JPH06240459A - Formation of silicon oxide thin film - Google Patents

Formation of silicon oxide thin film

Info

Publication number
JPH06240459A
JPH06240459A JP2701893A JP2701893A JPH06240459A JP H06240459 A JPH06240459 A JP H06240459A JP 2701893 A JP2701893 A JP 2701893A JP 2701893 A JP2701893 A JP 2701893A JP H06240459 A JPH06240459 A JP H06240459A
Authority
JP
Japan
Prior art keywords
thin film
substrate
gas
silicon oxide
teos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2701893A
Other languages
Japanese (ja)
Inventor
Michio Ishikawa
道夫 石川
Kazuyuki Ito
一幸 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G T C KK
Original Assignee
G T C KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G T C KK filed Critical G T C KK
Priority to JP2701893A priority Critical patent/JPH06240459A/en
Publication of JPH06240459A publication Critical patent/JPH06240459A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly and efficiently form a high-quality silicon oxide thin film on a substrate having a large area by introducing an oxidizing gas with a gaseous organic silane in a reactor specific at a flow ratio and executing plasma CVD method. CONSTITUTION:A plate like electrode 2 and a glass substrate 3 supported on a heatable substrate holder 3 are placed opposite to each other. Gaseous tetraethyl orthosilicate (TEOS) and a gaseous oxygen or gaseous oxygen and an inert gas such as He are introduced to the reactor 1 from a narrow pore of the surface of the electrode 2 with an introducing pipe 4. Next, the gases are made into plasma by applying high frequency electric field to the electrode 2. The active gas flow P formed by this way is supplied to the substrate S in shower state to form SiO2 thin film on the surface. In the plasma CVD method, gaseous oxygen or the gaseous mixture of O2+He are supplied 50-1000 times of TEOS by flow ratio. As a result, the flow rate of the gas is increased and the high quality uniform thin film is obtained without leaving impurities on the substrate S.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化ケイ素薄膜の形成法
にかかわり、特に、プラズマCVD法によって大面積の
基板上に高品質のSiO2 薄膜を均一に形成する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicon oxide thin film, and more particularly to a method for uniformly forming a high quality SiO 2 thin film on a large area substrate by plasma CVD.

【0002】[0002]

【従来の技術】従来、例えば液晶用の駆動回路などとし
てアモルファスシリコン薄膜トランジスタ(a−SiT
FT)の実用化が進められている。しかし、このものは
アモルファスシリコンの電子移動度が比較的小さいた
め、大画面の高品位テレビなどへの適用に限度があると
されている。そこで、近年では電子移動度が比較的大き
いポリシリコン薄膜トランジスタ(poly−SiTF
T)を用いる駆動回路が提案されており、例えばビュー
ファインダー、CCD、液晶プロジェクターなどの一部
に既に使用されている。ところで従来のpoly−Si
TFTはLSI製造工程の流用などにより製造されてお
り、基板上にゲート絶縁膜としてSiO2 の薄膜を形成
する際には1000℃以上の温度を必要とする熱酸化法
が用いられていた。このため、安価なガラス基板を用い
ることができず、民生用の製品または大画面の製品に適
用することができなかった。
2. Description of the Related Art Conventionally, for example, an amorphous silicon thin film transistor (a-SiT) is used as a driving circuit for liquid crystal.
FT) is being put to practical use. However, since the amorphous silicon has a relatively low electron mobility, it is said that there is a limit to its application to a high-definition television with a large screen. Therefore, in recent years, a polysilicon thin film transistor (poly-SiTF) having relatively high electron mobility has been developed.
A driving circuit using T) has been proposed, and has already been used for some of viewfinders, CCDs, liquid crystal projectors, and the like. By the way, conventional poly-Si
The TFT is manufactured by diverting the LSI manufacturing process, and when forming a thin film of SiO 2 as a gate insulating film on a substrate, a thermal oxidation method requiring a temperature of 1000 ° C. or higher was used. Therefore, an inexpensive glass substrate cannot be used, and it cannot be applied to consumer products or large-screen products.

