JPH0623903A - Transparent conductive film having high gas barrier properties - Google Patents

Transparent conductive film having high gas barrier properties

Info

Publication number
JPH0623903A
JPH0623903A JP4180904A JP18090492A JPH0623903A JP H0623903 A JPH0623903 A JP H0623903A JP 4180904 A JP4180904 A JP 4180904A JP 18090492 A JP18090492 A JP 18090492A JP H0623903 A JPH0623903 A JP H0623903A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
oxide
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4180904A
Other languages
Japanese (ja)
Other versions
JP3148368B2 (en
Inventor
Nobuhiro Fukuda
信弘 福田
Shin Fukuda
福田  伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18090492A priority Critical patent/JP3148368B2/en
Publication of JPH0623903A publication Critical patent/JPH0623903A/en
Application granted granted Critical
Publication of JP3148368B2 publication Critical patent/JP3148368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a transparent conductive film having transparency, flexibility and gas barrier properties by forming a membrane layer consisting of metal oxide such as silicon oxide and polytetrafluoroethylene on the single surface of a polymer film base material. CONSTITUTION:A membrane layer 2 with a thickness of 10-500nm having a compsn. wherein a mol ratio of at least one kind of metal oxide selected from a group consisting of silicon oxide, aluminum oxide and magnesium oxide and polytetrafluoroethylene is MO: PTFE =0.40-0.4 is formed on at least the single surface of a polymer film base material 11. A transparent conductive film 3 based on indium oxide is formed on at least one surface of this film base material to obtain a transparent conductive film having high gas barrier properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子フィルムを基材
とした透明導電性フィルムに関し、さらに詳しくは高ガ
スバリヤー性を有する透明導電性フィルムに関するもの
であり、さらには、液晶表示用として好適に使用しうる
高ガスバリヤー性透明導電性フィルムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film having a polymer film as a base material, and more particularly to a transparent conductive film having a high gas barrier property, and further used for a liquid crystal display. The present invention relates to a transparent conductive film having a high gas barrier property which can be preferably used.

【0002】[0002]

【従来の技術】従来より液晶表示用透明導電体の基材と
してはガラスが用いられきたが、近年になり、軽量であ
る、大面積化が容易である、割れない、加工性が優れて
いるという性質をもつ透明導電性フィルムが電極に用い
られる用になってきた。しかしながら、導電性フィルム
を使用した場合、フィルムを透過する水蒸気や酸素が液
晶素子の性能劣化を招くことがわかってきた。このよう
な問題を解決するために、フィルム基材に気体に対する
バリヤー性を付与する必要が明らかになった。
2. Description of the Related Art Conventionally, glass has been used as a base material for transparent conductors for liquid crystal displays, but in recent years, it is lightweight, can easily be made large in area, does not crack, and has excellent workability. A transparent conductive film having the property of being used has been used for an electrode. However, it has been found that when a conductive film is used, water vapor or oxygen that permeates the film causes performance deterioration of the liquid crystal element. In order to solve such a problem, it has become clear that it is necessary to impart a gas barrier property to the film substrate.

【0003】気体に対するバリヤー性を付与するため、
高分子フィルムの片面もしくは両面に、SiO、SiO
2 、TiO2、ZrO2 、Al23 、Ta25 、Nb2
3 、等の酸化物や窒化アルミの層を設け、これら高分
子層の少なくとも片面上に酸化インジウムを主成分とす
る被膜を形成した透明導電性フィルムが開示されている
(例えば、特開昭59−204545、特開昭63−2
05094)。しかしながら、これら酸化物や窒化物の
薄膜は、透明性、気体バリヤー性もある程度は有してい
るが、薄膜自身の性質はセラミックスの性質と同等であ
るためフレキシビリティーに欠け、薄膜にクラックが入
りやすくバリヤー性が不充分であり、高分子フィルムの
特性を充分に生かすことができない。
In order to impart a barrier property to gas,
SiO, SiO on one or both sides of the polymer film
2 , TiO 2 , ZrO 2 , Al 2 O 3 , Ta 2 O 5 , Nb 2
There is disclosed a transparent conductive film in which a layer of oxide such as O 3 or aluminum nitride is provided, and a coating film containing indium oxide as a main component is formed on at least one surface of these polymer layers (for example, Japanese Patent Laid-Open Publication No. Sho. 59-204545, JP-A-63-2
05094). However, thin films of these oxides and nitrides have transparency and gas barrier properties to some extent, but lack the flexibility because the properties of the thin film itself are similar to those of ceramics, and the thin film is not cracked. It easily enters and the barrier property is insufficient, and the characteristics of the polymer film cannot be fully utilized.

