JPH0298932A - Manufacture of silicon oxide film - Google Patents

Manufacture of silicon oxide film

Info

Publication number
JPH0298932A
JPH0298932A JP25255188A JP25255188A JPH0298932A JP H0298932 A JPH0298932 A JP H0298932A JP 25255188 A JP25255188 A JP 25255188A JP 25255188 A JP25255188 A JP 25255188A JP H0298932 A JPH0298932 A JP H0298932A
Authority
JP
Japan
Prior art keywords
gas
silicon oxide
oxide film
silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25255188A
Other languages
Japanese (ja)
Other versions
JP2660297B2 (en
Inventor
Yutaka Hayashi
豊 林
Mitsuyuki Yamanaka
光之 山中
Takashi Yoshimi
吉見 尚
Hideyo Iida
英世 飯田
Kiyohiro Kondo
近藤 清宏
Satoshi Okazaki
智 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Taiyo Yuden Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Shin Etsu Chemical Co Ltd
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shin Etsu Chemical Co Ltd, Taiyo Yuden Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63252551A priority Critical patent/JP2660297B2/en
Publication of JPH0298932A publication Critical patent/JPH0298932A/en
Application granted granted Critical
Publication of JP2660297B2 publication Critical patent/JP2660297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a silicon oxide film whose dielectric strength is high, whose hysteresis characteristic such as a polarization or the like is small and whose storage of electric charge is small by a method wherein a component ratio of oxygen atoms to silicon atoms in a mixed gas of an organic silane introduced into a reduced-pressure container and oxygen gas or a nonmetal oxide gas is set at 100 or higher. CONSTITUTION:A silicon substrate is fixed to a substrate holder 2. The substrate is heated by using a substrate heater 6. Then, laughing gas is supplied from a laughing-gas introduction system 5b and monomethyl silane is supplied from a monomethyl-silane gas introduction system 5a to a reduced-pressure container 1, respectively; after that, these gases are mixed in a gas mixer 5c; after that, the mixture is introduced into the reduced-pressure container 1. In this case, a component ratio of oxygen atoms/silicon atoms in a mixed gas inside the adjusted container 1 is set at 100 or higher. Thereby, a hydrocarbon group remaining in a silicon oxide film does not remain in the film; it is possible to obtain the film whose dielectric strength and hysteresis characteristic are excellent.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、酸化シリコン膜の製造方法に関する。詳しく
は、有機シランと酸素ガスまたは非金属酸化物ガスとを
用いたプラズマCVD法にである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a silicon oxide film. Specifically, it is a plasma CVD method using organic silane and oxygen gas or nonmetal oxide gas.

[従来の技術] 従来における、薄膜トランジスタのゲート絶縁膜やパッ
ジベージロン膜などに用いられている酸化シリコン膜は
、シラン系ガスと非金属酸化物ガスを用いて、いわゆる
CVD法で形成する方法が実施されている。例えば、減
圧容器中にグロー放電領域を形成し、同容器中にモノシ
ランガスと笑気ガス(−酸化二窒素ガス)との混合ガス
を導入し、基板上に酸化シリコン膜を成膜させる。
[Prior Art] Conventionally, the silicon oxide film used for the gate insulating film and the padding film of thin film transistors is formed by the so-called CVD method using silane-based gas and non-metallic oxide gas. ing. For example, a glow discharge region is formed in a reduced pressure container, a mixed gas of monosilane gas and laughing gas (-dinitrogen oxide gas) is introduced into the container, and a silicon oxide film is formed on the substrate.

[発明が解決しようとする課題] 上記のような薄膜トランジスタのゲート絶な膜やパッジ
ベージロン膜等に用いられるこの種の酸化シリコン膜に
要求される特性は、■絶縁耐圧が高く、■分極等のヒス
テリシス特性が小さく、■電荷の蓄積が少ない、■屈折
率が小さいこと等である。
[Problems to be Solved by the Invention] The characteristics required of this type of silicon oxide film used for the gate isolation film and padded film of thin film transistors as described above are: 1) high dielectric strength voltage, and 2) low hysteresis such as polarization. It has small characteristics such as (1) low charge accumulation, and (2) low refractive index.