【0003】このような熱酸化法に対し、低温で酸化ケ
イ素薄膜を形成する方法としてはプラズマCVD法が知
られている。この方法は、反応器内で高周波励起によっ
てプラズマを発生させて反応物質を活性化し、比較的低
温で基板表面に酸化ケイ素薄膜を形成するものであり、
容器を拡大すれば大面積の基板にも適用が可能となる。
プラズマCVD法によって基板上に酸化ケイ素薄膜を形
成するには、例えば、平行平板型のプラズマCVD装置
が用いられる。この装置は、多数の細孔が形成された平
板状の電極を反応器内に設け、この電極に高周波電界を
印加しながらその細孔からシャワー状の反応ガス流を基
板上に垂直に噴射する方式のものである。この反応器内
に導入される反応ガスとしては、例えばテトラエチルオ
ルトシリケート(以下「TEOS」と記す)などの有機
シランガスと、これを分解してSiO2 を生成するのに
必要な量、例えばガス流量比で有機シランガスに対して
10倍程度までのO2 またはN2 Oなどの酸化性ガスと
の混合ガスが用いられる。この方法によって最大8イン
チφまでのSiウェハー上に酸化ケイ素薄膜を形成した
例が報告されている。しかし、例えば300mm平方を
越えるような大面積の基板上に酸化ケイ素薄膜を形成し
た例は報告されていない。
In contrast to such a thermal oxidation method, a plasma CVD method is known as a method for forming a silicon oxide thin film at a low temperature. In this method, plasma is generated by high-frequency excitation in a reactor to activate a reactant, and a silicon oxide thin film is formed on a substrate surface at a relatively low temperature.
If the container is enlarged, it can be applied to a large area substrate.
To form a silicon oxide thin film on a substrate by the plasma CVD method, for example, a parallel plate type plasma CVD apparatus is used. In this device, a flat plate-shaped electrode having a large number of pores is provided in a reactor, and a shower-like reaction gas flow is vertically jetted onto a substrate from the pores while applying a high-frequency electric field to this electrode. System. The reaction gas introduced into this reactor is, for example, an organic silane gas such as tetraethyl orthosilicate (hereinafter referred to as “TEOS”) and an amount necessary for decomposing it to generate SiO 2 , for example, a gas flow rate. A mixed gas with an oxidizing gas such as O 2 or N 2 O up to about 10 times the ratio of the organic silane gas is used. An example in which a silicon oxide thin film is formed on a Si wafer up to 8 inches in diameter by this method has been reported. However, no example has been reported in which a silicon oxide thin film is formed on a substrate having a large area exceeding 300 mm square, for example.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、プラズ
マCVD法によって大面積の基板上に酸化ケイ素薄膜を
形成した場合、特に基板中央部の薄膜中に、反応ガスの
SiO2 生成反応によって副生した炭素原子やOH基な
どの不純物が残存してしまい、薄膜の電気特性が著しく
劣化してしまうという問題があった。また、この劣化領
域は基板が大面積化するに伴って拡大するため、プラズ
マCVD法による大面積基板上への酸化ケイ素薄膜形成
に大きな障害となっていた。本発明はこの問題を解決す
るためになされたものであって、その目的は、プラズマ
CVD法によって大面積の基板上に高品質の酸化ケイ素
薄膜を均一にかつ効率よく形成する方法を提供すること
にある。
However, when a silicon oxide thin film is formed on a large-area substrate by the plasma CVD method, carbon produced as a by-product of the reaction gas, SiO 2 generation reaction, particularly in the thin film at the center of the substrate. There is a problem that impurities such as atoms and OH groups remain and electrical characteristics of the thin film are significantly deteriorated. Further, this deteriorated region expands as the area of the substrate increases, which is a great obstacle to the formation of the silicon oxide thin film on the large-sized substrate by the plasma CVD method. The present invention has been made to solve this problem, and an object thereof is to provide a method for uniformly and efficiently forming a high-quality silicon oxide thin film on a large-area substrate by a plasma CVD method. It is in.

