JPH0623656A - Analysis sample section polishing method, analysis sample section polishing device, and sample holder for detcting section polishing work terminal - Google Patents

Analysis sample section polishing method, analysis sample section polishing device, and sample holder for detcting section polishing work terminal

Info

Publication number
JPH0623656A
JPH0623656A JP20591292A JP20591292A JPH0623656A JP H0623656 A JPH0623656 A JP H0623656A JP 20591292 A JP20591292 A JP 20591292A JP 20591292 A JP20591292 A JP 20591292A JP H0623656 A JPH0623656 A JP H0623656A
Authority
JP
Japan
Prior art keywords
sample
polishing
section
cross
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20591292A
Other languages
Japanese (ja)
Inventor
Fumitoshi Yasuo
文利 安尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP20591292A priority Critical patent/JPH0623656A/en
Publication of JPH0623656A publication Critical patent/JPH0623656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To perform stable grinding regardless of the degree of the skill of an operator. CONSTITUTION:An analysis sample section grinding device comprises a grinding roller 100 to grind an analysis sample 900, a sample stage 200 to which an analysis sample 900 is fixed, and a spring 270 to press the analysis sample 900, fixed to the sample stage 200, against the grinding roller 100 by means of a given pressure. The sample stage 200 is designed to arbitrarily set an angle between the analysis sample 900 fixed to the sample stage 200, and the rotary shaft 110 of the grinding roller 100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体チップ等の解析
試料における任意部分の断面を得るための解析試料断面
研磨方法、解析試料断面研磨装置及び断面研磨加工終点
検知用試料ホルダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical sample cross-section polishing method, an analytical sample cross-section polishing apparatus and a sample holder for detecting a cross-section polishing end point for obtaining a cross section of an arbitrary portion of an analysis sample such as a semiconductor chip.

【0002】[0002]

【従来の技術】半導体チップ等の解析試料の断面を得る
従来の方法について図7〜図10を参照しつつ説明す
る。なお、以下の説明では、半導体チップを解析試料90
0 とし、この解析試料900の表面に付着した微小異物910
の断面を得るようにしている。
2. Description of the Related Art A conventional method for obtaining a cross section of an analysis sample such as a semiconductor chip will be described with reference to FIGS. In the following description, the semiconductor chip is referred to as the analysis sample 90.
0, and the minute foreign matter 910 adhering to the surface of this analysis sample 900
I'm trying to get the cross section.

【0003】『へき開法』へき開法は、図7 (A) に
示すように、微小異物910 の所望の断面の延長線Lと端
部とが交わる点にガラス切りで傷990 を付け、図7
(B)に示すようにこの傷990 を元にへき開して断面を
得るものである。
"Cleavage method" In the cleavage method, as shown in FIG. 7 (A), a scratch 990 is made by cutting a glass at a point where an extension line L of a desired cross section of a minute foreign substance 910 intersects with an end,
As shown in (B), a cross section is obtained by cleaving from the scratch 990.

【0004】『ダイシング法』断面を得たい微小異物
910 の近くをダインシグソー800 によって切断すること
によって得られた断面に研磨フィルム820 等による平面
研磨を施すことによって微小異物910 の断面を得る。平
面研磨は、解析試料910 と3つのダミー811(ただし、図
面では2つのダミーしか示されていない) とを研磨台81
0 に取り付け、当該研磨台810 を矢印α方向に動かして
行う。なお、図面中の920 は、微小異物910 の位置を表
示するためのレーザマーカーを示している。
"Dicing method" Fine foreign matter for obtaining cross section
The cross section obtained by cutting the vicinity of 910 with a dyne sig saw 800 is subjected to planar polishing with a polishing film 820 or the like to obtain a cross section of the minute foreign matter 910. For surface polishing, an analysis sample 910 and three dummy 811 (however, only two dummy are shown in the drawing) are used as a polishing table 81.
Then, the polishing table 810 is attached to 0 and the polishing table 810 is moved in the direction of the arrow α. Note that 920 in the drawing indicates a laser marker for displaying the position of the minute foreign substance 910.

【0005】『集束イオンビーム法』図9 (B) に示
すように、微小異物910 が一辺の上に含まれる長方形状
の穴960 を集束イオンビーム装置(以下、『FIB』と
する。)からのイオンビームIBによって開けることに
よって微小異物910 の断面を得る。
[Focused Ion Beam Method] As shown in FIG. 9B, a rectangular hole 960 having a minute foreign substance 910 on one side is formed from a focused ion beam apparatus (hereinafter referred to as "FIB"). The cross section of the minute foreign substance 910 is obtained by opening with the ion beam IB.

【0006】『ダイシング、FIB併用法』微小異物
910 にできるだけ近い位置をダイシングソー800 によっ
て切断し (図10(B)参照)、この断面を含む領域を
FIBによって穴開け加工して、微小異物910 の断面を
得る。ダイシングソー800 による切断の後、必要に応じ
て断面の平面研磨を行う。
"Dicing and FIB combined method" Micro foreign matter
A position as close as possible to 910 is cut by a dicing saw 800 (see FIG. 10B), and a region including this cross section is perforated by FIB to obtain a cross section of the minute foreign substance 910. After cutting with a dicing saw 800, if necessary, the cross-section is flat-polished.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の解析試料断面研磨方法にはそれぞれ以下のよう
な問題点がある。まず、へき開法は手作業で行われるた
め、微小異物910 の断面を選択的に得ることが非常に難
しい。
However, each of the above-described conventional analytical sample cross-section polishing methods has the following problems. First, since the cleaving method is performed manually, it is very difficult to selectively obtain the cross section of the minute foreign matter 910.

