JPH06235752A - Characteristic measuring method - Google Patents

Characteristic measuring method

Info

Publication number
JPH06235752A
JPH06235752A JP4331393A JP4331393A JPH06235752A JP H06235752 A JPH06235752 A JP H06235752A JP 4331393 A JP4331393 A JP 4331393A JP 4331393 A JP4331393 A JP 4331393A JP H06235752 A JPH06235752 A JP H06235752A
Authority
JP
Japan
Prior art keywords
current
voltage
waveform
value
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4331393A
Other languages
Japanese (ja)
Other versions
JPH081454B2 (en
Inventor
Yasuhiko Miki
安彦 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Japan Ltd
Original Assignee
Sony Tektronix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Tektronix Corp filed Critical Sony Tektronix Corp
Priority to JP4331393A priority Critical patent/JPH081454B2/en
Publication of JPH06235752A publication Critical patent/JPH06235752A/en
Publication of JPH081454B2 publication Critical patent/JPH081454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To make possible quick and accurate measurement of the characteristics of an element over a wide range from microcurrent to high current by switching the waveform of current or voltage to be fed to the element to be measured from stepped waveform to pulsating waveform depending on a predetermined current value or voltage value. CONSTITUTION:A predetermined current value or a voltage value is previously inputted from a keyboard or the like to a CPU 10. The CPU 10 sets a stepped output voltage mode according to a program stored in a memory 12. An I/O control 14 increases the amplitude of voltage and begins to output a stepped voltage from a voltage source 16. The CPU 10 then makes a decision whether the current value measured for an element 22 or the supply voltage value exceeded a predetermined level. When the predetermined level is not exceeded, the element 22 is measured continuously otherwise a switching is made to pulsating output voltage mode. The voltage source 16 feeds a pulsating waveform to the element 22 through a range setting section 20 and a current measuring section 18 measures the current flowing through the element 22. This method allows wide range measurement of the characteristics of the element 22 by only one time measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小電流から大電流に
至るまでの広範囲な電流域で、正確に素子の特性を測定
することができる特性測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a characteristic measuring method capable of accurately measuring the characteristic of a device in a wide current range from a very small current to a large current.

【0002】[0002]

【従来の技術】被測定素子の特性を測定するとき、被測
定素子に供給される電圧又は電流波形は通常図6に示す
ような、ステップ状の波形30又は図7に示すようなパ
ルス状の波形32が用いられる。そして各々の供給電圧
又は供給電流における電流値又は電圧値を測定する。一
回の測定で供給される電圧波形又は電流波形はステップ
状波形30又はパルス状波形32のどちらか一方のみで
ある。
2. Description of the Related Art When measuring the characteristics of a device under test, the voltage or current waveform supplied to the device under test is usually a stepped waveform 30 as shown in FIG. 6 or a pulsed waveform as shown in FIG. Waveform 32 is used. Then, the current value or voltage value at each supply voltage or supply current is measured. Only one of the stepped waveform 30 and the pulsed waveform 32 is supplied as the voltage waveform or the current waveform in one measurement.

【0003】[0003]