【0005】[0005]

【課題を解決するための手段】上記の課題は、プラズマ
CVD法によって基板上に酸化ケイ素薄膜を形成するに
際して、有機シランガスとともに、流量比で有機シラン
ガスの50〜1000倍の酸化性ガス、または酸化性ガ
スと不活性ガスとの混合ガスを反応器内に導入すること
からなる酸化ケイ素薄膜の形成法を提供することによっ
て解決できる。
Means for Solving the Problems The above-mentioned problems are, when forming a silicon oxide thin film on a substrate by a plasma CVD method, together with an organic silane gas, an oxidizing gas at a flow ratio of 50 to 1000 times that of the organic silane gas, or an oxidizing gas. This can be solved by providing a method for forming a silicon oxide thin film, which comprises introducing a mixed gas of a reactive gas and an inert gas into a reactor.

【0006】[0006]

【作用】プラズマCVD法において、有機シラン化合物
(例えばTEOS)を、高周波励起され活性化した酸化
性ガス(例えばO2 またはN2 O)とともに基板表面に
吹き付けると、双方は反応して酸化ケイ素を生成し、こ
の酸化ケイ素は基板上に析出して薄膜を形成する。この
反応に際しては、有機シラン化合物の有機側鎖の断片で
あるC、OHなどが副生する。これらは不純物であり、
これが形成中の酸化ケイ素薄膜中に残存すると、薄膜の
電気絶縁性を損なう不純物として製品の品質を低下させ
ることになる。基板が比較的小面積であるか、または大
面積であってもその周辺部であれば、不純物は吹き付け
られるガス流に伴って速やかに基板表面から排除される
ので薄膜中への移行は少ないが、基板が大面積である場
合には、その中央部付近にガスが滞留して不純物が薄膜
に移行し易くなる。従って一般に大面積の基板にあって
は、周辺部から中央部にかけて、薄膜中の不純物含有率
が高くなる傾向を示す。
In the plasma CVD method, when an organosilane compound (for example, TEOS) is sprayed onto the surface of the substrate together with an oxidizing gas (for example, O 2 or N 2 O) activated by high frequency and activated, both react with each other to form silicon oxide. The generated silicon oxide is deposited on the substrate to form a thin film. During this reaction, fragments of organic side chains of the organic silane compound, such as C and OH, are produced as by-products. These are impurities,
If this remains in the silicon oxide thin film being formed, it will deteriorate the quality of the product as an impurity that impairs the electrical insulating property of the thin film. If the substrate has a relatively small area, or even if it has a large area and is in the peripheral portion, impurities are promptly removed from the surface of the substrate along with the gas flow to be sprayed, so that the migration into the thin film is small. When the substrate has a large area, the gas stays in the vicinity of the central portion of the substrate and the impurities easily migrate to the thin film. Therefore, generally in a large-area substrate, the impurity content in the thin film tends to increase from the peripheral portion to the central portion.

【0007】ここで、反応ガス中の酸化性ガスまたは不
活性ガスの流量を有機シランガスの流量に対してある程
度以上に増量すると、不純物は相対的に希釈され、また
基板に吹き付けられるガスの総量が増加するので流速が
大となり、大面積基板の中央部であっても不純物は滞留
せずに速やかに基板表面から排除される。従って、薄膜
中に不純物が残存することはない。ただし、酸化性ガス
または不活性ガスの流量が過大であると、活性ガス流中
のSi濃度も低下することになり、基板上への酸化ケイ
素の析出速度が著しく低下し、生産効率が低下する。従
って、酸化性ガスまたは不活性ガスの流量比は過大であ
ってはならない。反応ガス中の酸化性ガス、または酸化
性ガスと不活性ガスとの混合ガスの流量が有機シランガ
スの流量に対して50〜1000倍であると、基板が大
面積であっても不純物が酸化ケイ素薄膜に残存すること
なく、また基板上への酸化ケイ素の析出速度が低下して
生産性が悪化することもない。
Here, if the flow rate of the oxidizing gas or the inert gas in the reaction gas is increased to a certain extent or more with respect to the flow rate of the organic silane gas, the impurities are relatively diluted, and the total amount of the gas blown onto the substrate is increased. Since it increases, the flow velocity becomes high, and even in the central portion of the large area substrate, impurities do not stay and are quickly removed from the substrate surface. Therefore, no impurities remain in the thin film. However, if the flow rate of the oxidizing gas or the inert gas is too high, the Si concentration in the active gas stream will also decrease, and the deposition rate of silicon oxide on the substrate will significantly decrease, resulting in a decrease in production efficiency. . Therefore, the flow rate ratio of the oxidizing gas or the inert gas should not be excessive. When the flow rate of the oxidizing gas in the reaction gas or the mixed gas of the oxidizing gas and the inert gas is 50 to 1000 times the flow rate of the organic silane gas, impurities are silicon oxide even if the substrate has a large area. It does not remain in the thin film, and the deposition rate of silicon oxide on the substrate does not decrease and the productivity does not deteriorate.