【0004】また、高ガスバリヤー性を得るためには、
包装材料の分野で用いられるアルミニウム等の金属を蒸
着を施すと、可視光の透過性が全く損なわれてしまうと
いう欠点があった。
Further, in order to obtain a high gas barrier property,
When a metal such as aluminum used in the field of packaging materials is vapor-deposited, there is a drawback that the visible light transmittance is impaired.

【0005】[0005]

【発明が解決しょうとする課題】上記のように、従来の
技術では、透明導電性フィルムにおいて透明性ならびに
フレキシビリティー、ガスバリヤー性を同時に成立せす
ることは困難であった。本発明の目的は上記の従来の方
法の欠点を解決し、透明性、フレキシビリティーおよび
ガスバリヤー性を有する透明導電性フィルムを提供する
ことにある。
As described above, according to the prior art, it was difficult to simultaneously achieve transparency, flexibility and gas barrier property in the transparent conductive film. An object of the present invention is to solve the above-mentioned drawbacks of the conventional methods and provide a transparent conductive film having transparency, flexibility and gas barrier property.

【0006】[0006]

【課題を解決するための手段】上記の問題を解決するた
めに鋭意研究を重ねた結果、可視光領域において透過率
が高く、曲げ試験においてもクラックを発生せず、か
つ、気体の透過率が著しく低い透明導電性フィルムとし
て、高分子フィルム基材の少なくとも片面上に、酸化珪
素、酸化アルミニウム、酸化マグネシウム、酸化チタ
ン、酸化ジルコニウムの群から選ばれた少なくとも1つ
以上の金属酸化物(MO)とポリ4弗化エチレン(PT
FE)がモル比で、PTFE/MO=0.04〜0.4
となされた層(MO+PTFE薄膜)を特定の厚みに形
成したものを見いだし、本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the transmittance is high in the visible light region, cracks are not generated even in a bending test, and the gas transmittance is high. As a remarkably low transparent conductive film, at least one metal oxide (MO) selected from the group consisting of silicon oxide, aluminum oxide, magnesium oxide, titanium oxide and zirconium oxide on at least one surface of a polymer film substrate. And polytetrafluoroethylene (PT
FE) is a molar ratio of PTFE / MO = 0.04 to 0.4
The present invention was accomplished by finding a layer (MO + PTFE thin film) having a specific thickness formed in a specific thickness.

【0007】すなわち、本発明は、高分子フィルム基材
の少なくとも片面上に、酸化珪素、酸化アルミニウム、
酸化マグネシウム、酸化チタン、酸化ジルコニウムから
なる群から選ばれた少なくとも1つ以上の金属酸化物
(以下MOと略記)とポリ4弗化エチレン(以下PTF
Eと略記)がモル比で、MO:PTFE=0.04〜
0.4である組成物の10〜500nmの膜厚の薄膜層
(MO+PTFE薄膜)が形成され、該フィルム基材の
少なくとも一方にインジウム酸化物を主成分とする透明
な導電性膜が形成されてなる高ガスバリヤー性の透明導
電性フィルム、を提供するものである。
That is, according to the present invention, at least one surface of a polymer film substrate is provided with silicon oxide, aluminum oxide,
At least one metal oxide (hereinafter abbreviated as MO) selected from the group consisting of magnesium oxide, titanium oxide, and zirconium oxide, and polytetrafluoroethylene (hereinafter PTF).
(Abbreviated as E) is a molar ratio of MO: PTFE = 0.04 to
A thin film layer (MO + PTFE thin film) having a thickness of 10 to 500 nm of the composition of 0.4 is formed, and a transparent conductive film containing indium oxide as a main component is formed on at least one of the film base materials. And a transparent conductive film having a high gas barrier property.