しかしながら、有機シランと非金属酸化物ガスを用いる
従来のプラズマCVD法で成膜された酸化シリコン膜は
、薄膜トランジスタのゲート絶縁膜等に用いるに必要な
特性を満足することができなかった。これは、酸化シリ
コン膜の反応成長中に生成するハイドロカーボン基やヒ
ドロキシル基が、同酸化シリコン膜中に残留することが
その主な原因である。
However, the silicon oxide film formed by the conventional plasma CVD method using organic silane and non-metal oxide gas has not been able to satisfy the characteristics necessary for use as a gate insulating film of a thin film transistor. The main reason for this is that hydrocarbon groups and hydroxyl groups generated during the reaction growth of the silicon oxide film remain in the silicon oxide film.

すなわち、酸化シリコン膜中にハイドロカーボン基が残
存すると、酸化シリコン膜の屈折率が高くなる。また、
酸化シリコン膜にヒドロキシル基が残存すると、同酸化
シリコン膜中の絶縁耐圧が低く、分極等のヒステリ特性
が大きく、電荷の蓄積が大きくなる等の問題を生じる。
That is, when hydrocarbon groups remain in the silicon oxide film, the refractive index of the silicon oxide film increases. Also,
When hydroxyl groups remain in the silicon oxide film, problems arise such as the silicon oxide film has a low dielectric breakdown voltage, large hysterical characteristics such as polarization, and large charge accumulation.

本発明の目的は、前記従来の問題点に鑑み、これを解決
することができる該酸化シリコン膜の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a silicon oxide film that can solve the above-mentioned conventional problems.

〔課題を解決するための手段] すなわち、前記本発明の目的を達成するため採用された
第一の手段の要旨は、減圧容器中にグロー放電領域を形
成し、同容器中に有機シランと酸素ガスまたは非金属酸
化物ガスを導入して基板上に酸化シリコン膜を形成する
方法においで、前記減圧容器に導入される有機シランと
酸素ガスまたは非金属酸化物ガスとの混合ガスの珪素原
子に対する酸素原子の成分比を100以上とする酸化シ
リコン膜の製造方法である。
[Means for Solving the Problems] That is, the gist of the first means adopted to achieve the object of the present invention is to form a glow discharge region in a reduced pressure container, and place organic silane and oxygen in the container. In the method of forming a silicon oxide film on a substrate by introducing a gas or a non-metal oxide gas, the mixed gas of organic silane and oxygen gas or non-metal oxide gas introduced into the reduced pressure container has an effect on silicon atoms. This is a method for manufacturing a silicon oxide film in which the component ratio of oxygen atoms is 100 or more.

また、第二の手段の要旨は、前記酸化シリコン腰の製造
方法において、基板の温度を330℃以上に加熱する方
法である。
Moreover, the gist of the second means is a method of heating the substrate to a temperature of 330° C. or higher in the method for manufacturing the silicon oxide base.

〔作  用] 第1図は、減圧容器内に導入する混合ガスの酸素原子/
珪素原子の組成比と、成膜された酸化シリコン膜に残存
するハイドロカーボン基の81−〇基に対する比(α5
r−cs3/α1t−a)との関係、及び同組成比と、
成膜された酸化シリコン膜の屈折率の関係の一例を示す
グラフである。本発明は、このグラフに示された事実を
着目することにより、なされたものである。
[Function] Figure 1 shows the oxygen atoms/
The composition ratio of silicon atoms and the ratio of hydrocarbon groups remaining in the formed silicon oxide film to 81-0 groups (α5
r-cs3/α1t-a) and the same composition ratio,
3 is a graph showing an example of the relationship between the refractive index of a deposited silicon oxide film. The present invention was made by paying attention to the fact shown in this graph.