【0008】[0008]

【実施例】次に、図面を用いて本発明の一実施例を説明
する。図1は本発明の一実施例として、平行平板型のプ
ラズマCVD装置を用いた例を示している。図1におい
て符号1は反応器であり、この反応器1には平板状の電
極2と、これと間隔を隔てて平行に配置された加熱可能
な基板ホルダー3とが配設されている。この基板ホルダ
ー3にはガラス基板Sが載置される。また、反応器1に
は反応ガスを器内に導入するための導管4と、図示しな
い電極2の対電極及び排気孔が設けられている。電極2
の下面には多数の細孔が形成されており、導管4から導
入された反応ガスはこの細孔からシャワー状に基板Sに
向けて垂直に噴射されるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example using a parallel plate type plasma CVD apparatus as one embodiment of the present invention. In FIG. 1, reference numeral 1 is a reactor, and a plate-shaped electrode 2 and a heatable substrate holder 3 arranged in parallel with the electrode 2 are arranged in the reactor 1. The glass substrate S is placed on the substrate holder 3. Further, the reactor 1 is provided with a conduit 4 for introducing a reaction gas into the reactor, a counter electrode (not shown) of the electrode 2 and an exhaust hole. Electrode 2
A large number of pores are formed on the lower surface of the, and the reaction gas introduced from the conduit 4 is vertically sprayed from the pores toward the substrate S in a shower shape.

【0009】このプラズマCVD装置の導管4から反応
器1内に反応ガスを導入する。この反応ガスは、TEO
SとO2 との混合物、またはTEOSとO2 とHeとの
混合物からなっていて、その混合比は、O2 またはO2
とHeとの混合ガスの流量がTEOSの流量の50〜1
000倍となるように調製されている。反応ガスの導入
とともに、電極に高周波電界を印加すると、電極2の下
面に形成された細孔から基板Sに向けて噴射されたガス
流はプラズマ化され、活性化される。この活性ガス流P
は、図1の矢印で示すように基板Sに吹き付けられ、基
板上にSiO2 を析出して薄膜を形成するとともに、不
純物を含む残ガスは基板Sに沿って放射状に流動して排
気孔から排出される。この操作は、基板S上に所定の膜
厚のSiO2 薄膜が形成されるまで続けられる。
A reaction gas is introduced into the reactor 1 from a conduit 4 of this plasma CVD apparatus. This reaction gas is TEO
It comprises a mixture of S and O 2 , or a mixture of TEOS, O 2 and He, the mixing ratio of which is O 2 or O 2.
The flow rate of the mixed gas of He and He is 50 to 1 of that of TEOS.
It has been prepared to be 000 times. When a high-frequency electric field is applied to the electrodes together with the introduction of the reaction gas, the gas flow injected from the pores formed on the lower surface of the electrode 2 toward the substrate S is plasmatized and activated. This active gas flow P
Is sprayed onto the substrate S as shown by the arrow in FIG. 1 to deposit SiO 2 on the substrate to form a thin film, and the residual gas containing impurities flows radially along the substrate S and is discharged from the exhaust holes. Is discharged. This operation is continued until a SiO 2 thin film having a predetermined film thickness is formed on the substrate S.