【0008】ダイシング法は、ミクロンオーダーの位置
精度で微小異物910 の断面を得ることができるが、ダイ
シングの段階で発生するチッピング(エッジ部の欠け)
を除去する断面研磨に長時間を要する。研磨時間を短縮
するには、微小異物910 にできるだけ近い位置で切断を
行う必要があるが、チッピングで微小異物910 を破損す
る可能性が高く、熟練が必要となる。
The dicing method can obtain a cross section of the minute foreign substance 910 with a positional accuracy of the order of microns, but chipping (edge portion chipping) occurs at the dicing stage.
It takes a long time to polish the cross section to remove the. In order to reduce the polishing time, it is necessary to perform cutting at a position as close as possible to the minute foreign matter 910, but chipping is likely to damage the minute foreign matter 910, and skill is required.

【0009】また、集束イオンビーム法では、1ミクロ
ン以下の精度で微小異物910 の断面を得ることができる
が、穴960 の側面の一部として微小異物910 の断面を得
るため、当該断面を垂直な方向から観察することができ
ない。励起源840 とEDX検出器或いはイオンガン830
等が略同一方向から断面に向かっている装置でなけれ
ば、この断面の分析は行えない (図9 (D) 参照) 。
In the focused ion beam method, the cross section of the minute foreign matter 910 can be obtained with an accuracy of 1 micron or less. However, since the cross section of the minute foreign matter 910 is obtained as a part of the side surface of the hole 960, the cross section is vertical. It cannot be observed from all directions. Excitation source 840 and EDX detector or ion gun 830
Unless the devices are such that the same goes from the same direction to the cross section, this cross section cannot be analyzed (see FIG. 9 (D)).

【0010】さらに、ダイシング、FIB併用法では、
断面930 に垂直な方向からの観察が可能になり、分析時
においても集束イオンビーム法よりはイオンガン840 や
励起源とEDX検出器との角度等に関する制限が緩和さ
れる。しかし、その制限も程度の問題であって依然とし
て存在している。すなわち、図10(J)に示すよう
に、穴960 の底面部が長いのでイオンガン840 等の邪魔
になることがある。また、図10(K)に示すように、
底面部が短ければイオンガン840 等の邪魔にならない。
一方、ダイシングと平面研磨との段階において、ダイシ
ング法と同様の時間と熟練との問題がある。しかも、F
IBによる穴開け加工が加わるため、加工に要する時間
はさらに長くなる。
Further, in the dicing / FIB combination method,
Observation from a direction perpendicular to the cross section 930 becomes possible, and restrictions on the angle between the ion gun 840 and the excitation source and the EDX detector are relaxed during analysis as well as the focused ion beam method. However, the limitation still exists as a matter of degree. That is, as shown in FIG. 10 (J), since the bottom portion of the hole 960 is long, it may interfere with the ion gun 840 or the like. In addition, as shown in FIG.
If the bottom is short, it will not interfere with the ion gun 840.
On the other hand, in the steps of dicing and surface polishing, there are problems of time and skill similar to those of the dicing method. Moreover, F
Since the boring process by IB is added, the time required for the process is further lengthened.

【0011】なお、FIBによる穴開け加工は、イオン
ビームのビーム電流とビーム径とを段階的に小さく切り
換えながら行うが、この切換はオペレータが加工中に断
面の形状を確認しながら行わなければならないので、オ
ペレータの熟練度に大きく左右される。また、作業性に
も劣る。
The FIB drilling is carried out by gradually changing the beam current and the beam diameter of the ion beam, and this switching must be carried out by the operator while confirming the cross-sectional shape during processing. Therefore, it greatly depends on the skill level of the operator. Also, the workability is poor.

【0012】本発明は上記事情に鑑みて創案されたもの
で、オペレータの熟練度に無関係に安定した研磨が可能
な解析試料断面研磨装置を提供することを目的としてい
る。
The present invention was devised in view of the above circumstances, and an object thereof is to provide an analytical sample cross-section polishing apparatus capable of performing stable polishing regardless of the skill of an operator.

【0013】[0013]

【課題を解決するための手段】本発明に係る解析試料断
面研磨方法は、解析試料断面を解析箇所を有する平面に
対して鋭角になるように研磨する第1工程と、該第1工
程後、前記試料の縁部から前記解析箇所の断面を得るよ
うに穴開け加工を行う第2工程とを有している。
A method for polishing an analytical sample cross section according to the present invention comprises a first step of polishing an analytical sample cross section at an acute angle with respect to a plane having an analysis point, and after the first step, A second step of performing a drilling process so as to obtain a cross section of the analysis location from the edge of the sample.

【0014】また、本発明に係る解析試料断面研磨装置
は、解析試料を研磨する研磨ローラと、前記解析試料が
固定される試料ステージと、この試料ステージに固定さ
れた解析試料を前記研磨ローラに対して所定の圧力で押
しつける加圧手段とを備えており、前記試料ステージは
固定された解析試料と研磨ローラの回転軸との間の角度
を任意に設定できるようになっている。
Further, the analytical sample cross-section polishing apparatus according to the present invention comprises a polishing roller for polishing the analytical sample, a sample stage on which the analytical sample is fixed, and an analytical sample fixed on the sample stage on the polishing roller. On the other hand, the sample stage is provided with a pressing means for pressing it with a predetermined pressure, and the sample stage can arbitrarily set an angle between the fixed analysis sample and the rotation axis of the polishing roller.