すなわち、有機シランと酸素ガスまたは非金属酸化物ガ
スを用いてCVD法によって酸化シリコン膜を形成する
場合、上記混合ガスに含まれる珪素原子に対する酸素原
子の成分比を変化させると、第1図に実線で示すように
、成膜された酸化シリコン膜に残存するハイドロカーボ
ン基と5i−0基との組成比が変化する。このグラフか
ら明かな通り、上記混合ガスの珪素原子に対する酸素原
子の成分比が、100に満たない場合、成膜された酸化
シリコン膜中にハイドロカーボン基が残留し、その5i
−0基に対する比は、上記酸素原子の比が毘くなるに従
って急激に減少する。そして、上記組成比が100に達
しそれ以上になると、酸化シリコン膜中に残存するハイ
ドロカーボン基は膜中に残存しなくなる。
That is, when forming a silicon oxide film by the CVD method using organic silane and oxygen gas or non-metal oxide gas, if the component ratio of oxygen atoms to silicon atoms contained in the mixed gas is changed, the result shown in FIG. As shown by the solid line, the composition ratio of hydrocarbon groups remaining in the formed silicon oxide film and 5i-0 groups changes. As is clear from this graph, when the ratio of oxygen atoms to silicon atoms in the mixed gas is less than 100, hydrocarbon groups remain in the formed silicon oxide film, and the 5i
The ratio to -0 groups sharply decreases as the ratio of oxygen atoms increases. When the composition ratio reaches or exceeds 100, the hydrocarbon groups remaining in the silicon oxide film no longer remain in the film.

さらに、酸化シリコン膜中にハイドロカーボン基が残存
する範囲、すなわち、上記混合ガスの珪素原子に対する
酸素原子の成分比が100に満たない範囲において、成
膜された酸化シリコン膜の屈折率は、第1図において点
線で示すように、酸素/珪素の組成比が増大するjこ従
って低減し、上記混合ガスの珪素原子に対する酸素原子
の成分比が100に達すると、屈折率が約1.46とな
り、それ以上では同じ屈折率で一定に推移する。従って
、本発明の第一の手段のように、上記混合ガスに含まれ
る珪素原子に対する酸素原子の成分比を100以上に保
持することによって、成膜された酸化シリコン膜中のハ
イドロカーボン基を減少させ、その屈折率を最も低い値
に維持できる。
Furthermore, in a range where hydrocarbon groups remain in the silicon oxide film, that is, in a range where the component ratio of oxygen atoms to silicon atoms in the mixed gas is less than 100, the refractive index of the silicon oxide film formed is As shown by the dotted line in Figure 1, when the oxygen/silicon composition ratio increases and decreases, and the ratio of oxygen atoms to silicon atoms in the mixed gas reaches 100, the refractive index becomes approximately 1.46. , above which the refractive index remains constant. Therefore, as in the first means of the present invention, by maintaining the component ratio of oxygen atoms to silicon atoms contained in the mixed gas at 100 or more, the hydrocarbon groups in the formed silicon oxide film are reduced. and maintain its refractive index at the lowest value.

次に、第2図は、育槻シランと酸素ガスまたは非金属酸
化物ガスを用(1でCVD法によって酸化シリコン膜を
形成する場合に、基板温度と成膜された酸化シリコン膜
中の酸化シリコン膜に残存するヒドロキシル基の5i−
0基に対する比(αo−s/α5l−0)  との関係
を実線で、基板温度と酸化シリコン膜の界面準位1(N
rb)との関係を点線で、基板温度と酸化シリコン膜の
ヒステリシスとの関係を一点鎖線で、基板温度と酸化シ
リコン膜の耐圧との関係を二点鎖線で各々示しである。
Next, Figure 2 shows the relationship between the substrate temperature and the oxidation in the formed silicon oxide film when forming a silicon oxide film by the CVD method in step 1 using Ikutsuki silane and oxygen gas or non-metal oxide gas. 5i- of the hydroxyl group remaining in the silicon film
The solid line shows the relationship between the ratio of 0 groups (αos/α5l-0) and the relationship between the substrate temperature and the interface state 1 (N
rb) is shown by a dotted line, the relationship between the substrate temperature and the hysteresis of the silicon oxide film is shown by a one-dot chain line, and the relationship between the substrate temperature and the breakdown voltage of the silicon oxide film is shown by a two-dot chain line.

なお、基板温度は/にの単位で示しである。Note that the substrate temperature is expressed in units of /.