【0010】上記のプラズマCVD装置を用い、500
mm平方のガラス基板S上にSiO2 薄膜を形成した。
高周波出力は1.2kW、TOES流量は15SCCM
(スタンダードCC/分)、基板温度は350℃、また
形成されたSiO2 薄膜の膜厚は100nmとし、全て
の実施例及び比較例について一定とした。得られた基板
のSiO2 薄膜上にアルミニウム電極を形成してMOS
キャパシタを構成し、基板の所定の部位に2MV/cm
の電界を印加し、その部位におけるリーク電流を測定し
た。測定部位は図2及び図3に示したように、基板中心
Cを中心とする470mm正方形の頂点A、300mm
正方形の頂点B、及び基板中心Cとした。また、各試料
について所定の膜厚が形成されるまでの時間を測定し、
SiO2の析出速度を求めた。
Using the above plasma CVD apparatus, 500
A SiO 2 thin film was formed on a glass substrate S having a square area of mm.
High frequency output 1.2 kW, TOES flow rate 15 SCCM
(Standard CC / min), the substrate temperature was 350 ° C., the thickness of the formed SiO 2 thin film was 100 nm, and it was constant in all Examples and Comparative Examples. An aluminum electrode is formed on the SiO 2 thin film of the obtained substrate to form a MOS.
2 MV / cm at a predetermined part of the substrate that constitutes a capacitor
The electric field was applied, and the leak current at that portion was measured. As shown in FIGS. 2 and 3, the measurement site has a 470 mm square apex A, 300 mm centered on the substrate center C.
It was set as the vertex B of the square and the center C of the substrate. Also, measure the time until a predetermined film thickness is formed for each sample,
The deposition rate of SiO 2 was determined.

【0011】(実施例1)O2 をTEOSに対して5
0,100,500,及び1000倍の流量比で用いて
SiO2 薄膜を形成した。 (比較例1)比較例として、TEOSに対して50倍未
満及び1000倍を越える流量比のO2 を用いて薄膜を
形成した。
(Example 1) O 2 is added to TEOS 5 times
A SiO 2 thin film was formed by using flow rates of 0, 100, 500, and 1000 times. (Comparative Example 1) As a comparative example, a thin film was formed using O 2 with a flow rate ratio of less than 50 times and more than 1000 times that of TEOS.

【0012】(実施例2)O2 とHeとの混合ガスをT
EOSに対して50,100,500,及び1000倍
の流量比で用いてSiO2 薄膜を形成した。ここで、混
合ガス中のO2 の流量は150SCCM(TEOSの流
量に対して10倍)一定とした。 (比較例2)比較例として、TEOSに対して50倍未
満及び1000倍を越える流量比の上記混合ガスを用い
て薄膜を形成した。
(Example 2) A mixed gas of O 2 and He was added to T
A SiO 2 thin film was formed using EOS at a flow rate ratio of 50, 100, 500, and 1000 times. Here, the flow rate of O 2 in the mixed gas was constant at 150 SCCM (10 times the flow rate of TEOS). (Comparative Example 2) As a comparative example, a thin film was formed using the above mixed gas in a flow ratio of less than 50 times and more than 1000 times that of TEOS.

【0013】(測定結果1)図2に、実施例1及び比較
例1の各試料について測定して得られたリーク電流値
(A/cm2 )を、O2 の流量比(TEOS流量に対す
る倍率)に対応させて示す。 (測定結果2)図3に、実施例2及び比較例2の各試料
について測定して得られたリーク電流値(A/cm2
を、混合ガスの流量比(TEOS流量に対する倍率)に
対応させて示す。 (測定結果3)図4に、各試料についてのSiO2 の析
出速度を、O2 または混合ガスの流量比に対応させて示
す。
(Measurement Result 1) FIG. 2 shows the leakage current value (A / cm 2) obtained by measuring each sample of Example 1 and Comparative Example 1. ) Is shown in correspondence with the flow rate ratio of O 2 (magnification to TEOS flow rate). (Measurement Result 2) FIG. 3 shows the leakage current value (A / cm 2) obtained by measuring each sample of Example 2 and Comparative Example 2. )
Are shown in correspondence with the flow rate ratio of the mixed gas (magnification to TEOS flow rate). (Measurement Result 3) FIG. 4 shows the deposition rate of SiO 2 for each sample in correspondence with the flow rate ratio of O 2 or mixed gas.