【発明が解決しようとする課題】しかし、ダイオードの
特性測定を例にとると、ステップ状の波形30を用いて
測定が大電流域になった場合、被測定素子が発熱し測定
が正確に行えない。また、パルス状の波形32を用いた
場合、大電流域での熱的影響は減るが、微小電流域で図
8に示すような等価並列容量36への充電電流の影響が
顕著となるので、同様に正確な測定を行うことができな
い。なお、この等価並列容量36への充電電流は、大電
流域の測定では、相対的にダイオード34への電流が大
きくなるので無視できる。故に従来は、ステップ状の波
形30による測定と、パルス状の波形32による測定を
行い、後にふたつの測定結果を合成して解析しなければ
ならないという煩わしさがあった。図9はV−I特性の
一例である。特性曲線38はステップモードによる測定
結果、特性曲線40はパルスモードよる測定結果であ
る。パルス状電圧波形32による測定時は、等価並列容
量への充電電流による誤差により、微小電流域で測定さ
れた電流が大きい方へシフトしている。また、ステップ
状波形電圧30による測定では、大電流域で測定された
電流が熱的影響により大きい方へシフトしている。
However, taking the characteristic measurement of the diode as an example, when the stepwise waveform 30 is used for the measurement in a large current region, the device under test generates heat and the measurement can be performed accurately. Absent. Further, when the pulse-shaped waveform 32 is used, the thermal influence in the large current region is reduced, but the influence of the charging current to the equivalent parallel capacitance 36 as shown in FIG. Equally accurate measurements cannot be made. It should be noted that the charging current to the equivalent parallel capacitance 36 can be neglected in the measurement in the large current region because the current to the diode 34 becomes relatively large. Therefore, conventionally, there has been a troublesome matter that the measurement with the step-shaped waveform 30 and the measurement with the pulse-shaped waveform 32 have to be performed, and then the two measurement results have to be combined and analyzed. FIG. 9 shows an example of VI characteristics. The characteristic curve 38 is the measurement result in the step mode, and the characteristic curve 40 is the measurement result in the pulse mode. During the measurement with the pulse-shaped voltage waveform 32, the current measured in the minute current region is shifted to the larger side due to an error due to the charging current to the equivalent parallel capacitance. Further, in the measurement with the step-shaped waveform voltage 30, the current measured in the large current region is shifted to the larger side due to the thermal effect.

【0004】よって本発明の目的は、一回の測定で微小
電流から大電流までの広い電流領域の測定を迅速かつ正
確に行うことができる特性測定方法を提供することであ
る。
Therefore, an object of the present invention is to provide a characteristic measuring method capable of quickly and accurately measuring a wide current region from a small current to a large current by one measurement.

【0005】[0005]

【課題を解決するための手段及び作用】本発明では、上
記のような課題を解決するために、予めキーボード等の
入力装置又はCPU等によって任意の電流値又は電圧値
を予め定めておき、その予め定められた値より小さな領
域ではステップ状の電圧又は電流を出力し、その予め定
めた値を越えた領域ではパルス状の電圧又は電流を出力
することにより、一回の測定で広い電流範囲での測定を
正確に行うことができる。
According to the present invention, in order to solve the above problems, an arbitrary current value or voltage value is determined in advance by an input device such as a keyboard or a CPU. A stepwise voltage or current is output in a region smaller than a predetermined value, and a pulsed voltage or current is output in a region exceeding the predetermined value, so that a single measurement can be performed in a wide current range. Can be accurately measured.

【0006】[0006]

【実施例】まず図3を参照して本発明の特性測定方法を
利用する特性測定装置を説明する。CPU10はホスト
・コンピュータ又はキーボード等(図中には示されてい
ない)へ接続されている。メモリ12には測定を行うた
めのプログラムが格納されている。入出力コントロール
14は、電圧源16、電流測定部18、レンジ設定部2
0に夫々接続されている。電圧源16は、被測定素子2
2と直列に接続され、被測定素子22に供給する電圧を
発生する。電流測定部18は被測定素子22と直列に接
続され、被測定素子22に流れる電流を測定する。レン
ジ設定部20は、電流測定部の電流レンジを設定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a characteristic measuring apparatus using the characteristic measuring method of the present invention will be described with reference to FIG. The CPU 10 is connected to a host computer, a keyboard or the like (not shown in the figure). A program for performing measurement is stored in the memory 12. The input / output control 14 includes a voltage source 16, a current measuring unit 18, and a range setting unit 2
They are connected to 0 respectively. The voltage source 16 is the device under test 2
2 is connected in series to generate a voltage to be supplied to the device under test 22. The current measuring unit 18 is connected in series with the device under test 22 and measures the current flowing through the device under test 22. The range setting unit 20 sets the current range of the current measuring unit.