第2図に示すように該基板温度が330℃(1/T=1
.6E!Xl0−りに満たない範囲において、成膜され
た酸化シリコン膜中に残存するヒドロキシル基は、温度
上昇に伴って漸次減少し、基板温度が330℃以上でヒ
ドロキシル基が残存しなくなる。また、酸化シリコンr
IAの界面準位ff1lb)やヒステリシス量も、基板
温度が330℃に満たない場合は、高い値から基板温度
の上昇に伴って急激に低下し、基板温度が330℃以上
では低い値が底値的に推移する。
As shown in Figure 2, the substrate temperature is 330°C (1/T=1
.. 6E! In the range below Xl0-, the hydroxyl groups remaining in the formed silicon oxide film gradually decrease as the temperature rises, and when the substrate temperature is 330° C. or higher, no hydroxyl groups remain. In addition, silicon oxide r
When the substrate temperature is less than 330°C, the IA interface state ff1lb) and the amount of hysteresis rapidly decrease from a high value as the substrate temperature rises, and when the substrate temperature is 330°C or higher, the lower value becomes the bottom value. Transition to .

これと共に、酸化シリコン膜の耐圧性も、基板温度が3
30℃以下では、耐圧が急激に高くなり、基板温度33
0℃で耐圧が3X10’v/cmに達し、飽和する。本
発明はこの事実に着目し、酸化シリコン膜の成膜に際し
ての基板温度を330℃以上とすることを提案したもの
である。
Along with this, the pressure resistance of the silicon oxide film also increases when the substrate temperature is 3.
Below 30℃, the withstand voltage increases rapidly and the substrate temperature increases to 33℃.
At 0°C, the withstand voltage reaches 3 x 10'v/cm and is saturated. The present invention focuses on this fact and proposes setting the substrate temperature at 330° C. or higher when forming a silicon oxide film.

[実 施 例] 次ぎに、第3図を参照しながら、本発明の実施例を詳細
に説明する。
[Example] Next, an example of the present invention will be described in detail with reference to FIG.

(実施例1) シリコン基板1を存機洗浄し、1%弗化水素酸にて表面
の酸化膜を除去し、純水で水洗した後、窒素ブローによ
り水分を除き、第3図に示すプラズマCVD装置内の基
板ホルダー2に固定した。排気装置4により、減圧容器
1内を減圧すると共に、基板lを基板ヒーター6により
湿度350℃に加熱した。上記減圧容器1内に笑気ガス
導入系5bから450secmの流量で笑気ガスを、モ
ノメチルシランガス導入系5aから1.5secmの流
量でモノメチルシランを各々供給し、これらをガス混合
器5Cにて混合した後、減圧容器l内に導入した。これ
により調整された減圧容器l内の混合ガスの酸素原子/
珪素原子の組成比は300である。なお、このとき同容
器l内の圧力はI Torrとした。
(Example 1) The silicon substrate 1 was cleaned in a vacuum, the oxide film on the surface was removed with 1% hydrofluoric acid, and the oxide film on the surface was removed. After washing with pure water, moisture was removed by nitrogen blowing, and the plasma shown in FIG. It was fixed to the substrate holder 2 in the CVD apparatus. The pressure inside the vacuum container 1 was reduced by the exhaust device 4, and the substrate 1 was heated to a humidity of 350° C. by the substrate heater 6. Laughing gas is supplied into the vacuum container 1 at a flow rate of 450 seconds from the laughing gas introduction system 5b, and monomethylsilane is supplied at a flow rate of 1.5 seconds from the monomethylsilane gas introduction system 5a, and these are mixed in the gas mixer 5C. After that, it was introduced into a vacuum container 1. Oxygen atoms of the mixed gas in the reduced pressure vessel l adjusted by this /
The composition ratio of silicon atoms is 300. At this time, the pressure inside the container 1 was set to I Torr.

RFjiI源3により、200 mmφ、25mm間隔
の平行平板電極に13.56MHzのRF電力を進行波
と反射波の差が15Wとなる様に印加し、グロー放電を
起こし、シリコン基板lの上にプラズマCVD法による
酸化シリコン膜を形成した。そして、その酸化シリコン
膜の膜厚が1000オングストロームになった時点で上
記RF電源3からの電力の給電を停止し、減圧容器1を
真空に維持したまま、基板1の温度を室温まで冷却した
後、同基板lを減圧容器1から取り出した。
Using the RFjiI source 3, 13.56 MHz RF power was applied to parallel plate electrodes of 200 mmφ and 25 mm intervals so that the difference between the traveling wave and the reflected wave was 15 W, causing a glow discharge and generating plasma on the silicon substrate l. A silicon oxide film was formed using the CVD method. Then, when the thickness of the silicon oxide film reaches 1000 angstroms, the power supply from the RF power source 3 is stopped, and the temperature of the substrate 1 is cooled to room temperature while maintaining the reduced pressure vessel 1 in a vacuum. , the same substrate 1 was taken out from the vacuum container 1.