【0015】さらに、本発明に係る断面研磨加工終点検
知用試料ホルダは、収束イオンビーム装置による穴開け
加工の際に加工対象たる解析試料を保持し、穴開け加工
の終点を検知する断面研磨加工終点検知用試料ホルダで
あって、解析試料と電気的に接続されるホルダ本体と、
このホルダ本体とは電気的に絶縁された電極部と、この
電極部に接続された電流計とを備えており、収束イオン
ビーム装置のイオンビームの電荷が電極部に流れ込んで
いるか否かを電流計で検知するようにしている。
Further, the sample holder for detecting the end point of the cross-section polishing according to the present invention holds the analysis sample to be processed during the boring process by the focused ion beam device and detects the end point of the boring process. A sample holder for end point detection, which is a holder main body electrically connected to an analysis sample,
The holder body is provided with an electrically insulated electrode portion and an ammeter connected to the electrode portion, and it is determined whether or not the electric charge of the ion beam of the focused ion beam device flows into the electrode portion. I detect it with a total.

【0016】[0016]

【実施例】図1は本発明の一実施例に係る解析試料断面
研磨装置の概略的正面図、図2はこの解析試料断面研磨
装置の概略的平面図、図3はこの解析試料断面研磨装置
を用いた解析試料の研磨手順の説明図、図4は本発明の
一実施例に係る解析試料断面研磨方法の手順を示す説明
図、図5は本発明の一実施例に係る解析試料断面研磨装
置による解析試料の研磨に用いられる断面研磨加工終点
検知用試料ホルダの概略的断面図、図6はこの断面研磨
加工終点検知用試料ホルダによる終点検知の手順を示す
説明図である。
1 is a schematic front view of an analytical sample cross-section polishing apparatus according to an embodiment of the present invention, FIG. 2 is a schematic plan view of this analytical sample cross-section polishing apparatus, and FIG. 3 is this analytical sample cross-section polishing apparatus. FIG. 4 is an explanatory view of a polishing procedure of an analytical sample using the method of FIG. 4, FIG. 4 is an explanatory view showing a procedure of a method of polishing an analytical sample cross section according to one embodiment of the present invention, and FIG. FIG. 6 is a schematic cross-sectional view of a sample holder for detecting a cross-section polishing end point used for polishing an analytical sample by the apparatus, and FIG. 6 is an explanatory diagram showing a procedure of end-point detection by the sample holder for detecting a cross-section polishing end point.

【0017】本実施例に係る解析試料断面研磨装置は、
解析試料を研磨する研磨ローラ100と、前記解析試料900
が固定される試料ステージ200 と、この試料ステージ2
00に固定された解析試料900 を前記研磨ローラ100 に対
して所定の圧力で押しつける加圧手段とを備えており、
前記試料ステージ200 は固定された解析試料900 と研磨
ローラ100 の回転軸110 との間の角度を任意に設定でき
るようになっている。
The analytical sample cross-section polishing apparatus according to this embodiment is
A polishing roller 100 for polishing an analysis sample and the analysis sample 900
The sample stage 200 that holds the
The analysis sample 900 fixed to 00 is provided with a pressing unit that presses the polishing sample 100 against the polishing roller 100 with a predetermined pressure,
In the sample stage 200, the angle between the fixed analysis sample 900 and the rotating shaft 110 of the polishing roller 100 can be arbitrarily set.

【0018】この解析試料断面研磨装置は、基台300 の
上に設けられている。かかる解析試料断面研磨装置を構
成する研磨ローラ100 は、回転軸110 をもって一対の支
持部120 で回転自在に支持されており、研磨ローラ駆動
用モータ130 の出力が研磨ローラ駆動用ベルト140 を介
して回転されるようになっている。
The analytical sample cross-section polishing apparatus is provided on a base 300. The polishing roller 100, which constitutes such an analytical sample cross-section polishing apparatus, is rotatably supported by a pair of supporting portions 120 with a rotating shaft 110, and the output of the polishing roller drive motor 130 is transmitted via the polishing roller drive belt 140. It is designed to be rotated.

【0019】試料ステージ200 は、一対のガイドレール
210 によって前記研磨ローラ100 に対して接離移動可能
になっている。かかる試料ステージ200 と基台300 との
間には加圧手段たるスプリング270 が架け渡されてお
り、試料ステージ200 を研磨ローラ100 の方に付勢して
いる。スプリング270 の引っ張り力はその長さを変える
ことによって変化させられるようになっている。
The sample stage 200 comprises a pair of guide rails.
210 makes it possible to move toward and away from the polishing roller 100. A spring 270, which is a pressing means, is bridged between the sample stage 200 and the base 300, and urges the sample stage 200 toward the polishing roller 100. The pulling force of the spring 270 can be changed by changing its length.

【0020】前記試料ステージ200 には、解析試料900
が直接固定される試料ステージブロック220 と、この試
料ステージブロック220 が固定されるブロック固定台23
0 と、このブロック固定台230 を前記研磨ローラ100 の
回転軸110 と平行に移動させるスライドレール240 及び
スライド用モータ250 とが設けられている。
On the sample stage 200, an analysis sample 900
Is fixed directly to the sample stage block 220 and the block fixing base 23 to which the sample stage block 220 is fixed.
0, a slide rail 240 for moving the block fixing base 230 in parallel with the rotary shaft 110 of the polishing roller 100, and a slide motor 250.