【0007】図1は本発明を説明する流れ図である。各
ステップはメモリ12に格納されているプログラムに従
ってCPU10が制御するか又は処理を行う。以下図1
と共に図3を参照して説明すると、ステップ50では、
CPU10はホスト・コンピュータ又はキーボード等か
らの命令を受け、メモリ12に格納されているプログラ
ムに従って出力をステップ状電圧モードに設定する。ス
テップ51では、電圧振幅が増加させられ、入出力コン
トロール14を通じて電圧源16よりステップ状電圧の
出力を開始する。ステップ52では電流測定部18から
被測定素子に流れる電流値がCPUに送られてくる。ス
テップ54では測定電流値又は供給電圧値が、予めCP
Uで計算された値やキーボードから入力された値以下で
あるか又はそれを越えるかを判断し、越えない場合はス
テップ51に戻り電圧源16からの出力電圧波形は図6
に示すようなステップ状の波形となり、越える場合は、
ステップ56に進み、出力がパルス状電圧モードに設定
される。ステップ57では電圧振幅が増加させられ、電
圧源16から図7に示すようなパルス状の波形32が出
力される。ステップ58では、電流測定部16が被測定
素子に流れる電流を測定する。ステップ59では、供給
電圧値又は測定電流値が測定範囲を越えるか否かが判断
され、越えない場合はステップ57に戻り、越える場合
は測定を終了する。従って電圧源16の出力波形全体
は、図5に示すような予め定められた供給電圧値又は測
定電流値以下ではステップ状で、予め定められた供給電
圧値又は測定電流値以上ではパルス状の連続波形42と
なる。
FIG. 1 is a flow chart illustrating the present invention. Each step is controlled or processed by the CPU 10 according to a program stored in the memory 12. Figure 1 below
Referring to FIG. 3 together with FIG.
The CPU 10 receives an instruction from the host computer, keyboard or the like, and sets the output to the step voltage mode according to the program stored in the memory 12. In step 51, the voltage amplitude is increased and the output of the stepped voltage is started from the voltage source 16 through the input / output control 14. In step 52, the current value flowing from the current measuring unit 18 to the device under test is sent to the CPU. In step 54, the measured current value or the supply voltage value is previously set to CP.
It is determined whether the value is less than or exceeds the value calculated by U or the value input from the keyboard. If not, the process returns to step 51 and the output voltage waveform from the voltage source 16 is as shown in FIG.
The waveform becomes step-like as shown in, and if it exceeds,
Proceeding to step 56, the output is set to pulsed voltage mode. In step 57, the voltage amplitude is increased, and the voltage source 16 outputs the pulsed waveform 32 as shown in FIG. In step 58, the current measuring section 16 measures the current flowing through the device under test. In step 59, it is judged whether or not the supply voltage value or the measured current value exceeds the measurement range. If it does not exceed the measurement range, the process returns to step 57, and if it exceeds, the measurement ends. Therefore, the entire output waveform of the voltage source 16 is stepwise below a predetermined supply voltage value or measured current value as shown in FIG. 5, and continuous in a pulsed state above a predetermined supply voltage value or measured current value. The waveform 42 is obtained.

【0008】図4は、本発明の特性測定方法の電流出力
・電圧測定の構成ブロック図である。同一部分には同じ
参照番号を符してある。以下図2の本発明を説明する流
れ図と共に動作を説明すると、ステップ60では、出力
がステップ状電流モードに設定される。ステップ61で
は電流振幅が増加させられ、電流源26はステップ状の
電流波形30の出力を開始する。ステップ62では電圧
測定部28により電圧値を測定する。ステップ64で
は、電流源26の出力電流値又は測定部28による測定
電圧値が予め定められた値以下のときは、再びステップ
61に戻り、図6のようなステップ状の電流波形30を
出力し、出力電流値又は測定電圧値が予め定められた値
を越えるときはステップ66に進み、パルス状電流モー
ドに設定する。ステップ67では電圧振幅が増加させら
れ、図7に示すようなパルス状の出力電流波形32を出
力する。ステップ69では供給電流値又は測定電圧値が
測定範囲を越えるか否かが判断され、越えない場合はス
テップ67に戻り、越えた場合は測定が終了する。従っ
て電流源26の出力波形全体は、図5に示すような予め
定められた出力電流値又は測定電圧値以下ではステップ
状で、予め定められた出力電流値又は測定電圧値以上で
はパルス状の連続波形42となる。
FIG. 4 is a block diagram of the current output / voltage measurement of the characteristic measuring method of the present invention. The same parts are designated by the same reference numerals. Operation will now be described in conjunction with the flow chart of the present invention of FIG. 2, in step 60 the output is set to step current mode. In step 61, the current amplitude is increased, and the current source 26 starts outputting the step-shaped current waveform 30. In step 62, the voltage measuring unit 28 measures the voltage value. In step 64, when the output current value of the current source 26 or the voltage value measured by the measuring unit 28 is less than or equal to a predetermined value, the process returns to step 61 again, and the stepwise current waveform 30 as shown in FIG. 6 is output. When the output current value or the measured voltage value exceeds a predetermined value, the process proceeds to step 66 and the pulse current mode is set. In step 67, the voltage amplitude is increased and a pulsed output current waveform 32 as shown in FIG. 7 is output. In step 69, it is judged whether or not the supplied current value or the measured voltage value exceeds the measurement range. If not exceeded, the process returns to step 67, and if exceeded, the measurement ends. Therefore, the entire output waveform of the current source 26 is a step-like pattern below a predetermined output current value or a measured voltage value as shown in FIG. 5, and a pulse-like continuous waveform above a predetermined output current value or a measured voltage value. The waveform 42 is obtained.