こうして得られた酸化シリコン膜の赤外吸収を測定し、
膜中に含まれるハイドロカーボーン基の残存量を、5i
−0基量との比として算出したところ0であった。また
、エリプソ膜厚計ζごより屈折率を測定したところ、1
.46であった。
The infrared absorption of the silicon oxide film thus obtained was measured,
The remaining amount of hydrocarbon groups contained in the membrane is 5i
It was calculated as a ratio to the amount of -0 groups, and it was found to be 0. In addition, when the refractive index was measured using an ellipso film thickness meter ζ, it was found that 1
.. It was 46.

また比較のため、モノメチルシランガスの流量を1.5
secmと一定に維持しながら、笑気ガスの流量を0〜
600sccmの間で変化させて、減圧容器1内の混合
ガスの酸素原子/珪素原子の組成比を0〜400の範囲
で変化させ、同様の方法でシリコン基板1の上に各々酸
化シリコン膜を成膜した。こうして得られた酸化シリコ
ン薄膜中に含まれるハイドロカーポーン基の残存量と屈
折率を求めた。
For comparison, the flow rate of monomethylsilane gas was set to 1.5.
While maintaining the laughing gas flow rate at a constant value of sec.
600 sccm, the composition ratio of oxygen atoms/silicon atoms of the mixed gas in the reduced pressure vessel 1 was varied in the range of 0 to 400, and a silicon oxide film was formed on the silicon substrate 1 in the same manner. It was filmed. The remaining amount of hydrocarbon groups contained in the silicon oxide thin film thus obtained and the refractive index were determined.

この結果を、上記混合ガスの酸素原子/珪素原子の組成
比との関係で示したのが第1図である。すなわち第1図
では、酸化シリコン膜中に含まれるハイドロカーボン基
量と5i−0基mとの比及び屈折率を縦軸にとり、モノ
メチルシランと笑気ガスの混合ガスに含まれる珪素原子
に対する酸素原子の組成比を横軸にとって示しである。
FIG. 1 shows this result in relation to the oxygen atom/silicon atom composition ratio of the mixed gas. In other words, in FIG. 1, the ratio of the amount of hydrocarbon groups contained in the silicon oxide film to the 5i-0 group m and the refractive index are plotted on the vertical axis, and the ratio of oxygen to silicon atoms contained in the mixed gas of monomethylsilane and laughing gas is plotted on the vertical axis. The horizontal axis represents the atomic composition ratio.

既に述べた通り、上記混合ガスの珪素原子に対する酸素
原子の成分比を100以上とすることにより、酸化シリ
コン膜に残存するハイドロカーボン基をほぼOとするこ
とができ、同腹の屈折率を約1.46の最も低い値に維
持できる。
As already mentioned, by setting the ratio of oxygen atoms to silicon atoms in the mixed gas to 100 or more, the hydrocarbon groups remaining in the silicon oxide film can be made almost O, and the refractive index of the same gradient can be reduced to about 1. It can be maintained at the lowest value of .46.

(実施例2) 上記実施例1と同様にして得られた酸化シリコン膜の赤
外吸収を測定して、膜中に含まれるヒドロキシル基Mを
、5i−0基量との比として算出した。また、真空蒸着
法により、膜厚500オングストロームのNiHからな
るドツト電極を形成して、MO8構造を構成し、基板と
該ドツト電極間の耐圧を測定した。更に、このMO8構
造を用いて、界面準位量とC■特性のヒステリシスの大
きさを測定したところ、耐圧は1.0X10’V/cm
、界面準位31(Nfb)は、3.5XiO11ヒステ
リシスmはOであった。
(Example 2) The infrared absorption of a silicon oxide film obtained in the same manner as in Example 1 was measured, and the hydroxyl group M contained in the film was calculated as a ratio to the amount of 5i-0 groups. Furthermore, dot electrodes made of NiH with a thickness of 500 angstroms were formed by vacuum evaporation to form an MO8 structure, and the breakdown voltage between the substrate and the dot electrodes was measured. Furthermore, using this MO8 structure, we measured the amount of interface states and the magnitude of the hysteresis of the C characteristic, and found that the breakdown voltage was 1.0 x 10'V/cm.
, the interface level 31 (Nfb) was 3.5XiO11 hysteresis m was O.