【0014】(結果の判定)図2及び図3の結果から、
2 または混合ガスの流量比が50倍未満であると、リ
ーク電流値が基板の中心に向けて高くなっている。即
ち、酸化ケイ素薄膜の電気絶縁性が中心に向けて低下し
ている。O2 または混合ガスのいずれの場合も、その流
量比がTEOSに対して50倍以上であれば、基板の部
位にかかわりなく高品質の絶縁性薄膜が得られた。図4
の結果から、O2 または混合ガスのいずれの場合も、そ
の流量比がTEOSに対して1000倍を越えると、S
iO2 の析出速度が著しく低下した。これはガス利用率
の低下、作業時間の延長など、生産効率の低下をもたら
すものである。以上の結果を総合すると、O2 または混
合ガスのいずれの場合も、その流量比がTEOSに対し
て50〜1000倍であるときに、基板の部位にかかわ
りなく均一で高品質の酸化ケイ素薄膜が効率よく得られ
ることは明かである。
(Determination of Results) From the results shown in FIGS. 2 and 3,
When the flow rate ratio of O 2 or mixed gas is less than 50 times, the leak current value increases toward the center of the substrate. That is, the electrical insulating property of the silicon oxide thin film decreases toward the center. In either case of O 2 or mixed gas, if the flow rate ratio was 50 times or more that of TEOS, a high-quality insulating thin film was obtained regardless of the site of the substrate. Figure 4
From the results of S, if the flow rate ratio of O 2 or mixed gas exceeds 1000 times TEOS, S
The precipitation rate of iO 2 was significantly reduced. This leads to a reduction in production efficiency such as a reduction in gas utilization rate and extension of working time. Summarizing the above results, when the flow rate ratio of O 2 or mixed gas is 50 to 1000 times that of TEOS, a uniform and high-quality silicon oxide thin film can be obtained regardless of the substrate site. It is clear that it can be obtained efficiently.

【0015】[0015]

【発明の効果】本発明の酸化ケイ素薄膜の形成法は、有
機シランガスとともに、その流量の50〜1000倍の
酸化性ガス、または酸化性ガスと不活性ガスとの混合物
を反応器内に導入するものであるので、プラズマCVD
法によって例えば300mm平方以上の大面積の基板上
に、不純物が残存することのない高品質の酸化ケイ素薄
膜を均一にかつ効率よく形成することができる。
According to the method for forming a silicon oxide thin film of the present invention, an organic silane gas and an oxidizing gas at a flow rate of 50 to 1000 times or a mixture of an oxidizing gas and an inert gas are introduced into a reactor. Since it is a thing, plasma CVD
By the method, a high-quality silicon oxide thin film without impurities remaining can be uniformly and efficiently formed on a large-area substrate of, for example, 300 mm square or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に使用するプラズマCVD
装置、及び基板近傍における活性ガスの流れ模様を示す
立面図(a)及び平面図(b)である。
FIG. 1 is a plasma CVD used in one embodiment of the present invention.
FIG. 3 is an elevation view (a) and a plan view (b) showing a flow pattern of an active gas in the vicinity of a device and a substrate.

【図2】 O2 /TEOS流量比とSiO2 薄膜のリー
ク電流値との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between an O 2 / TEOS flow rate ratio and a leak current value of a SiO 2 thin film.

【図3】 (O2 +He)/TEOS流量比とSiO2
薄膜のリーク電流値との関係を示すグラフである。
FIG. 3 (O 2 + He) / TEOS flow ratio and SiO 2
It is a graph which shows the relationship with the leak current value of a thin film.

【図4】 O2 /TEOS流量比または(O2 +He)
/TEOS流量比とSiO2 薄膜の析出速度との関係を
示すグラフである。
FIG. 4 O 2 / TEOS flow ratio or (O 2 + He)
7 is a graph showing the relationship between the / TEOS flow rate ratio and the deposition rate of a SiO 2 thin film.