【0008】本発明の透明導電性フィルムとしては、種
々の態様がありうるが、例えば、図5〜図8にその一例
を示した。ここで、1は、高分子フィルム基材であり、
2はMO+PTFE薄膜層であり、3は透明な導電性膜
である。
The transparent conductive film of the present invention may have various modes, and examples thereof are shown in FIGS. 5 to 8, for example. Here, 1 is a polymer film substrate,
2 is a MO + PTFE thin film layer, and 3 is a transparent conductive film.

【0009】本発明において、基材となる高分子フィル
ムは、とくに限定しないが、透明導電性フィルムの製造
工程で100℃〜200℃になるので、ある程度の耐熱
性を持つことが望ましく、ポリエステル、ポリエーテル
スルフォン、ポリカーボネート、ポリイミド、ポリオレ
フィンフィルム等が挙げられ、特に、ポリエーテルスル
フォン、ポリイミドが好ましい。なお、基材フィルムの
厚みは特に限定するものではないが、通常5〜1000
μm 程度が通常使用される。もちろん、目的に応じてこ
れ以外のものも使用可能である。
In the present invention, the polymer film as a base material is not particularly limited, but since it is 100 ° C. to 200 ° C. in the manufacturing process of the transparent conductive film, it is desirable that it has some heat resistance. Examples thereof include polyether sulfone, polycarbonate, polyimide, polyolefin film and the like, with polyether sulfone and polyimide being particularly preferable. The thickness of the base film is not particularly limited, but is usually 5 to 1000.
About μm is usually used. Of course, other materials can be used depending on the purpose.

【0010】本発明で用いられるMO+PTFE薄膜
は、10nm以上500nm以下の膜厚で均一な連続膜
とすることが好ましい。これにより、透明性を損なわ
ず、優れたフレキシビリティーと優れた高ガスバリヤー
性を発揮する。10nm未満ではガスバリヤー性が小さ
く、膜厚の増加とともにガスバリヤー性は増加するが、
100nm以上ではその性質は飽和傾向を示し、さらに
500nmを越えると、透明性が減少するので、本発明
のMO+PTFE薄膜の膜厚は、10〜500nmの範
囲が好ましい。さらに、好ましくは20〜300nmの
範囲である。
The MO + PTFE thin film used in the present invention is preferably a uniform continuous film having a film thickness of 10 nm or more and 500 nm or less. As a result, excellent flexibility and excellent high gas barrier property are exhibited without impairing transparency. When the thickness is less than 10 nm, the gas barrier property is small, and the gas barrier property increases as the film thickness increases.
When the thickness is 100 nm or more, the property tends to be saturated, and when it exceeds 500 nm, the transparency is reduced. Therefore, the thickness of the MO + PTFE thin film of the present invention is preferably in the range of 10 to 500 nm. Furthermore, it is preferably in the range of 20 to 300 nm.

【0011】本発明における膜厚の測定には、触針粗さ
計、繰り返し反射干渉計、マイクロバランス、水晶振動
子を用いる方法等があり、特に限定するものではない
が、例えば、水晶振動子法では成膜中に膜厚測定が可能
なので所望の膜厚を得るのに適している。MO+PFT
E薄膜中のモル組成比PTFE/MOの増加にともな
い、フレキシビリティーは増加するが、一方、透明性の
低下が見られるため、本発明の膜におけるモル組成比P
TFE/MOの範囲としては、0.04〜0.4が好ま
しい。さらに好ましくは、0.04〜0.2である。
In the present invention, the film thickness can be measured by a stylus roughness meter, a repetitive reflection interferometer, a microbalance, a method using a quartz oscillator, and the like, although not particularly limited. The method is suitable for obtaining a desired film thickness because the film thickness can be measured during film formation. MO + PFT
E The flexibility increases as the molar composition ratio PTFE / MO in the thin film increases, but on the other hand, the transparency decreases, so that the molar composition ratio P in the film of the present invention increases.
The range of TFE / MO is preferably 0.04 to 0.4. More preferably, it is 0.04 to 0.2.