【0009】なお上記実施例において、制御を行うの
は、CPU10ではなくてハードウェア・シーケンサで
行ってもよい。被測定素子は受動素子でも、能動素子で
もよい。また、いうまでもなく、大電流から微小電流又
は大電圧から微小電圧への測定では、供給波形がパルス
状波形からステップ状波形になることは明らかである。
In the above embodiment, the control may be performed not by the CPU 10 but by the hardware sequencer. The device under test may be a passive device or an active device. Further, needless to say, in measurement from a large current to a minute current or a large voltage to a minute voltage, it is clear that the supply waveform changes from a pulse waveform to a step waveform.

【0010】以上本発明の好適実施例について説明した
が、本発明はここに説明した実施例のみに限定されるも
のではなく、本発明の要旨を逸脱することなく必要に応
じて種々の変形及び変更を実施し得ることは当業者には
明らかである。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the embodiments described herein, and various modifications and changes can be made as necessary without departing from the gist of the present invention. It will be apparent to those skilled in the art that changes can be made.

【0011】[0011]

【発明の効果】本発明の特性測定方法によれば、被測定
素子への供給波形をステップ状波形からパルス状波形に
切り替えるようにしたので、微小電流(微小電圧)から
大電流(大電圧)まで広い領域での測定を迅速かつ正確
に行うことができる。
According to the characteristic measuring method of the present invention, since the waveform supplied to the device under test is switched from the step-like waveform to the pulse-like waveform, a small current (small voltage) to a large current (large voltage). It is possible to measure quickly and accurately in a wide area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による流れ図。FIG. 1 is a flow chart according to the present invention.

【図2】本発明による流れ図。FIG. 2 is a flow chart according to the present invention.

【図3】本発明の特性測定方法を利用した特性測定装置
の一実施例を示す構成ブロック図である。
FIG. 3 is a configuration block diagram showing an embodiment of a characteristic measuring apparatus using the characteristic measuring method of the present invention.

【図4】本発明の特性測定方法を利用した特性測定装置
の他の実施例の構成ブロック図である。
FIG. 4 is a configuration block diagram of another embodiment of the characteristic measuring apparatus using the characteristic measuring method of the present invention.

【図5】本発明の特性測定方法による電圧源又は電流源
の出力波形図である。
FIG. 5 is an output waveform diagram of a voltage source or a current source according to the characteristic measuring method of the present invention.

【図6】ステップ状波形の波形図である。FIG. 6 is a waveform diagram of a step-like waveform.

【図7】パルス状波形の波形図である。FIG. 7 is a waveform chart of a pulse-like waveform.

【図8】被測定素子例のダイオードの等価回路図であ
る。
FIG. 8 is an equivalent circuit diagram of a diode as an example of a device under test.

【図9】ステップ波形による測定結果と、パルス波形に
よる測定結果の例を示す図である。
FIG. 9 is a diagram showing an example of a measurement result based on a step waveform and a measurement result based on a pulse waveform.