【符号の説明】[Explanation of symbols]

1…反応器、2…電極、S…基板、P…活性ガス流。 1 ... Reactor, 2 ... Electrode, S ... Substrate, P ... Active gas flow.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プラズマCVD法によって基板上に酸化
ケイ素薄膜を形成するに際して、有機シランガスととも
に、流量比で有機シランガスの50〜1000倍の酸化
性ガス、または酸化性ガスと不活性ガスとの混合ガスを
反応器内に導入することを特徴とする酸化ケイ素薄膜の
形成法。
1. When forming a silicon oxide thin film on a substrate by a plasma CVD method, an organic silane gas is mixed with an oxidizing gas in a flow ratio of 50 to 1000 times that of the organic silane gas, or a mixture of an oxidizing gas and an inert gas. A method for forming a silicon oxide thin film, which comprises introducing a gas into a reactor.
JP2701893A 1993-02-16 1993-02-16 Formation of silicon oxide thin film Pending JPH06240459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2701893A JPH06240459A (en) 1993-02-16 1993-02-16 Formation of silicon oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2701893A JPH06240459A (en) 1993-02-16 1993-02-16 Formation of silicon oxide thin film

Publications (1)

Publication Number Publication Date
JPH06240459A true JPH06240459A (en) 1994-08-30

Family

ID=12209358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2701893A Pending JPH06240459A (en) 1993-02-16 1993-02-16 Formation of silicon oxide thin film

Country Status (1)

Country Link
JP (1) JPH06240459A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006565A1 (en) * 1995-08-04 1997-02-20 Seiko Epson Corporation Process for preparing thin-film transistor, process for preparing active matrix substrate, and liquid crystal display
KR19990006064A (en) * 1997-06-30 1999-01-25 김영환 Method of forming interlayer insulating film of semiconductor device
US5968324A (en) * 1995-12-05 1999-10-19 Applied Materials, Inc. Method and apparatus for depositing antireflective coating
US6037274A (en) * 1995-02-17 2000-03-14 Fujitsu Limited Method for forming insulating film
US6083852A (en) * 1997-05-07 2000-07-04 Applied Materials, Inc. Method for applying films using reduced deposition rates
US6127262A (en) * 1996-06-28 2000-10-03 Applied Materials, Inc. Method and apparatus for depositing an etch stop layer
US6830786B2 (en) * 1997-05-21 2004-12-14 Nec Corporation Silicon oxide film, method of forming the silicon oxide film, and apparatus for depositing the silicon oxide film
US20110236600A1 (en) * 2010-03-25 2011-09-29 Keith Fox Smooth Silicon-Containing Films
US8741394B2 (en) 2010-03-25 2014-06-03 Novellus Systems, Inc. In-situ deposition of film stacks
US8895415B1 (en) 2013-05-31 2014-11-25 Novellus Systems, Inc. Tensile stressed doped amorphous silicon
US9028924B2 (en) 2010-03-25 2015-05-12 Novellus Systems, Inc. In-situ deposition of film stacks
US9117668B2 (en) 2012-05-23 2015-08-25 Novellus Systems, Inc. PECVD deposition of smooth silicon films
US9165788B2 (en) 2012-04-06 2015-10-20 Novellus Systems, Inc. Post-deposition soft annealing
US9388491B2 (en) 2012-07-23 2016-07-12 Novellus Systems, Inc. Method for deposition of conformal films with catalysis assisted low temperature CVD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298932A (en) * 1988-10-05 1990-04-11 Agency Of Ind Science & Technol Manufacture of silicon oxide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298932A (en) * 1988-10-05 1990-04-11 Agency Of Ind Science & Technol Manufacture of silicon oxide film

