claims (1)

【特許請求の範囲】[Claims] 磁性体よりなる基板上に非磁性層を挟んで第1の磁気抵
抗効果素子及び第2の磁気抵抗効果素子を設け、これら
両磁気抵抗効果素子を高透磁率を有する磁性体で挟んで
なる磁気抵抗効果型磁気ヘッドにおいて、前記第1の磁
気抵抗効果素子の磁歪定数を前記第2の磁気抵抗効果素
子の磁歪定数より小さくなる関係に構成したことを特徴
とする磁気抵抗効果型ヘッド。
A first magnetoresistive element and a second magnetoresistive element are provided on a substrate made of a magnetic material with a nonmagnetic layer sandwiched therebetween, and both magnetoresistive elements are sandwiched between magnetic materials having high magnetic permeability. 1. A magnetoresistive head, characterized in that the magnetoresistive constant of the first magnetoresistive element is smaller than the magnetostriction constant of the second magnetoresistive element.
JP8072784A 1984-04-20 1984-04-20 Magnetoresistive head Expired - Lifetime JPH0624048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8072784A JPH0624048B2 (en) 1984-04-20 1984-04-20 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8072784A JPH0624048B2 (en) 1984-04-20 1984-04-20 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPS60224115A true JPS60224115A (en) 1985-11-08
JPH0624048B2 JPH0624048B2 (en) 1994-03-30

Family

ID=13726398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8072784A Expired - Lifetime JPH0624048B2 (en) 1984-04-20 1984-04-20 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JPH0624048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750072A (en) * 1985-02-20 1988-06-07 Hitachi, Ltd. Thin-film magnetic head provided with a magnetic film having regions of different magnetostriction constants and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750072A (en) * 1985-02-20 1988-06-07 Hitachi, Ltd. Thin-film magnetic head provided with a magnetic film having regions of different magnetostriction constants and method of fabricating the same

Also Published As

Publication number Publication date
JPH0624048B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US5014147A (en) Magnetoresistive sensor with improved antiferromagnetic film
EP0173942B1 (en) Magnetoresistance effect type magnetic head apparatus
EP0107982B1 (en) Magnetic transducer heads utilising magnetoresistance effect
JPH0473201B2 (en)
JPH04351706A (en) Composite type thin-film magnetic head
JPH0572644B2 (en)
US5600518A (en) Magnetoresistive head having a stepped magnetoresistive film element
JPS60224115A (en) Magnetoresistance effect type head
JPH0652684B2 (en) Magnetic alloy thin film
US4928188A (en) Magnetoresistive element sandwiched between a sal ferrite substrateand a cover containing an easy axis biasing magnet
EP0029550B1 (en) Multichannel magnetic head, apparatus using such a head and manufacturing method for such a head
JPS62132211A (en) Thin film magnetic head
JPS62143223A (en) Soft bias type magneto-resistance effect element
JP2510625B2 (en) Magnetoresistive magnetic head
JPS6233303A (en) Detecting method for magneto-resistance magnetic head
JPS62154317A (en) Thin film magnetic head
JPS58220240A (en) Magneto-resistance effect type magnetic head
JPS63138515A (en) Thin film magnetic head and its reproduction system
JP2569623B2 (en) Magnetoresistive thin film magnetic head
JPS5987615A (en) Manufacture of magnetic thin film head
KR0174447B1 (en) Method for fabricating a multi-layered thin film magneto-resistant head of the shunt bias type
JPS5952425A (en) Magneto-resistance effect type head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPS622363B2 (en)
JPS61134912A (en) Thin film type magnetic head