また比較のため、基板温度を200℃〜400℃に変化
させて、同様の方法でシリコン基板1の上に各々酸化シ
リコン膜を成膜した。そして、上記と同様の方法で、膜
中に含まれるヒドロキシル基量と5i−0基置との比、
間膜の耐圧、界面準位量及びCV特性のヒステリシスを
各々測定した。
For comparison, silicon oxide films were each formed on the silicon substrate 1 in the same manner while changing the substrate temperature from 200° C. to 400° C. Then, in the same manner as above, the ratio of the amount of hydroxyl groups contained in the film to the 5i-0 group,
The breakdown voltage of the interlayer, the amount of interface states, and the hysteresis of CV characteristics were measured.

この結果を第2図に示す。同図は耐圧、界面準位LCV
特性のヒステリシスを縦軸にとり、基板温度をI/T 
(/K)により横軸にとって示しである。既に述べた通
り、基板温度を330℃以上(1/T=1.66xlO
−2)とすることにより、酸化シリコン膜に残存するヒ
ドロキシル基量をほぼOとすることができ、間膜の耐圧
を高く、界面準位量とCV特性を小さくすることができ
る。
The results are shown in FIG. The figure shows breakdown voltage and interface level LCV.
The vertical axis is the hysteresis of the characteristics, and the board temperature is the I/T
(/K) indicates the horizontal axis. As already mentioned, the substrate temperature should be set to 330℃ or higher (1/T=1.66xlO
-2), the amount of hydroxyl groups remaining in the silicon oxide film can be approximately O, the withstand voltage of the interlayer can be increased, and the amount of interface states and CV characteristics can be reduced.

なお、上記各実施例に示された原料、条件等は一例であ
って、これらを様々に変えて実施することも可能である
。その主なものを以下に挙げる。
It should be noted that the raw materials, conditions, etc. shown in each of the above-mentioned Examples are merely examples, and it is also possible to carry out the experiments with various changes. The main ones are listed below.

(a)上記実施例では、有機シランとしてモノメチルシ
ランを用いているが、これに代えてジメチルシラン、ト
リメチルシラン、テトラメチルシラン、及び前記の有機
シランのメチル基が他のアルキル基である有機シランを
用いても同等の結果が得られる。但し、有機シランが気
体でない場合は、該有機シランを気体にする方法、もし
くは霧状にして非金属酸化物ガスと混合する必要がある
(a) In the above examples, monomethylsilane is used as the organic silane, but instead of this, dimethylsilane, trimethylsilane, tetramethylsilane, and organic silanes in which the methyl group of the organic silane is another alkyl group can be used. Equivalent results can be obtained using . However, if the organic silane is not a gas, it is necessary to convert the organic silane into a gas or form it into a mist and mix it with the non-metal oxide gas.

(b)上記実施例では、非金属酸化物ガスとして笑気ガ
スを用いているが、これに代えて酸素等のOtガス、水
蒸気等のHOエガス、二酸化炭素などの008ガス等を
用いても同等の結果が得られる。
(b) In the above example, laughing gas is used as the non-metal oxide gas, but instead of this, Ot gas such as oxygen, HO gas such as water vapor, 008 gas such as carbon dioxide, etc. may be used. Equivalent results are obtained.

(c)上記実施例では、平行平板型プラズマCVD装置
により実施されているが、これに代えて、グロー放電に
より非金属酸化物ガスと有機シランを分解することの出
来る他の形式のCVD装置を用いても同等な結果が得ら
れる。
(c) In the above embodiment, a parallel plate type plasma CVD apparatus is used, but instead of this, another type of CVD apparatus capable of decomposing non-metal oxide gas and organic silane by glow discharge may be used. Equivalent results can be obtained by using

(d)成膜圧力、RF電力31、RF周波数、非金属酸
化物ガスと有機シランの全流量、電極面頂及び電極間隔
などの成膜条件も、グロー放電により非金屈酸化物ガス
と有機シランを分解することの出来る条件であれば、そ
れを適宜変えることは、本発明の作用、効果を失うもの
ではない。
(d) Film-forming conditions such as film-forming pressure, RF power 31, RF frequency, total flow rates of non-metallic oxide gas and organic silane, electrode surface top and electrode spacing are also controlled by glow discharge. As long as the conditions are such that the silane can be decomposed, changing the conditions as appropriate will not impair the function and effect of the present invention.