【符号の説明】[Explanation of symbols]

10 CPU 12 メモリ 14 入出力コントロール 16 電圧源 18 電流測定部 20 レンジ設定部 22 被測定素子 10 CPU 12 memory 14 input / output control 16 voltage source 18 current measuring unit 20 range setting unit 22 device under test

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電圧を被測定素子に供給し、該被測定素
子に流れる電流を測定する特性測定方法において、上記
被測定素子に供給する電圧又は上記被測定素子に流れる
電流が、予め定められた値以下の時にはステップ状の電
圧を供給し、上記予め定められた値を越えた時にはパル
ス状の電圧を供給することを特徴とする特性測定方法。
1. In a characteristic measuring method of supplying a voltage to a device under test and measuring a current flowing through the device under test, the voltage supplied to the device under test or the current flowing through the device under test is predetermined. A characteristic measuring method characterized in that a step-like voltage is supplied when the value is equal to or less than the predetermined value, and a pulse-like voltage is supplied when the value exceeds the predetermined value.
【請求項2】 電流を被測定素子に供給し、該被測定素
子に生じる電圧を測定する特性測定方法において、上記
被測定素子に供給する電流又は上記被測定素子の両端間
に生じる電圧が、予め定められた値以下の時にはステッ
プ状の電流を供給し、上記予め定められた値を越えた時
にはパルス状の電流を供給することを特徴とする特性測
定方法。
2. In a characteristic measuring method of supplying a current to a device under test and measuring a voltage generated in the device under test, the current supplied to the device under test or the voltage generated across the device under test is A characteristic measuring method characterized in that a stepwise current is supplied when the value is a predetermined value or less, and a pulsed current is supplied when the value exceeds the predetermined value.
JP4331393A 1993-02-08 1993-02-08 Characteristic measurement method Expired - Lifetime JPH081454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4331393A JPH081454B2 (en) 1993-02-08 1993-02-08 Characteristic measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331393A JPH081454B2 (en) 1993-02-08 1993-02-08 Characteristic measurement method

Publications (2)

Publication Number Publication Date
JPH06235752A true JPH06235752A (en) 1994-08-23
JPH081454B2 JPH081454B2 (en) 1996-01-10

Family

ID=12660320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331393A Expired - Lifetime JPH081454B2 (en) 1993-02-08 1993-02-08 Characteristic measurement method

Country Status (1)

Country Link
JP (1) JPH081454B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193036A (en) * 2010-03-12 2011-09-21 华东电力试验研究院有限公司 Device and method for measuring response time of fault current limiter
CN102654556A (en) * 2011-12-14 2012-09-05 京东方科技集团股份有限公司 Method for measuring threshold voltage drift of field-effect tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193036A (en) * 2010-03-12 2011-09-21 华东电力试验研究院有限公司 Device and method for measuring response time of fault current limiter
CN102654556A (en) * 2011-12-14 2012-09-05 京东方科技集团股份有限公司 Method for measuring threshold voltage drift of field-effect tube

Also Published As

Publication number Publication date
JPH081454B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
US5473259A (en) Semiconductor device tester capable of simultaneously testing a plurality of integrated circuits at the same temperature
US5768570A (en) Delay time stabilization circuit
JPH06235752A (en) Characteristic measuring method
US11532998B2 (en) Power supply circuit for measuring transient thermal resistances of semiconductor device
JPH04191678A (en) Apparatus for inspecting integrated circuit
GB2316493A (en) Delay time measuring method and pulse generator for measuring delay time for use in said measuring method
US6099161A (en) Asynchronous analog or digital frequency measurement on digital test equipment
JP3375500B2 (en) Electric discharge machining method and electric discharge machine
JPH06249922A (en) Duty-cycle control apparatus
JPH0545247A (en) Vibration control device of vibration testing machine
JPH05307619A (en) Method for measuring ac characteristic of microprocessor
JP2000035461A (en) Semiconductor testing device
JPS63200918A (en) Electric discharge machine
JPH02136771A (en) Integrated circuit testing device
JPH09304471A (en) Environment-testing apparatus of sample actual measurement type
JPS61226803A (en) Process control device
JP2930669B2 (en) Semiconductor test equipment
JP2000206201A (en) Semiconductor integrated circuit
JPH09184759A (en) Infrared spectrophotometer
JP3216608B2 (en) Semiconductor test apparatus and storage medium storing program
JPH01147603A (en) Correction method for power unit
JPH08210924A (en) Temperature detecting device using thermistor
CN117908614A (en) Control circuit of pulse current source and control method thereof
SU562654A1 (en) Automatic control system of the mining machine
KR0140118B1 (en) Auto-manual evr control apparatus and its control method