【0021】試料ステージブロック220 は、一方の辺が
垂直になった台形状に形成されており、その側面に解析
試料900 を固定する試料固定具221 が設けられている。
また、当該試料ステージブロック220 の底面には2本の
固定用ボス222a、222bが設けられている。
The sample stage block 220 is formed in a trapezoidal shape with one side being vertical, and a sample fixture 221 for fixing the analysis sample 900 is provided on the side surface thereof.
Two fixing bosses 222a and 222b are provided on the bottom surface of the sample stage block 220.

【0022】前記ブロック固定台230 には、前記固定用
ボス222aが嵌まり込むブロック固定用支点穴 (図示省
略) と、固定用ボス222bが嵌まり込むブロック固定用穴
231 とが開設されている。固定用ボス222aが嵌まり込む
ブロック固定用支点穴は1つであるが、固定用ボス222b
が嵌まり込むブロック固定用穴231 は前記ブロック固定
用支点穴を中心とした円周上に複数個並んでいる。従っ
て、固定用ボス222bをいずれのブロック固定用穴231 に
嵌め込むかによって試料ステージブロック220 、すなわ
ち解析試料の研磨ローラ100 に対する角度を変化させる
ことができる。
The block fixing base 230 has a block fixing fulcrum hole (not shown) into which the fixing boss 222a is fitted, and a block fixing hole into which the fixing boss 222b is fitted.
231 have been established. There is only one fulcrum hole for block fixing into which the fixing boss 222a fits, but the fixing boss 222b
A plurality of block fixing holes 231 into which are fitted are arranged on the circumference around the block fixing fulcrum hole. Therefore, the angle of the sample stage block 220, that is, the analysis sample with respect to the polishing roller 100 can be changed depending on which block fixing hole 231 the fixing boss 222b is fitted into.

【0023】ブロック固定台230 には、図外の研磨液タ
ンクに接続された研磨液供給ノズル260 が取り付けられ
ており、研磨ローラ100 と解析試料900 との間に研磨液
を供給するようになっている。また、研磨ローラ100 の
回転数はツマミ310 で、ブロック固定台230 のスライド
スピードはツマミ320 で適宜調整できるようになってい
る。
A polishing liquid supply nozzle 260 connected to a polishing liquid tank (not shown) is attached to the block fixing table 230 so that the polishing liquid is supplied between the polishing roller 100 and the analysis sample 900. ing. Further, the number of rotations of the polishing roller 100 can be adjusted by the knob 310, and the slide speed of the block fixing base 230 can be adjusted by the knob 320 as appropriate.

【0024】次に、かかる解析試料断面研磨装置による
解析試料900 の研磨手順について図3を参照しつつ説明
する。解析試料900 の中央には微小異物910 があり、当
該微小異物910 の周囲には研磨の目印となるべき4つの
レーザマーカー920 が形成されている (図3 (A) 参
照) 。まず、解析試料900 を微小異物910 の近くにおい
てダイシングソー800 で切断する (同図 (B) 参照) 。
このダイシングによって、解析試料900 の断面930 には
チッピングが生じている (同図 (C) 参照) 。
Next, the procedure for polishing the analytical sample 900 by the analytical sample cross-section polishing apparatus will be described with reference to FIG. A minute foreign substance 910 is located in the center of the analysis sample 900, and four laser markers 920 to be used as marks for polishing are formed around the minute foreign substance 910 (see FIG. 3A). First, the analysis sample 900 is cut with the dicing saw 800 in the vicinity of the minute foreign substance 910 (see FIG. 6B).
Due to this dicing, chipping occurs in the cross section 930 of the analysis sample 900 (see FIG. 6C).

【0025】切断された2つの解析試料900 のうち微小
異物910 が含まれた側を試料ステージブロック220(図2
参照) に固定する。この際、解析試料900 の断面930
が、研磨ローラ100 側を向くようにしてしておくのは勿
論のこと、必要に応じてブロック固定用穴231(図2参
照) を選択する。この際、解析試料900 の断面930 が、
平面に対して鋭角になるようなブロック固定用穴231 を
選択する。なお、解析試料900 の試料ステージブロック
220 への固定は、原則としては試料固定具221(図2参
照) で行うが、解析試料900 が微小な場合には蜜蝋等の
熱溶解性樹脂を用いて固定するものとする。
Of the two cut analysis samples 900, the side containing the minute foreign matter 910 is placed on the sample stage block 220 (see FIG. 2).
Fixed). At this time, the cross section 930 of the analysis sample 900
However, the block fixing hole 231 (see FIG. 2) is, of course, selected so as to face the polishing roller 100. At this time, the cross section 930 of the analysis sample 900 is
Select the block fixing holes 231 that form an acute angle with the plane. The sample stage block of analysis sample 900
In principle, the sample is fixed to the sample 220 with the sample fixture 221 (see FIG. 2), but when the analysis sample 900 is minute, it is fixed with a heat-soluble resin such as beeswax.