〔発明の効果コ 以上説明した通り、本発明によれば、絶縁耐圧が高く、
分極等のヒステリシス特性が小さく、電荷の蓄積が小さ
い酸化シリコン膜が得られる。
[Effects of the Invention] As explained above, according to the present invention, the dielectric strength is high;
A silicon oxide film with low hysteresis characteristics such as polarization and low charge accumulation can be obtained.

従って、薄膜トランジスタのゲート絶縁膜やバッジベー
ジジン膜などに用いるのに必要な諸特性を備えた酸化シ
リコン膜が、有機シランと酸素ガスまたは非金属酸化物
ガスとを用いたプラズマCVD法により製造が可能とな
る。
Therefore, silicon oxide films with various properties necessary for use as gate insulating films and badge-base films of thin film transistors can be manufactured by the plasma CVD method using organic silane and oxygen gas or non-metal oxide gas. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、膜中に含まれるハイドロカボーン基mと屈折
率の有機シランと非金属酸化物ガスの混合ガスに含まれ
る珪素原子に対する酸素原子の組成比に対するグラフで
ある。 第2図は、耐圧、界面準位31、CV特性のヒステリシ
スの大きさの基板温度に対するグラフである。 第3図は、本発明の実施例に用いたプラズマCVD装置
を示す概念図である。 図中で1は減圧容器、2は基板ホルダー 3はRF電源
、4は排気装[,5aはモノメチルシランガス導入系、
5bは笑気ガス導入系、5Cはガス混合器、6は基板ヒ
ーターを示す。 特許出願人 工 業 技 術 院 長 間  上 太陽誘電株式会社 同   上 信越化学工業株式会社 第1図 O 0/Si組成比 第2図 基板温度1/T(/K)
FIG. 1 is a graph of the hydrocarbon group m contained in the film and the composition ratio of oxygen atoms to silicon atoms contained in a mixed gas of organic silane and nonmetal oxide gas having a refractive index. FIG. 2 is a graph of the breakdown voltage, the interface level 31, and the magnitude of hysteresis of the CV characteristic versus the substrate temperature. FIG. 3 is a conceptual diagram showing a plasma CVD apparatus used in an example of the present invention. In the figure, 1 is a vacuum container, 2 is a substrate holder, 3 is an RF power source, 4 is an exhaust system [, 5a is a monomethylsilane gas introduction system,
5b is a laughing gas introduction system, 5C is a gas mixer, and 6 is a substrate heater. Patent Applicant: Institute of Industrial Technology, Nagama, Taiyo Yuden Co., Ltd., Shin-Etsu Chemical Co., Ltd. Figure 1 O0/Si composition ratio Figure 2 Substrate temperature 1/T (/K)

Claims (2)

【特許請求の範囲】[Claims] (1)減圧容器中にグロー放電領域を形成し、同容器中
に有機シランと酸素ガスまたは非金属酸化物ガスを導入
して基板上に酸化シリコン膜を形成する方法において、
前記減圧容器に導入される有機シランと酸素ガスまたは
非金属酸化物ガスとの混合ガスの珪素原子に対する酸素
原子の成分比を100以上とすることを特徴とする酸化
シリコン膜の製造方法。
(1) In a method of forming a glow discharge region in a reduced pressure container and introducing organic silane and oxygen gas or nonmetal oxide gas into the container to form a silicon oxide film on a substrate,
A method for producing a silicon oxide film, characterized in that the mixed gas of organic silane and oxygen gas or nonmetal oxide gas introduced into the vacuum container has a component ratio of oxygen atoms to silicon atoms of 100 or more.
(2)前記特許請求の範囲第1項において、基板の温度
を330℃以上に加熱することを特徴とする酸化シリコ
ン膜の製造方法。
(2) The method for manufacturing a silicon oxide film according to claim 1, characterized in that the temperature of the substrate is heated to 330° C. or higher.
JP63252551A 1988-10-05 1988-10-05 Method for manufacturing silicon oxide film Expired - Lifetime JP2660297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63252551A JP2660297B2 (en) 1988-10-05 1988-10-05 Method for manufacturing silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63252551A JP2660297B2 (en) 1988-10-05 1988-10-05 Method for manufacturing silicon oxide film

Publications (2)

Publication Number Publication Date
JPH0298932A true JPH0298932A (en) 1990-04-11
JP2660297B2 JP2660297B2 (en) 1997-10-08

Family

ID=17238946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252551A Expired - Lifetime JP2660297B2 (en) 1988-10-05 1988-10-05 Method for manufacturing silicon oxide film

Country Status (1)

Country Link
JP (1) JP2660297B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240459A (en) * 1993-02-16 1994-08-30 G T C:Kk Formation of silicon oxide thin film
JP2002026004A (en) * 2000-06-30 2002-01-25 Hynix Semiconductor Inc Method of forming insulating film for semiconductor device
US7465679B1 (en) 1993-02-19 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Insulating film and method of producing semiconductor device
JP2010028130A (en) * 1998-05-29 2010-02-04 Dow Corning Corp Method for producing hydrogenated silicon oxycarbide film having low dielectric constant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450429A (en) * 1987-08-20 1989-02-27 Semiconductor Energy Lab Formation of insulating film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450429A (en) * 1987-08-20 1989-02-27 Semiconductor Energy Lab Formation of insulating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240459A (en) * 1993-02-16 1994-08-30 G T C:Kk Formation of silicon oxide thin film
US7465679B1 (en) 1993-02-19 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Insulating film and method of producing semiconductor device
JP2010028130A (en) * 1998-05-29 2010-02-04 Dow Corning Corp Method for producing hydrogenated silicon oxycarbide film having low dielectric constant
JP2002026004A (en) * 2000-06-30 2002-01-25 Hynix Semiconductor Inc Method of forming insulating film for semiconductor device
JP4616492B2 (en) * 2000-06-30 2011-01-19 株式会社ハイニックスセミコンダクター Method for forming insulating film of semiconductor element

Also Published As

Publication number Publication date
JP2660297B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
KR960013151B1 (en) Chemical depositing method for silicon oxide film
JP2634743B2 (en) Low temperature chemical vapor deposition
KR100453612B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6383955B1 (en) Silicone polymer insulation film on semiconductor substrate and method for forming the film
US6514880B2 (en) Siloxan polymer film on semiconductor substrate and method for forming same
KR100443085B1 (en) A Method Of Forming Silicon Containing Thin Film by Atomic Layer Deposition Utilizing Hexachlorodisilane and ammonia
US6455445B2 (en) Silicone polymer insulation film on semiconductor substrate and method for forming the film
KR101732187B1 (en) METHOD OF FORMING CONFORMAL DIELECTRIC FILM HAVING Si-N BONDS BY PECVD
US7829159B2 (en) Method of forming organosilicon oxide film and multilayer resist structure
JPH02236282A (en) Production of silicon-containing coating,using organosilicic compound and nitrogen trifluoride
JPH0677150A (en) Deposition method of ozone/teos silicon oxide film with reduced surface susceptibility
KR20060129471A (en) Method for producing silicon oxide film
JPH05279838A (en) Formation of silicon nitride film and semiconductor device
US5061514A (en) Chemical vapor deposition (CVD) process for plasma depositing silicon carbide films onto a substrate
JPH09106986A (en) Depositing method for film of silicon dioxide containing fluorine
JPH0298932A (en) Manufacture of silicon oxide film
JPH06168937A (en) Manufacture of silicon oxide film
JP2006040936A (en) Method and apparatus of depositing insulating film
JP2004288979A (en) Method for forming insulating film
KR100926722B1 (en) The siloxane polymer film on a semiconductor substrate and its manufacturing method
JP3197008B2 (en) Silicon polymer insulating film on semiconductor substrate and method for forming the film
JP3814797B2 (en) Method for forming a silicon polymer insulating film on a semiconductor substrate
KR20180124788A (en) Method for Forming Silicon Nitride Film Selectively on Sidewalls or Flat Surfaces of Trenches
JPH0377320A (en) Low-temperature low-pressure heat cvd method
JPH07335643A (en) Film forming method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term