【0012】本発明において、MO+PTFE薄膜を作
成する手段は特に限定されないが、公知の成膜法である
マグネトロンスパッタ法やイオンビームスパッタ法等の
物理気相蒸着法で作成することができる。また、適宜、
真空蒸着法や電子ビーム蒸着法、イオンプレーティング
法を組み合わせることができる。基材が高分子材料であ
り、金属やセラミックスに比べると耐熱性に劣るため、
なるべく低い温度で作成することが好ましい。この目的
のために、基材冷却を行いないつつ、所望の金属酸化物
とPTFEをターゲットにしアルゴンイオンによりスパ
ッタし室温で成膜するマグネトロンスパッタ法またはイ
オンビームスパッタ法が有効である。PTFEの組成を
制御は、スパッタ法においてはターゲット表面における
金属酸化物とPTFEの占める面積の割合を変化させる
ことによって行うことができる。あるいは、反応性ガス
としてフルオロカーボンを使用した反応性スパッタ法、
反応性イオンプレーティング法等により製造する場合は
フルオロカーボンの流量を制御することによりPTFE
の組成比を制御することが可能である。なお、組成の測
定は、赤外分光法やX線光電子分光法を用いることがで
きる。
In the present invention, the means for forming the MO + PTFE thin film is not particularly limited, but the MO + PTFE thin film can be formed by a known vapor deposition method such as magnetron sputtering method or ion beam sputtering method. Also, as appropriate
A vacuum vapor deposition method, an electron beam vapor deposition method, and an ion plating method can be combined. Since the base material is a polymer material and it is inferior in heat resistance to metals and ceramics,
It is preferable to make it at a temperature as low as possible. For this purpose, a magnetron sputtering method or an ion beam sputtering method in which a desired metal oxide and PTFE are used as a target and sputtering is performed with argon ions to form a film at room temperature without cooling the substrate is effective. The composition of PTFE can be controlled by changing the ratio of the area occupied by the metal oxide and PTFE on the target surface in the sputtering method. Alternatively, a reactive sputtering method using fluorocarbon as a reactive gas,
When producing by reactive ion plating method etc.
It is possible to control the composition ratio of. The composition can be measured by infrared spectroscopy or X-ray photoelectron spectroscopy.

【0013】MO+PTFE薄膜を形成する前に高分子
フィルム基材に前処理として、コロナ放電処理、プラズ
マ処理、グロー放電処理、逆スパッタ処理、粗面化処
理、化学処理などの表面処理や公知のアンダーコートを
施したすることを適宜行うことも好ましい。なお、本発
明のMO+PTFE膜は化学的に安定であるが、長期に
わたって過酷な条件で使用される場合には必要に応じて
MO+PTFE膜上に保護層を形成することが望まし
い。保護層には透明な樹脂を用いればよく、ポリエステ
ル樹脂、アクリル樹脂、ビニル樹脂、ポリカーボネート
等が挙がられる。
Before the MO + PTFE thin film is formed, the polymer film substrate is pretreated by corona discharge treatment, plasma treatment, glow discharge treatment, reverse sputtering treatment, surface roughening treatment, chemical treatment, or other known surface treatment. It is also preferable to appropriately apply the coating. Although the MO + PTFE film of the present invention is chemically stable, it is desirable to form a protective layer on the MO + PTFE film if necessary when used under severe conditions for a long period of time. A transparent resin may be used for the protective layer, and examples thereof include polyester resin, acrylic resin, vinyl resin, and polycarbonate.

【0014】[0014]

【発明の効果】本発明の高ガスバリヤー性透明導電性フ
ィルムは、上述のごとく構成したので、以下のような優
れた効果を有する。 (1)ガスバリヤー性に優れる。 (2)フレキシビリティーに優れる。 (3)透明性に優れる。 (4)電極として使用できる。
The high gas barrier transparent conductive film of the present invention, which is constructed as described above, has the following excellent effects. (1) Excellent gas barrier property. (2) Excellent flexibility. (3) Excellent transparency. (4) It can be used as an electrode.