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037274A (en) * 1995-02-17 2000-03-14 Fujitsu Limited Method for forming insulating film
US6448666B1 (en) 1995-02-17 2002-09-10 Fujitsu Limited Semiconductor device and method for forming insulating film
WO1997006565A1 (en) * 1995-08-04 1997-02-20 Seiko Epson Corporation Process for preparing thin-film transistor, process for preparing active matrix substrate, and liquid crystal display
US5976989A (en) * 1995-08-04 1999-11-02 Seiko Epson Corporation Thin film transistor fabrication method, active matrix substrate fabrication method, and liquid crystal display device
US6150283A (en) * 1995-08-04 2000-11-21 Seiko Epson Corporation Thin film transistor fabrication method, active matrix substrate fabrication method, and liquid crystal display device
EP1286386A1 (en) * 1995-08-04 2003-02-26 Seiko Epson Corporation Thin film transistor fabrication method
US7070657B1 (en) 1995-12-05 2006-07-04 Applied Materials Inc. Method and apparatus for depositing antireflective coating
US5968324A (en) * 1995-12-05 1999-10-19 Applied Materials, Inc. Method and apparatus for depositing antireflective coating
US6127262A (en) * 1996-06-28 2000-10-03 Applied Materials, Inc. Method and apparatus for depositing an etch stop layer
US6209484B1 (en) 1996-06-28 2001-04-03 Applied Materials, Inc. Method and apparatus for depositing an etch stop layer
US6083852A (en) * 1997-05-07 2000-07-04 Applied Materials, Inc. Method for applying films using reduced deposition rates
US6324439B1 (en) 1997-05-07 2001-11-27 Applied Materials, Inc. Method and apparatus for applying films using reduced deposition rates
US6830786B2 (en) * 1997-05-21 2004-12-14 Nec Corporation Silicon oxide film, method of forming the silicon oxide film, and apparatus for depositing the silicon oxide film
KR19990006064A (en) * 1997-06-30 1999-01-25 김영환 Method of forming interlayer insulating film of semiconductor device
US20110236600A1 (en) * 2010-03-25 2011-09-29 Keith Fox Smooth Silicon-Containing Films
US8709551B2 (en) * 2010-03-25 2014-04-29 Novellus Systems, Inc. Smooth silicon-containing films
US8741394B2 (en) 2010-03-25 2014-06-03 Novellus Systems, Inc. In-situ deposition of film stacks
US9028924B2 (en) 2010-03-25 2015-05-12 Novellus Systems, Inc. In-situ deposition of film stacks
US10214816B2 (en) 2010-03-25 2019-02-26 Novellus Systems, Inc. PECVD apparatus for in-situ deposition of film stacks
US11746420B2 (en) 2010-03-25 2023-09-05 Novellus Systems, Inc. PECVD apparatus for in-situ deposition of film stacks
TWI547587B (en) * 2010-09-13 2016-09-01 諾菲勒斯系統公司 Smooth silicon-containing films
US9165788B2 (en) 2012-04-06 2015-10-20 Novellus Systems, Inc. Post-deposition soft annealing
US9117668B2 (en) 2012-05-23 2015-08-25 Novellus Systems, Inc. PECVD deposition of smooth silicon films
US9388491B2 (en) 2012-07-23 2016-07-12 Novellus Systems, Inc. Method for deposition of conformal films with catalysis assisted low temperature CVD
US8895415B1 (en) 2013-05-31 2014-11-25 Novellus Systems, Inc. Tensile stressed doped amorphous silicon

Similar Documents

Publication Publication Date Title
US7488693B2 (en) Method for producing silicon oxide film
JPH06240459A (en) Formation of silicon oxide thin film
US7462571B2 (en) Film formation method and apparatus for semiconductor process for forming a silicon nitride film
JP2641385B2 (en) Film formation method
US6800502B2 (en) Thin film transistor, method of producing the same, liquid crystal display, and thin film forming apparatus
JPH0494539A (en) Manufacture of semiconductor device
US20060216941A1 (en) Method for removing silicon oxide film and processing apparatus
JP2938361B2 (en) Multi-stage CVD for thin film transistors
JP4126517B2 (en) Vapor processing equipment
KR20010098467A (en) Deposition of teos oxide using pulsed rf plasma
JPH0766186A (en) Anisotropic depositing method of dielectric
JPH0790589A (en) Formation of silicon oxidized film
US6537924B2 (en) Method of chemically growing a thin film in a gas phase on a silicon semiconductor substrate
JP3230185B2 (en) Deposition method of uniform dielectric layer
JPH03237715A (en) Etching method
JP2692803B2 (en) Deposition film formation method
JP2004111506A (en) Method of manufacturing silicon oxide film
JPH05121337A (en) Method for gas reaction on solid surface
JP2003273034A (en) Thin-film forming apparatus
JP4598428B2 (en) Method for depositing amorphous silicon or polysilicon
JP3134824B2 (en) Plasma CVD apparatus and film forming method
JPH06244426A (en) Production of glass board for thin film formation
JPH05335250A (en) Cvd device
KR100212014B1 (en) Method of forming bpsg films of semiconductor device
JP2001345315A (en) Method of manufacturing thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951219