【0026】解析試料900 の断面930 が、スプリング27
0 の引っ張り力によって所定の圧力で研磨ローラ100 に
押しつけられる。このようにして、研磨ローラ100 を所
定の回転数で回転させて研磨を行う。なお、研磨の際に
は研磨液供給ノズル260 から研磨液が定期的に供給され
るとともに、試料ステージ200 を研磨ローラ100 の回転
軸110 に沿ってスライドさせる。このスライドによって
研磨ローラ100 の偏摩耗が防止される。
The cross section 930 of the analysis sample 900 shows the spring 27
It is pressed against the polishing roller 100 with a predetermined pressure by a pulling force of 0. In this way, the polishing roller 100 is rotated at a predetermined rotation speed to perform polishing. During polishing, the polishing liquid is regularly supplied from the polishing liquid supply nozzle 260, and the sample stage 200 is slid along the rotary shaft 110 of the polishing roller 100. This slide prevents uneven wear of the polishing roller 100.

【0027】研磨の初期段階において断面930 は平面で
あるため、中央部の研磨速度は速いが (図3 (D)(E)
参照) 、断面930 が研磨ローラ100 に沿って研磨された
後は研磨速度は安定する (図3 (F)(G) 参照) 。
Since the cross section 930 is flat in the initial stage of polishing, the polishing rate at the central portion is high (FIGS. 3D and 3E).
After the cross section 930 is polished along the polishing roller 100, the polishing rate becomes stable (see FIGS. 3F and 3G).

【0028】図3 (F) の状態に、すなわち断面930 が
すべて研磨ローラ100 に接し、かつ微小異物910 まで研
磨ローラ100 が達していない状態になったならば、とき
おり解析試料900 を取り外して光学顕微鏡によって残り
の研磨量から研磨時間を求め、必要な研磨時間だけ研磨
を行うようにタイマーをセットする。なお、例えば研磨
ローラ100 の回転数や解析試料900 の断面積等の研磨速
度に関するパラメータを元にして研磨条件を求めておく
ことが必要になる。
In the state shown in FIG. 3 (F), that is, when the cross section 930 is in contact with the polishing roller 100 and the polishing roller 100 does not reach the minute foreign substance 910, the analysis sample 900 is occasionally removed to perform optical analysis. The polishing time is calculated from the remaining polishing amount with a microscope, and the timer is set so that the polishing is performed for the required polishing time. Note that it is necessary to obtain the polishing conditions based on parameters relating to the polishing speed such as the rotation speed of the polishing roller 100 and the cross-sectional area of the analysis sample 900.

【0029】ここで、サブミクロンオーダーでの精度が
要求される場合は、図3 (F) の状態になったならば、
解析試料900 を試料ステージブロック220 から取り外
し、FIBによって微小異物910 を含む辺を有する穴94
0 を形成する (図3 (H)(I)参照) 。これによって、
図3 (J) に示すように、微小異物910 の断面を得るこ
とができる。
Here, when accuracy on the order of submicrons is required, if the state of FIG.
The analysis sample 900 is removed from the sample stage block 220, and a hole 94 having a side including a minute foreign substance 910 is formed by FIB.
0 is formed (see FIGS. 3H and 3I). by this,
As shown in FIG. 3 (J), a cross section of the minute foreign substance 910 can be obtained.

【0030】また、図4 (B)(C) に示すように、解析
試料900 の断面930 を斜めに研磨すれば、出っ張り (図
4 (I) に破線で示されている)が無くなるので、分析
の際にイオンガン840 やEDX検出器等の方向の制限が
より少なくなる。この断面930 の斜め研磨は、試料ステ
ージブロック220 のブロック固定台230 への取り付けの
角度をブロック固定用穴231 を適宜選択することによっ
て行われる。
Further, as shown in FIGS. 4B and 4C, if the cross section 930 of the analysis sample 900 is obliquely polished, the protrusion (shown by the broken line in FIG. 4I) disappears. The direction of the ion gun 840 and EDX detector will be less restricted during analysis. The oblique polishing of the cross section 930 is performed by appropriately selecting the mounting angle of the sample stage block 220 to the block fixing base 230 using the block fixing holes 231.

【0031】微小異物910 を含む辺を有する穴940 をF
IBによって形成して微小異物910の断面を得る (図4
(D)〜(G)参照)。断面930 の斜め研磨の際に、微
小異物910 の下にまで研磨面が到達するように、解析試
料900 の表面と研磨面との角度を十分小さく設定すれ
ば、FIBによる穴開け加工を研磨面まで貫通させ、研
磨面とFIBの加工断面との段差を皆無とすることも可
能である (図4 (G)(H) 参照) 。
The hole 940 having a side including the minute foreign substance 910 is F
Formed by IB to obtain a cross section of the minute foreign substance 910 (FIG.
(See (D) to (G)). If the angle between the surface of the analysis sample 900 and the polishing surface is set to be sufficiently small so that the polishing surface reaches below the minute foreign matter 910 when the cross-section 930 is obliquely polished, the FIB drilling process is performed. It is also possible to penetrate all the way to the ground and eliminate any step between the polished surface and the processed cross section of the FIB (see FIGS. 4 (G) and (H)).

【0032】前記FIBによる穴開け加工に際しては、
図5に示すような断面研磨加工終点検知用試料ホルダ40
0 を用いる。当該断面研磨加工終点検知用試料ホルダ40
0 は、ホルダ本体410 と、このホルダ本体410 に解析試
料900 を固定するための試料押さえ420 と、この試料押
さえ420 をホルダ本体410 に連結するための連結ネジ43
0 と、ホルダ本体410 の切欠部411 に絶縁体440 を介し
て取り付けられた電極部450 と、この電極部450 に接続
された電流計460 とを有している。なお、ホルダ本体41
0 、試料押さえ420 及び連結ネジ430 は導電性材料から
構成されている。
When drilling with the FIB,
Sample holder 40 for detecting cross-section polishing end point as shown in FIG.
Use 0. Sample holder 40 for detecting the cross-section polishing end point
0 is the holder body 410, the sample holder 420 for fixing the analysis sample 900 to the holder body 410, and the connecting screw 43 for connecting the sample holder 420 to the holder body 410.
0, an electrode part 450 attached to the notch part 411 of the holder body 410 via an insulator 440, and an ammeter 460 connected to the electrode part 450. The holder body 41
0, the sample holder 420 and the connecting screw 430 are made of a conductive material.

【0033】断面930 を斜めに研磨した解析試料900 を
ホルダ本体410 に取り付ける。この際、穴開け加工を施
す部分、すなわち斜めに研磨された部分が電極部450 の
上に位置するようにする。FIBからのイオンビームI
Bを穴開け加工を施すべき部分にラスタスキャンしなが
ら照射する。同時に、電極部450 に流れ込むイオンビー
ムIBの電荷をイオンビームIBのラスタスキャンの速
度に同期させて電流計460 でモニターする。
An analysis sample 900 whose cross section 930 is obliquely polished is attached to the holder body 410. At this time, the portion to be perforated, that is, the diagonally polished portion is positioned above the electrode portion 450. Ion beam I from FIB
B is irradiated while raster-scanning the portion to be perforated. At the same time, the electric charge of the ion beam IB flowing into the electrode unit 450 is monitored by the ammeter 460 in synchronism with the raster scan speed of the ion beam IB.

【0034】イオンビームIBが解析試料900 に当たっ
ている時は、イオンビームIBの電荷は解析試料900 か
らホルダ本体410 を介してアースに流れ、イオンビーム
IBが解析試料900 から外れると電極部450 を介して電
荷が電流計460 で検出される(図6 (A) 参照) 。穴開
け加工が進むにつれて、斜め研磨で薄くなっている解析
試料900 が端部から削り取られ、イオンビームIBの電
荷が電流計に流れ込む時間が増加する (図6 (B) 参
照) 。穴開け加工が完了すれば、すべてのイオンビーム
IBの電荷が電極部450 に流れ込む電流は一定となる
(図6 (C) 参照)。かかる状態を穴開け加工の加工終点
として検出する。
When the ion beam IB hits the analysis sample 900, the charge of the ion beam IB flows from the analysis sample 900 to the ground via the holder main body 410, and when the ion beam IB comes off the analysis sample 900, it passes through the electrode section 450. The electric charge is detected by the ammeter 460 (see FIG. 6 (A)). As the drilling process progresses, the analytical sample 900, which has been thinned by oblique polishing, is scraped off from the end, and the time for the charge of the ion beam IB to flow into the ammeter increases (see FIG. 6B). When the boring process is completed, the electric current into which all the electric charges of the ion beam IB flow into the electrode part 450 becomes constant.
(See FIG. 6 (C)). This state is detected as the processing end point of the drilling process.

【0035】電流計460 で検出させる波形から、電流計
460 に電荷が流れ込む時間と流れ込まない時間との比率
を求めれば、現在の加工の状態がモニターできる。従っ
て、完全に貫通させる必要がない場合には、必要な加工
レベルに合わせてこの比率を指定しておき、この比率に
等しくなった時点でイオンビームIBの照射を停止させ
れば、加工を任意に行うことが可能になる。
From the waveform detected by the ammeter 460, the ammeter
If the ratio of the time when the electric charge flows into the 460 and the time when the electric charge does not flow into the 460, the current processing state can be monitored. Therefore, when it is not necessary to completely penetrate the hole, this ratio is specified according to the required processing level, and the irradiation of the ion beam IB is stopped at the time when the ratio becomes equal, the processing is arbitrary. It will be possible to do.

【0036】また、FIBによる穴開け加工において、
イオンビームIBのビーム電流やビーム径を段階的に変
更しながら加工する場合は、加工領域もこれに合わせて
段階的に微小異物910 に近づけていき、各段階のそれぞ
れの終点を検知し、終点を検知すれば次の段階に変更す
るようにする。
In the drilling process by FIB,
When processing is performed while changing the beam current or the beam diameter of the ion beam IB stepwise, the processing area is also gradually moved closer to the minute foreign substance 910 in accordance with this, and the end points of each step are detected and the end points are detected. If it is detected, change to the next stage.

【0037】[0037]

【発明の効果】本発明に係る解析試料断面研磨方法は、
解析試料断面を解析箇所を有する平面に対して鋭角にな
るように研磨する第1工程と、該第1工程後、前記試料
の縁部から前記解析箇所の断面を得るように穴開け加工
を行う第2工程とを有するので、解析試料の平面に対し
て斜めに研磨し、その後穴開け加工するので、後のFI
Bによる穴開け加工の時間を短縮することができ、しか
も加工中に微小異物を破損する確率を低くすることがで
きる。
The analytical sample cross-section polishing method according to the present invention comprises:
A first step of polishing an analysis sample cross section to form an acute angle with respect to a plane having an analysis point, and after the first step, perforation processing is performed so as to obtain a cross section of the analysis point from the edge of the sample. Since it has a second step, since it is polished obliquely with respect to the plane of the analysis sample and then a hole is drilled, the subsequent FI
It is possible to shorten the time required for drilling with B and reduce the probability of damaging minute foreign matter during processing.

【0038】本発明に係る解析試料断面研磨装置は、解
析試料を研磨する研磨ローラと、前記解析試料が固定さ
れる試料ステージと、この試料ステージに固定された解
析試料を前記研磨ローラに対して所定の圧力で押しつけ
る加圧手段とを備えており、前記試料ステージは固定さ
れた解析試料と研磨ローラの回転軸との間の角度を任意
に設定できるようになっているので、解析試料に対する
研磨条件を数値化できるので、オペレータの熟練度に無
関係に安定した研磨が可能になる。
The analytical sample cross-section polishing apparatus according to the present invention comprises a polishing roller for polishing the analytical sample, a sample stage on which the analytical sample is fixed, and an analytical sample fixed on the sample stage with respect to the polishing roller. The sample stage is provided with a pressurizing means for pressing with a predetermined pressure, and the angle between the fixed analysis sample and the rotation axis of the polishing roller can be arbitrarily set. Since the conditions can be quantified, stable polishing can be performed regardless of the skill of the operator.

【0039】また、この解析試料断面研磨装置は、精密
な研磨終点検知機構等を必要としない。さらに、従来の
平面研磨に較べて研磨時間の短縮を図ることができる。
そのため、研磨の前段階の切断を微小異物に極限にまで
近づける必要がないので、切断の段階で微小異物を傷つ
ける確率が低くなる。
The analytical sample cross-section polishing apparatus does not require a precise polishing end point detection mechanism or the like. Further, the polishing time can be shortened as compared with the conventional flat polishing.
Therefore, it is not necessary to bring the cutting in the pre-polishing step close to the minute foreign matter to the utmost limit, and the probability of damaging the minute foreign matter in the cutting step is reduced.

【0040】一方、本発明に係る断面研磨加工終点検知
用試料ホルダは、収束イオンビーム装置による穴開け加
工の際に加工対象たる解析試料を保持し、穴開け加工の
終点を検知するものであり、解析試料と電気的に接続さ
れるホルダ本体と、このホルダ本体とは電気的に絶縁さ
れた電極部と、この電極部に接続された電流計とを備え
ており、収束イオンビーム装置のイオンビームの電荷が
電極部に流れ込んでいるか否かを電流計で検知するの
で、自動的に終点を検知することができる。従って、F
IB加工の作業性を向上させ、かつ加工時間を短縮する
ことが可能になる。
On the other hand, the sample holder for detecting the end point of the cross-section polishing according to the present invention detects the end point of the boring process by holding the analysis sample to be machined during the boring process by the focused ion beam device. , A holder main body electrically connected to an analysis sample, an electrode section electrically insulated from the holder main body, and an ammeter connected to the electrode section. Since the ammeter detects whether or not the electric charge of the beam is flowing into the electrode portion, the end point can be automatically detected. Therefore, F
It becomes possible to improve the workability of IB processing and shorten the processing time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る解析試料断面研磨装置
の概略的正面図である。
FIG. 1 is a schematic front view of an analytical sample cross-section polishing apparatus according to an embodiment of the present invention.

【図2】この解析試料断面研磨装置の概略的平面図であ
る。
FIG. 2 is a schematic plan view of this analytical sample cross-section polishing apparatus.

【図3】この解析試料断面研磨装置を用いた解析試料の
研磨手順の説明図である。
FIG. 3 is an explanatory view of a polishing procedure for an analysis sample using this analysis sample cross-section polishing apparatus.

【図4】本発明の一実施例に係る解析試料断面研磨方法
の手順を示す説明図である。
FIG. 4 is an explanatory diagram showing a procedure of an analytical sample cross-section polishing method according to an example of the present invention.

【図5】本発明の一実施例に係る解析試料断面研磨装置
による解析試料の研磨に用いられる断面研磨加工終点検
知用試料ホルダの概略的断面図である。
FIG. 5 is a schematic cross-sectional view of a sample holder for detecting a cross-section polishing end point, which is used for polishing an analysis sample by an analysis sample cross-section polishing apparatus according to an embodiment of the present invention.

【図6】この断面研磨加工終点検知用試料ホルダによる
終点検知の手順を示す説明図である。
FIG. 6 is an explanatory diagram showing a procedure of end point detection by the sample holder for detecting the end point of the cross-section polishing process.

【図7】従来の解析試料断面研磨方法の1つであるへき
開法の説明図である。
FIG. 7 is an explanatory diagram of a cleavage method which is one of conventional methods for polishing a cross section of an analytical sample.

【図8】従来の解析試料断面研磨方法の1つであるダイ
シング法の説明図である。
FIG. 8 is an explanatory diagram of a dicing method which is one of conventional methods for polishing a cross section of an analytical sample.

【図9】従来の解析試料断面研磨方法の1つである集束
イオンビーム法の説明図である。
FIG. 9 is an explanatory diagram of a focused ion beam method which is one of conventional methods for polishing a cross section of an analytical sample.

【図10】従来の解析試料断面研磨方法の1つであるダ
イシング、FIB併用法の説明図である。
FIG. 10 is an explanatory diagram of a method of combined use of dicing and FIB, which is one of conventional analysis sample cross-section polishing methods.

【符号の説明】[Explanation of symbols]

100 研磨ローラ 110 回転軸 200 試料ステージ 450 電極部 900 解析試料 100 Polishing roller 110 Rotation axis 200 Sample stage 450 Electrode 900 Analysis sample

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 解析試料断面を解析箇所を有する平面に
対して鋭角になるように研磨する第1工程と、該第1工
程後、前記試料の縁部から前記解析箇所の断面を得るよ
うに穴開け加工を行う第2工程とを有することを特徴と
する解析試料断面研磨方法。
1. A first step of polishing a cross section of an analysis sample to form an acute angle with respect to a plane having an analysis point, and after the first step, obtaining a cross section of the analysis point from an edge of the sample. And a second step of performing a boring process.
【請求項2】 解析試料を研磨する研磨ローラと、前記
解析試料が固定される試料ステージと、この試料ステー
ジに固定された解析試料を前記研磨ローラに対して所定
の圧力で押しつける加圧手段とを具備しており、前記試
料ステージは固定された解析試料と研磨ローラの回転軸
との間の角度を任意に設定できることを特徴とする解析
試料断面研磨装置。
2. A polishing roller for polishing an analysis sample, a sample stage on which the analysis sample is fixed, and a pressing unit for pressing the analysis sample fixed on the sample stage against the polishing roller at a predetermined pressure. The analytical sample cross-section polishing apparatus is characterized in that the sample stage can arbitrarily set an angle between the fixed analytical sample and the rotation axis of the polishing roller.
【請求項3】 収束イオンビーム装置による穴開け加工
の際に加工対象たる解析試料を保持し、穴開け加工の終
点を検知する断面研磨加工終点検知用試料ホルダにおい
て、解析試料と電気的に接続されるホルダ本体と、この
ホルダ本体とは電気的に絶縁された電極部と、この電極
部に接続された電流計とを具備しており、収束イオンビ
ーム装置のイオンビームの電荷が電極部に流れ込んでい
るか否かを電流計で検知することを特徴とする断面研磨
加工終点検知用試料ホルダ。
3. A cross-section polishing end point detecting sample holder that holds an analysis sample to be processed during hole forming by a focused ion beam device and detects an end point of hole forming, and is electrically connected to the analysis sample. And a holder main body, an electrode section electrically insulated from the holder main body, and an ammeter connected to the electrode section, and the electric charge of the ion beam of the focused ion beam apparatus is applied to the electrode section. A sample holder for detecting the end point of cross-section polishing, which is characterized by detecting whether it is flowing or not with an ammeter.
JP20591292A 1992-07-08 1992-07-08 Analysis sample section polishing method, analysis sample section polishing device, and sample holder for detcting section polishing work terminal Pending JPH0623656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20591292A JPH0623656A (en) 1992-07-08 1992-07-08 Analysis sample section polishing method, analysis sample section polishing device, and sample holder for detcting section polishing work terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20591292A JPH0623656A (en) 1992-07-08 1992-07-08 Analysis sample section polishing method, analysis sample section polishing device, and sample holder for detcting section polishing work terminal

Publications (1)

Publication Number Publication Date
JPH0623656A true JPH0623656A (en) 1994-02-01

Family

ID=16514814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20591292A Pending JPH0623656A (en) 1992-07-08 1992-07-08 Analysis sample section polishing method, analysis sample section polishing device, and sample holder for detcting section polishing work terminal

Country Status (1)

Country Link
JP (1) JPH0623656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903576A (en) * 2017-03-01 2017-06-30 东北大学 A kind of drawing by high temperature sample grinding and polishing apparatus and its application method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903576A (en) * 2017-03-01 2017-06-30 东北大学 A kind of drawing by high temperature sample grinding and polishing apparatus and its application method

Similar Documents

Publication Publication Date Title
JP3058394B2 (en) Preparation method for cross-section specimen for transmission electron microscope
KR100509651B1 (en) Method of forming scribe line on semiconductor wafer, and scribe line forming device
US20080308727A1 (en) Sample Preparation for Micro-Analysis
US20060016443A1 (en) Wafer dividing method and apparatus
US5291693A (en) Semiconductors structure precision lapping method and system
US20050082475A1 (en) Methods for preparing samples for atom probe analysis
WO2000075983A1 (en) A method for dicing wafers with laser scribing
JPH0623656A (en) Analysis sample section polishing method, analysis sample section polishing device, and sample holder for detcting section polishing work terminal
JPH1154461A (en) Circular cutting method and curve-cutting method for wafer
JPH08304243A (en) Sample having cross sectional thin-film, its manufacture, and its holder
JP2714727B2 (en) Inspection equipment for semiconductor devices
US5993291A (en) Specimen block preparation for TEM analysis
EP2902845B1 (en) Surface delayering with a programmed manipulator
JPH05302876A (en) Preparing method of sample for tem observation and jig for grinding
KR20080102877A (en) Method for manufacturing a test sample for transmission electron microscope
JP2003124278A (en) Method and device for forming observation sample
US20240058892A1 (en) An integrated x-ray imaging and laser ablating system for precision micromachining
EP2952872A1 (en) Surface delayering with a programmed manipulator
US20240112955A1 (en) Manufacturing method of chips
US6764383B1 (en) Methods and apparatuses for processing microfeature workpiece samples
JP2863759B2 (en) LSI cross section polishing apparatus and cross section processing method using the same
Beanland Rapid cross-section TEM specimen preparation of III-V materials
Hwang et al. Preparation of Planar and Cross-Sectional Thin Specimens by Chemical Dimpling with Optically Controlled Terminator
Platteter Basic integrated circuit failure analysis techniques
KR20040037958A (en) apparatus for controlling of cutting angle and method for manufacturing Transmission Electron Microscope of Specimen