【0015】[0015]

【実施例】【Example】

実施例1 基材フィルムとして50μmのPESを用い、マグネト
ロンスパッタ法によりSiO2 とPTFEをターゲット
として、モル組成比PTFE/MO=0.1の膜を、膜
厚10nmから1000nmの範囲で作成し、酸化イン
ジュウムを主成分とする導電膜層をその上に20nm作
成した。酸素ガス透過率および可視光の透過率を測定し
た。図1にガス透過率と膜厚の関係を示し、図2に可視
光の透過率と膜厚の関係を示した。膜厚50nmでの酸
素の透過率は、0.5cc/m2/24hr(1気圧)
であった。
Example 1 Using PES of 50 μm as a base material film, a film having a molar composition ratio of PTFE / MO = 0.1 was prepared in a film thickness range of 10 nm to 1000 nm by targeting SiO 2 and PTFE by magnetron sputtering. A conductive film layer containing indium oxide as a main component was formed thereon with a thickness of 20 nm. The oxygen gas transmittance and the visible light transmittance were measured. FIG. 1 shows the relationship between gas permeability and film thickness, and FIG. 2 shows the relationship between visible light transmittance and film thickness. Transmittance of oxygen in the film thickness 50nm is, 0.5cc / m 2 / 24hr ( 1 atm)
Met.

【0016】実施例2 基材フィルムとして100μmのPESを用い、マグネ
トロンスパッタ法によりSiO2 とPTFEをターゲッ
トとして、膜厚100nmの膜を作成し曲げ試験を行っ
た。膜のモル組成比PTFE/MOの値を変化させた膜
を作成し、クラックが発生する時の曲率半径を調査し
た。図3に、クラックが発生した曲率半径と、モル組成
比PTFE/MOの関係を示した。
Example 2 A 100-μm thick PES film was used as a substrate film, and a 100 nm-thick film was formed by a magnetron sputtering method using SiO 2 and PTFE as targets, and a bending test was conducted. A film was prepared by changing the value of the molar composition ratio PTFE / MO of the film, and the curvature radius when cracks were generated was investigated. FIG. 3 shows the relationship between the radius of curvature in which a crack is generated and the molar composition ratio PTFE / MO.

【0017】実施例3 基材フィルムとして100μmのPESを用い、マグネ
トロンスパッタ法によりSiO2 とPTFEをターゲッ
トとして、膜のモル組成比PTFE/MOの値を変化さ
せた膜を作成し、可視光の透過率を測定した。図4は、
モル組成比PTFE/MOと可視光の透過率の関係を示
したものである。
Example 3 A PES film having a thickness of 100 μm was used as a base film, and a film was formed by changing the molar composition ratio PTFE / MO of the film by targeting SiO 2 and PTFE by a magnetron sputtering method. The transmittance was measured. Figure 4
It shows the relationship between the molar composition ratio PTFE / MO and the transmittance of visible light.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス透過率とガスバリヤー層の膜厚の関係を示
す図。
FIG. 1 is a diagram showing a relationship between gas permeability and film thickness of a gas barrier layer.

【図2】可視光の透過率とガスバリヤー層の膜厚との関
係を示す図。
FIG. 2 is a diagram showing the relationship between the transmittance of visible light and the film thickness of a gas barrier layer.

【図3】クラックが発生した曲率半径と、モル組成比P
TFE/MOの関係示す図。
FIG. 3 is a curvature radius in which a crack is generated and a molar composition ratio P.
The figure which shows the relationship of TFE / MO.

【図4】可視光の透過率とモル組成比PTFE/MOと
の関係を示す図。
FIG. 4 is a diagram showing the relationship between the transmittance of visible light and the molar composition ratio PTFE / MO.

【図5】本発明の導電性フィルムの層構成を示す模式
図。
FIG. 5 is a schematic view showing a layer structure of the conductive film of the present invention.

【図6】本発明の導電性フィルムの層構成を示す模式
図。
FIG. 6 is a schematic diagram showing a layer structure of a conductive film of the present invention.

【図7】本発明の導電性フィルムの層構成を示す模式
図。
FIG. 7 is a schematic diagram showing a layer structure of a conductive film of the present invention.

【図8】本発明の導電性フィルムの層構成を示す模式
図。
FIG. 8 is a schematic diagram showing the layer structure of the conductive film of the present invention.

【符号の説明】[Explanation of symbols]

1 高分子フィルム基材層 2 MO+PTFE薄膜層 3 透明な導電性膜 1 Polymer Film Base Layer 2 MO + PTFE Thin Film Layer 3 Transparent Conductive Film

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08K 3/22 C08L 27/12 KJG 9166−4J 81/06 LRF 7308−4J Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location C08K 3/22 C08L 27/12 KJG 9166-4J 81/06 LRF 7308-4J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子フィルム基材の少なくとも片面上
に、酸化珪素、酸化アルミニウム、酸化マグネシウム、
酸化チタン、酸化ジルコニウムからなる群から選ばれた
少なくとも1つ以上の金属酸化物(以下MOと略記)と
ポリ4弗化エチレン(以下PTFEと略記)がモル比
で、MO:PTFE=0.04〜0.4である組成物の
10〜500nmの膜厚の薄膜層が形成され、該フィル
ム基材の少なくとも一方にインジウム酸化物を主成分と
する透明な導電性膜が形成されてなる高ガスバリヤー性
の透明導電性フィルム。
1. Silicon oxide, aluminum oxide, magnesium oxide, on at least one surface of a polymer film substrate,
At least one metal oxide (hereinafter abbreviated as MO) selected from the group consisting of titanium oxide and zirconium oxide and polytetrafluoroethylene (hereinafter abbreviated as PTFE) are in a molar ratio of MO: PTFE = 0.04. A high gas in which a thin film layer having a thickness of 10 to 500 nm having a composition of 0.4 to 0.4 is formed, and a transparent conductive film containing indium oxide as a main component is formed on at least one of the film base materials. Barrier transparent conductive film.
【請求項2】 高分子フィルム基材がポリエーテルスル
フォンである請求項1記載の高ガスバリヤー性の透明導
電性フィルム。
2. The transparent conductive film having a high gas barrier property according to claim 1, wherein the polymer film substrate is polyether sulfone.
JP18090492A 1992-07-08 1992-07-08 High gas barrier transparent conductive film Expired - Fee Related JP3148368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18090492A JP3148368B2 (en) 1992-07-08 1992-07-08 High gas barrier transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18090492A JP3148368B2 (en) 1992-07-08 1992-07-08 High gas barrier transparent conductive film

Publications (2)

Publication Number Publication Date
JPH0623903A true JPH0623903A (en) 1994-02-01
JP3148368B2 JP3148368B2 (en) 2001-03-19

Family

ID=16091342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18090492A Expired - Fee Related JP3148368B2 (en) 1992-07-08 1992-07-08 High gas barrier transparent conductive film

Country Status (1)

Country Link
JP (1) JP3148368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306852B2 (en) * 2001-06-08 2007-12-11 Dai Nippon Printing Co.,Ltd. Gas barrier film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306852B2 (en) * 2001-06-08 2007-12-11 Dai Nippon Printing Co.,Ltd. Gas barrier film

Also Published As

Publication number Publication date
JP3148368B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP3980643B2 (en) Method for coating substrate with titanium dioxide
US5728456A (en) Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
EP0657562B1 (en) Durable sputtered metal oxide coating
JP3464785B2 (en) Improved anti-reflective composites
US4585689A (en) Transparent conductive optical device and a process for the production thereof
JPS6059864B2 (en) Articles with composite membranes
JP4287001B2 (en) Transparent conductive laminate
JPS6273202A (en) Production of thin optical film
JP3148368B2 (en) High gas barrier transparent conductive film
JPH0631850A (en) High gas barrier transparent conductive film
JPS6082660A (en) Formation of oxide layer
JPH06306591A (en) Production of water-repellent hard-coated coating film
JPH08132554A (en) Transparent conductive film
JP3489844B2 (en) Transparent conductive film and method for producing the same
JP3501819B2 (en) Transparent conductive film with excellent flatness
JPS61183810A (en) Transparent electrode
JPH05221689A (en) Radiant heat-shield glass
JP2004071171A (en) Transparent conductive laminate for touch panel
JPH09226047A (en) Transparent gas barrier film
JP4316868B2 (en) Transparent conductive laminate
JPH0666124B2 (en) Conductive laminate
JPH08136940A (en) Electrode film for liquid crystal display element
JPH09262927A (en) Reflecting plate
JPS61124902A (en) Formation of heat ray reflecting film
JP2001126538A (en) Transparent, conductive stacked body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees