JPH0623546A - Padding method by welding for al or al-base material - Google Patents

Padding method by welding for al or al-base material

Info

Publication number
JPH0623546A
JPH0623546A JP17454492A JP17454492A JPH0623546A JP H0623546 A JPH0623546 A JP H0623546A JP 17454492 A JP17454492 A JP 17454492A JP 17454492 A JP17454492 A JP 17454492A JP H0623546 A JPH0623546 A JP H0623546A
Authority
JP
Japan
Prior art keywords
welding
electrode
base material
wire
dcep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17454492A
Other languages
Japanese (ja)
Other versions
JP3075842B2 (en
Inventor
Shigeru Kurihara
繁 栗原
Yasutoshi Nakada
康俊 中田
Hiroyuki Koike
弘之 小池
Yoshio Kanbe
良雄 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP17454492A priority Critical patent/JP3075842B2/en
Publication of JPH0623546A publication Critical patent/JPH0623546A/en
Application granted granted Critical
Publication of JP3075842B2 publication Critical patent/JP3075842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To provide the padding method by welding capable of stably obtaining wear resistant and heat resistant padding by welding with high jointability with a base material without causing welding defects such as pits and blowholes on the Al or Al-base material surface. CONSTITUTION:In the padding method by welding by two electrodes, a preceding DCEP-MIG welding zone is remelted and welded by succeeding TIG welding. A Cu-Al flux-cored wire formed by filling up a core material wire made of Al-base material in a hollow part of sheath material made of Cu-base material and having the Cu quantity of 30-85weight% for the wire total weight is used for an electrode wire 11 of DCEP-MIG welding. Further, the distance between a preceding DCEP-MIG welding electrode wire 1 and a succeeding TIG welding electrode 2 is made to 50-400mm and cladding by welding for the Al or Al-base material is performed. Consequently, the occurrence of the welding defects such as pits and blowholes is reduced and the Al or Al-base material surface is imparted with wear resistance and heat resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAl、Al基材料表面に
耐摩耗性と耐熱性を付与する肉盛溶接方法に関し、特に
ピットやブローホール等の溶接欠陥発生が少ない肉盛溶
接金属を得る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a build-up welding method for imparting wear resistance and heat resistance to the surface of Al and Al-based materials, and particularly to obtain a build-up weld metal with few welding defects such as pits and blow holes. It is about the method.

【0002】[0002]

【従来の技術とその課題】Al、Al基材料は鉄鋼材料
に比較して、軽量で熱伝導性、耐食性が優れていること
から自動車部品をはじめ広い分野で使用されている。し
かしAl、Al基材料合金は一般に鉄鋼材料に比べ強
度、耐摩耗性、耐熱性の面で劣っており、素材そのまま
では、鉄鋼材料の代替材料として適用できる部位、部品
は限られているため、Al、Al基材料の表面に硬質層
を形成させる方法が検討されている。その方法として、
PVD、CVDにより薄い硬質皮膜層を形成する方法、
溶射により比較的厚い硬質皮膜層を形成する方法、電子
ビーム、レーザなどの高密度エネルギー源を用いて基材
表面とともに合金化金属を溶融させ硬質合金化層を形成
する方法、MIGアーク、TIGアークを用いて硬質肉
盛金属を形成する方法等がある。
2. Description of the Related Art Al and Al-based materials are used in a wide range of fields including automobile parts because they are lighter in weight and have better thermal conductivity and corrosion resistance than steel materials. However, Al, Al-based material alloys are generally inferior to steel materials in terms of strength, wear resistance, and heat resistance, and the raw materials themselves are limited in the parts and parts that can be applied as substitute materials for steel materials. A method of forming a hard layer on the surface of Al or an Al-based material has been studied. As a method,
PVD, CVD method for forming a thin hard coating layer,
A method of forming a relatively thick hard coating layer by thermal spraying, a method of forming a hard alloying layer by melting an alloying metal with a substrate surface using a high-density energy source such as an electron beam or a laser, MIG arc, TIG arc There is a method of forming a hard overlay metal by using.

【0003】この内、MIGアーク、TIGアークを用
いたAl、Al合金の肉盛溶接法としては、特開昭58
−179569号公報に、溶加材にAlまたはAl合金
粉末とNbC粉末、TiC粉末、VC粉末との混合粉末
を用い、TIGアークによるAl系材料への表面硬化方
法が開示されている。しかし、溶加材に粉末を用いた場
合、その溶加材の安定送給、組成の偏析など問題があ
り、均一組成の肉盛金属が得にくい。例えば、NbC、
TiC粉末等のセラミックスとAl合金粉との混合粉で
は、一般に炭化物等のセラミックスなどは破砕粉である
ため異形粉であり、安定送給は困難で、比重の異なる混
合粉では、組成的に均一な送給は困難である。従って、
添加金属の希釈量が変動するため、得られる肉盛金属の
組成が不均一となり、耐摩耗性、耐熱性などの特性が変
動する原因となる。
Among these, as a build-up welding method for Al and Al alloys using MIG arc and TIG arc, Japanese Patent Laid-Open No. 58-58
Japanese Patent Publication No. 179569 discloses a method of surface hardening an Al-based material by TIG arc using a mixed powder of Al or Al alloy powder and NbC powder, TiC powder, and VC powder as a filler material. However, when powder is used as the filler metal, there are problems such as stable feeding of the filler metal and segregation of the composition, and it is difficult to obtain a built-up metal having a uniform composition. For example, NbC,
In a mixed powder of ceramics such as TiC powder and Al alloy powder, ceramics such as carbides are generally crushed powders and are irregular shaped powders, so stable feeding is difficult, and mixed powders with different specific gravities have a uniform composition. Delivery is difficult. Therefore,
Since the dilution amount of the added metal varies, the composition of the overlay metal obtained becomes non-uniform, which causes variations in characteristics such as wear resistance and heat resistance.

【0004】更には、特開平3−169495号公報、
特開平3−169496号公報には、Al外皮にAl以
外の金属線材やセラミックス線材が収容された複合溶加
材を用いたAlの表面硬化方法が開示されている。溶加
材に複合線材を用いた場合、外皮金属内部に内包された
芯材の融点が外皮金属の融点より高いと外皮金属が先に
溶融し、その後内包された芯材が溶融するといった状態
となる。この様な現象が生じると合金層に外皮金属成分
が多い箇所と芯材成分が多い箇所と言うように肉盛金属
に成分の偏析が生じ易く、均一組成に肉盛金属が得にく
い。
Further, JP-A-3-169495,
Japanese Unexamined Patent Publication (Kokai) No. 3-169496 discloses an Al surface hardening method using a composite filler material in which a metal wire rod or a ceramic wire rod other than Al is contained in an Al sheath. When a composite wire is used as the filler material, if the melting point of the core material enclosed inside the envelope metal is higher than the melting point of the envelope metal, the envelope metal melts first, and then the encapsulated core material melts. Become. When such a phenomenon occurs, segregation of the components is liable to occur in the build-up metal, such as a place where the outer layer metal component is large and a place where the core material component is large in the alloy layer, and it is difficult to obtain the build-up metal in a uniform composition.

【0005】一方、Al、Al基材料表面への肉盛溶接
でもAl、Al基材料の溶接と同様、溶融状態において
2、N2、O2等を吸収し易いため、ピットやブローホ
ールなどの溶接欠陥を生成し易く、溶加材からもたらさ
れるガス成分が、その発生の大きな要因となる。肉盛層
の表面、内部に発生するピットやブローホール等の溶接
欠陥は一般に水素によるものであるとされている。その
水素源としては、母材及び溶接ワイヤに付着または吸着
された水分・有機物・腐食生成物などの分解による水
素、母材及び溶接ワイヤ中に固溶している水素、シール
ドガス中の水素及び水分、アーク雰囲気中に巻き込まれ
た周辺空気、等が原因であると考えられている。またA
l、Al基材料の表面には酸化皮膜(Al23)が形成
され易く、これが溶接中に巻き込まれ、ピット、ブロー
ホールの発生原因になる。更に、酸化皮膜(Al23
は溶接中2000℃以上で生成されるため、ブローホー
ルが酸化皮膜によって、溶接金属中にトラップされてし
まうことがある。
On the other hand, even in the overlay welding on the surface of Al or Al-based material, as in the welding of Al or Al-based material, it is easy to absorb H 2 , N 2 , O 2, etc. in the molten state, so that pits, blow holes, etc. The welding defect is easily generated, and the gas component brought from the filler metal is a major factor in the generation thereof. Weld defects such as pits and blowholes generated on the surface and inside of the overlay are generally due to hydrogen. As the hydrogen source, hydrogen due to decomposition of moisture, organic matter, corrosion products, etc. adhering to or adsorbed on the base material and the welding wire, hydrogen dissolved in the base material and the welding wire, hydrogen in the shield gas and It is thought that the cause is water, ambient air trapped in the arc atmosphere, and the like. Also A
1. An oxide film (Al 2 O 3 ) is easily formed on the surface of the Al-based material, which is caught during welding and causes pits and blow holes. Furthermore, oxide film (Al 2 O 3 )
Is generated at a temperature of 2000 ° C. or higher during welding, the blowhole may be trapped in the weld metal by the oxide film.

【0006】そこで、ピット、ブローホールを低減させ
る方法として、次の様な技術が提案されている。例え
ば、特開昭55−86696号公報はワイヤ表面に付着
している水分、有機物、腐食生成物、酸化皮膜を溶接の
直前に機械研削装置を設け除去するか、アルカリ洗浄装
置を設け化学的に除去するかして、ピット、ブローホー
ルを低減させるものである。また、特開昭58−154
461号公報ではワイヤ送給ケーブルの間に、AC(交
流)−TIG又はDCEP(直流電極プラス)−TIG
によるワイヤ酸化皮膜除去クリーニング装置を設けてい
る。しかし、これらの技術はいづれもワイヤに付着して
いる水分、有機物、腐食生成物、酸化皮膜を除去してピ
ット、ブローホールを低減させるものであり、母材に付
着している水分、有機物、腐食生成物、酸化皮膜、母材
中のガス成分によって生じるピット、ブローホールの防
止策にたいしては十分ではない。
Therefore, the following techniques have been proposed as a method for reducing pits and blow holes. For example, JP-A-55-86696 discloses that water, organic substances, corrosion products, and oxide films adhering to the wire surface are removed by a mechanical grinding device immediately before welding, or an alkaline cleaning device is provided to chemically remove them. By removing it, pits and blow holes are reduced. In addition, JP-A-58-154
According to Japanese Patent No. 461, AC (alternating current) -TIG or DCEP (direct current electrode plus) -TIG is provided between wire feeding cables.
A wire oxide film removal cleaning device is installed. However, all of these techniques remove water, organic substances, corrosion products, and oxide films adhering to the wire to reduce pits and blow holes, and water, organic substances adhering to the base metal, It is not sufficient to prevent pits and blowholes caused by corrosion products, oxide films, and gas components in the base metal.

【0007】また、特開昭51−1339号公報ではA
C−TIG法又はDCEP−TIG法を先行させて、そ
の予熱効果で溶接金属中の拡散水素量を減少させるとと
もにアークのクリーニング作用を利用して母材の酸化皮
膜を除去し、その直後にDCEN(直流電極マイナス)
−TIG法で溶接を行い、ピット、ブローホールのない
健全な溶接金属を得ている。同様な技術として、特開昭
53−29245号公報ではDCEP−TIG法を先行
させて、母材を溶融させ母材中のガス成分を除去しその
直後にAC−TIG法で溶接を行い表面ピット解消させ
ている。これら技術は、先行電極で母材表面の水分や酸
化物、母材中のガス成分を除去した後、後行の電極にフ
ィラワイヤを挿入して溶接を行う方法であるため、ワイ
ヤに付着している水分、酸化物によって生じるピット、
ブローホールやフィラワイヤによって溶融プールに持ち
込まれる空気中の水分によって生じるピット、ブローホ
ールの防止策に対しては十分ではない。
Further, in Japanese Patent Laid-Open No. 51-1339, A
The C-TIG method or the DCEP-TIG method is preceded to reduce the amount of hydrogen diffused in the weld metal by its preheating effect and to remove the oxide film of the base metal by utilizing the arc cleaning action. (DC electrode minus)
-Welding is performed by the TIG method to obtain a sound weld metal without pits and blow holes. As a similar technique, in Japanese Unexamined Patent Publication No. 53-29245, the DCEP-TIG method is preceded, the base material is melted to remove gas components in the base material, and immediately after that, the AC-TIG method is used for welding to form a surface pit. It has been resolved. These techniques are methods in which water and oxides on the surface of the base material and gas components in the base material are removed by the preceding electrode, and then a filler wire is inserted into the electrode of the subsequent electrode to perform welding. Water, pits caused by oxides,
It is not sufficient to prevent pits and blowholes caused by water in the air brought into the molten pool by blowholes and filler wires.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記のような
ピットやブローホールの低減化方法における問題点を解
決するべくなされたもので、その目的とするところは、
ピットやブローホールなどの溶接欠陥が発生せず、健全
な肉盛溶接部が得られる溶接方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems in the method of reducing pits and blowholes, and its object is to:
It is an object of the present invention to provide a welding method in which welding defects such as pits and blow holes do not occur and a sound overlay welded portion can be obtained.

【0009】[0009]

【課題を解決するための手段】本発明の溶接方法は下記
の構成を要旨とするものである。即ち、2電極による肉
盛溶接法において、先行のDCEP−MIG溶接部を後
行のTIG溶接で再溶融して溶接するとともにDCEP
−MIG溶接の電極ワイヤには、Cu基材料からなる外
皮材の中空部にAl基材料からなる芯材線を充填し、C
u量がワイヤ全重量に対して30〜85重量%であるC
u−Al複合ワイヤを用い、且つ先行のDCEP−MI
G溶接の電極ワイヤと後行のTIG電極の距離を50〜
400mmとすることを特徴とするAl、Al基材料へ
の肉盛溶接方法である。
The welding method of the present invention has the following structure. That is, in the overlay welding method using two electrodes, the preceding DCEP-MIG welded portion is remelted and welded by the following TIG welding, and DCEP-MIG welding is performed.
In the MIG welding electrode wire, the hollow part of the outer cover material made of Cu base material is filled with the core wire made of Al base material, and C
C in which the amount of u is 30 to 85% by weight based on the total weight of the wire
Using u-Al composite wire and prior DCEP-MI
The distance between the G welding electrode wire and the subsequent TIG electrode is 50 to
The overlay welding method for Al and Al-based materials is characterized in that the thickness is 400 mm.

【0010】[0010]

【作用】以下、本発明を図面に従って詳細に説明する。
図1は本発明の方法を示す縦断面図である。先行電極を
DCEP−MIG溶接の電極ワイヤ(1)とするのは、
シールドガスとして噴射したArガス(5)がMIGア
ーク(7)中でイオン化し、母材表面(9)にあたり酸
化皮膜を除去するクリーニング作用を有していること、
また溶着速度が高く、高速度で溶接ができるためであ
る。尚、DCEN(直流電極マイナス)−MIG溶接で
は母材表面のクリーニング作用がないため、母材表面の
酸化皮膜の影響を受け健全な溶接ができなくなる。後行
電極にTIGトーチ(4)を配置するのは、DCEP−
MIG溶接では周辺空気が巻き込み、空気中の水分がピ
ット、ブローホールを誘発させることがあるため後行電
極のTIGアーク(8)でDCEP−MIG溶接で得ら
れた肉盛金属(10)を再溶融させ肉盛金属中に発生し
たピット、ブローホールを除去させるためである。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a vertical sectional view showing the method of the present invention. The leading electrode is the electrode wire (1) for DCEP-MIG welding,
Ar gas (5) sprayed as a shield gas has a cleaning action of ionizing in the MIG arc (7) and hitting the base material surface (9) to remove an oxide film.
In addition, the welding speed is high and welding can be performed at high speed. In DCEN (minus direct current electrode) -MIG welding, since there is no cleaning action on the surface of the base metal, it becomes impossible to perform sound welding under the influence of the oxide film on the surface of the base metal. To arrange the TIG torch (4) on the trailing electrode is a DCEP-
In MIG welding, the surrounding air is entrained and the water in the air may induce pits and blow holes, so the TIG arc (8) of the trailing electrode is used to re-build the overlay metal (10) obtained by DCEP-MIG welding. This is for removing the pits and blow holes generated in the overlay metal by melting.

【0011】更に、DCEP−MIG電極ワイヤ(1)
とTIG電極(2)との距離を50〜400mmにする
のが良い。50〜400mmとすることでアーク相互の
干渉をなくし、DCEP−MIG溶接で得られた肉盛金
属(10)を再溶融させることができる。両電極の極間
が50mm未満ではアーク相互の干渉が起こり安定した
溶接が行えなくなる。また400mmを超えるとDCE
P−MIG溶接で得られた肉盛金属(10)の温度が降
下してしまい、予熱効果がなくなり肉盛金属(10)を
TIGアーク(8)で十分に溶融させることができない
ため、未溶融部にピット、ブローホールが残ってしま
う。また、装置自体が大型になるため操作性も悪くな
る。
Furthermore, DCEP-MIG electrode wire (1)
The distance between the TIG electrode and the TIG electrode (2) is preferably 50 to 400 mm. When the thickness is 50 to 400 mm, mutual interference of arcs can be eliminated, and the overlay metal (10) obtained by DCEP-MIG welding can be remelted. If the distance between both electrodes is less than 50 mm, mutual arcs will occur and stable welding cannot be performed. If it exceeds 400 mm, DCE
Since the temperature of the overlay metal (10) obtained by P-MIG welding drops, the preheating effect disappears and the overlay metal (10) cannot be sufficiently melted by the TIG arc (8), so that it is not melted. There are pits and blow holes left in the section. Further, since the device itself becomes large, operability also deteriorates.

【0012】更に、電極ワイヤ(1)にはCu基材料か
らなる外皮材の中空部にAl基材料からなる芯材線を充
填し、Cu量がワイヤ全重量に対して30〜85重量%
であるワイヤを用いる。外皮金属が芯材金属よりも融点
が高い場合、即ち外皮がCu基材料、芯材がAl基材料
であれば、合金化した溶滴が移行するため良好な肉盛金
属が得られるが、逆に外皮金属が芯材金属よりも融点が
低い場合、即ち外皮がAl基材料、芯材がCu基材料で
は外皮金属の融点が低いためアーク熱やジュール熱によ
って先に溶融してしまい、芯材が溶け残った状態をつく
り、合金化がうまく進行できず、肉盛金属の硬さが変動
するなど肉盛金属の品質が安定しない。
Further, in the electrode wire (1), a core material wire made of an Al base material is filled in a hollow portion of an outer skin material made of a Cu base material, and the amount of Cu is 30 to 85% by weight based on the total weight of the wire.
Is used. When the outer skin metal has a higher melting point than the core metal, that is, when the outer skin is a Cu-based material and the core material is an Al-based material, a good overlay metal can be obtained because the alloyed droplets migrate, When the outer metal has a lower melting point than the core metal, that is, when the outer metal is an Al-based material and the core material is a Cu-based material, the outer metal has a low melting point and is melted first by arc heat or Joule heat. As a result, the quality of the overlay metal is not stable because the alloy remains unmelted, the alloying does not proceed well, and the hardness of the overlay metal fluctuates.

【0013】また肉盛金属の耐摩耗性が安定して得られ
る肉盛金属の硬さは、ビッカース硬さHv150以上必
要であり、Hv150未満では耐摩耗性の向上が期待さ
れない。Al−Cu複合ワイヤによる肉盛金属の組織は
高Cu側でα相とθ相(CuAl2)とからなり、θ相
の存在により耐摩耗性、耐熱性を有するものである。即
ち、Cu量が30%未満の場合では、溶接によって得ら
れる肉盛金属のCu量が不足し、殆どα相のみとなって
しまい、その硬さはHv150に達せず耐摩耗材に適し
ない。一方、Cu量が85%をこえた場合では、脆弱な
η2相が現れ、割れが発生する。従って、Al基材料か
らなる外皮内にCu基材からなる芯材線を充填したCu
−Al複合ワイヤのCu量は30〜85%の範囲内とす
る必要がある。以下に実施例を示す。
Further, the hardness of the overlay metal, which is obtained with stable wear resistance of the overlay metal, needs to be Vickers hardness Hv150 or more, and if it is less than Hv150, improvement of the abrasion resistance is not expected. The structure of the overlay metal formed by the Al-Cu composite wire is composed of an α phase and a θ phase (CuAl 2 ) on the high Cu side, and has wear resistance and heat resistance due to the existence of the θ phase. That is, when the amount of Cu is less than 30%, the amount of Cu of the overlay metal obtained by welding becomes insufficient, and almost only the α phase is formed, and the hardness thereof does not reach Hv150 and is not suitable for a wear resistant material. On the other hand, when the Cu content exceeds 85%, a brittle η 2 phase appears and cracking occurs. Therefore, Cu in which the core wire made of Cu base material is filled in the outer skin made of Al base material
The Cu content of the -Al composite wire needs to be in the range of 30 to 85%. Examples will be shown below.

【0014】[0014]

【実施例】【Example】

実施例1 溶接試験は母材にJIS A 5083P:10t×5
0w×150lを使用し、先行電極(DCEP:直流電
極プラス)にはCu量が70wt%のCu外皮Al−C
u複合ワイヤ(1.2mm)を、後行電極にはDCEN
(直流電極マイナス)−TIG法を用いてビードオンプ
レート法により溶接を行い得られたビード横断面のブロ
ーホールの低減化状況を調査した。ブローホールの低減
化状況は溶接ビードを横断面に5断面切断し、各々の断
面を1μmのダイヤモンド粒によるバフ研磨により仕上
げ、光学顕微鏡(20倍)にて撮影を行い、得られたビ
ード横断面形状の写真からブローホール全面積と肉盛金
属面積とを画像解析装置によって測定し、ブローホール
面積率(ブローホール全面積/肉盛金属全面積)を求め
評価した。硬さは溶接ビードの横断面中央ビード表面か
ら溶融境界部まで0.5mmピッチでビッカース硬度計
を用いて測定し、硬さの平均値を求めた。また肉盛金属
の割れの有無は溶接ビード断面を光学顕微鏡(×10
0)で観察した。溶接条件を以下に示す。
Example 1 A welding test was conducted on a base material according to JIS A 5083P: 10t × 5.
0w × 150l is used, and the Cu electrode is Al-C with a Cu content of 70 wt% for the preceding electrode (DCEP: direct current electrode plus).
u composite wire (1.2 mm) with DCEN for the trailing electrode
(DC electrode minus) -TIG method was used to perform welding by the bead-on-plate method, and the reduction state of blowholes in the bead cross section obtained was investigated. For the reduction of blowholes, the weld bead was cut into 5 cross sections, each cross section was finished by buffing with 1 μm diamond grains, and the cross section of the obtained bead was taken with an optical microscope (20 times). The blowhole total area and the overlay metal area were measured from an image of the shape with an image analyzer, and the blowhole area ratio (total blowhole area / overlay metal area) was obtained and evaluated. The hardness was measured with a Vickers hardness meter at a pitch of 0.5 mm from the bead surface in the center of the transverse cross section of the weld bead to the melting boundary, and the average value of the hardness was determined. For the presence or absence of cracks in the overlay metal, examine the weld bead cross section with an optical microscope (× 10
Observed at 0). The welding conditions are shown below.

【0015】尚、先行電極と後行電極の極間を40、1
00、500mmと変化させた。 溶接条件 先行電極 後行電極 DCEP−MIG電極 DCEN−TIG電極 溶接電流 140A 溶接電流 120A アーク電圧21V アーク電圧16V 溶接速度 40cm/min 溶接速度 40cm/min シールドガス Ar:25l/min シールドガス He:25l/min ワイヤ突き出し長さ 15mm
The distance between the leading electrode and the trailing electrode is 40, 1.
It was changed to 00 and 500 mm. Welding condition Leading electrode Trailing electrode DCEP-MIG electrode DCEN-TIG electrode Welding current 140A Welding current 120A Arc voltage 21V Arc voltage 16V Welding speed 40cm / min Welding speed 40cm / min Shield gas Ar: 25l / min Shield gas He: 25l / min Wire protrusion length 15 mm

【0016】表1に、先行電極だけで溶接したビード横
断面のブローホール面積率、先行電極と後行電極の極間
を変えて溶接したビード横断面のブローホール面積率、
硬さ割れの結果を示す。また、図2に先行電極だけで溶
接したビード横断面マクロ(A)と先行電極と後行電極
を用いて溶接したビード横断面マクロ(B)を示す。
Table 1 shows the blowhole area ratio of the bead cross section welded only with the leading electrode, the blowhole area ratio of the bead cross section welded by changing the gap between the leading electrode and the trailing electrode,
The result of hardness cracking is shown. Further, FIG. 2 shows a bead cross-section macro (A) welded only with the leading electrode and a bead cross-section macro (B) welded with the leading electrode and the trailing electrode.

【0017】[0017]

【表1】 [Table 1]

【0018】表1より先行電極(DCEP)だけで溶接
したビード(A)にはブローホールが多数発生している
が、先行電極(DCEP)+後行電極(DCEN)で溶
接したビード(C)はブローホールの発生が約1/10
に減少した。極間が40mmとした場合(B)はアーク
が干渉しあい溶接ができなかった。また極間を500m
mにした場合(D)は先行電極で溶接したビードが冷却
されて、後行電極で十分再溶融できなかったため、ブロ
ーホール面積率の低減化効果は極間100mmにくらべ
少なかった。硬さはHv250〜280であり耐摩耗性
の点から十分であり、割れは無かった。
From Table 1, there are many blowholes in the bead (A) welded only with the leading electrode (DCEP), but the bead (C) welded with the leading electrode (DCEP) + the trailing electrode (DCEN). Blowhole is about 1/10
Decreased to. When the gap between the electrodes was 40 mm (B), the arcs interfered with each other and welding could not be performed. The distance between the poles is 500m
In the case of m (D), the bead welded by the leading electrode was cooled and could not be sufficiently remelted by the trailing electrode, so the effect of reducing the blowhole area ratio was less than that of 100 mm between the electrodes. The hardness was Hv250 to 280, which was sufficient from the viewpoint of wear resistance, and there was no cracking.

【0019】実施例2 溶接試験は母材にJIS A 5083P:10t×5
0w×150lを使用し、先行電極(DCEP:直流電
極プラス)にはCu量がそれぞれ25、60、90wt
%のCu外皮Al−Cu複合ワイヤ(1.2mm)とC
u量が60wt%のAl外皮Al−Cu複合ワイヤを、
後行電極にはAC(交流)−TIG法を用いてビードオ
ンプレート法により溶接を行い得られたビード横断面の
ブローホールの面積率、硬さの平均、硬さの変動を調査
した。ブローホール面積率、硬さは実施例1と同じ方法
にて測定し、硬さの変動は硬さの最大値と最小値の範囲
で表した。溶接条件を以下に示す。
Example 2 In the welding test, the base metal was JIS A 5083P: 10t × 5.
0w × 150l is used, and the amount of Cu in the preceding electrode (DCEP: DC electrode plus) is 25, 60, and 90 wt, respectively.
% Cu sheath Al-Cu composite wire (1.2 mm) and C
An Al-clad Al-Cu composite wire with an u amount of 60 wt%
The AC (AC) -TIG method was used for the trailing electrode to perform welding by the bead-on-plate method, and the area ratio of blowholes in the cross section of the bead, the average hardness, and the variation in hardness were investigated. The blowhole area ratio and hardness were measured by the same method as in Example 1, and the variation in hardness was expressed in the range between the maximum and minimum values of hardness. The welding conditions are shown below.

【0020】 溶接条件 先行電極 後行電極 DCEP−MIG電極 AC−TIG電極 溶接電流 140A 溶接電流 120A アーク電圧21V アーク電圧12V 溶接速度 40cm/min 溶接速度 40cm/min シールドガス Ar:25l/min シールドガス Ar:25l/min ワイヤ突き出し長さ 15mm 表2にブローホール面積率、硬さ、ビードの割れの状況
を示す。
Welding condition Leading electrode Trailing electrode DCEP-MIG electrode AC-TIG electrode Welding current 140A Welding current 120A Arc voltage 21V Arc voltage 12V Welding speed 40cm / min Welding speed 40cm / min Shielding gas Ar: 25l / min Shielding gas Ar : 25 l / min Wire protrusion length 15 mm Table 2 shows the blowhole area ratio, hardness, and bead breakage.

【0021】[0021]

【表2】 [Table 2]

【0022】表2よりCu量が25wt%の(E)は硬
さがHv110と低く耐摩耗性の点で劣っている。Cu
量が60wt%では硬さがHv223で割れも無く良好
であった。Cu量が90wt%では硬さがHv368で
高く、ビードに割れが発生した。Al外皮で芯材がCu
のAl−Cu複合ワイヤ(H)は肉盛金属の硬さの変動
が大きく、硬さの安定した肉盛金属が得られない。尚、
ブローホール面積率は少なく良好であった。
From Table 2, (E) having a Cu content of 25 wt% has a low hardness of Hv110 and is inferior in wear resistance. Cu
When the amount was 60 wt%, the hardness was Hv223 and there was no crack and it was good. When the amount of Cu was 90 wt%, the hardness was high at Hv368, and the bead cracked. Cu with Al core and core
In the Al-Cu composite wire (H), the hardness of the overlay metal varies greatly, and a overlay metal with stable hardness cannot be obtained. still,
The blowhole area ratio was small and good.

【0023】[0023]

【発明の効果】以上の如く本発明方法によればピットや
ブローホール等の溶接欠陥発生が少なく、Al、Al基
材料表面に耐摩耗性と耐熱性を付与する肉盛金属を得る
ことができる。
As described above, according to the method of the present invention, it is possible to obtain a build-up metal which is less likely to cause welding defects such as pits and blow holes, and which imparts wear resistance and heat resistance to the surfaces of Al and Al-based materials. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を示す縦断面図、FIG. 1 is a longitudinal sectional view showing a method of the present invention,

【図2】先行電極だけで溶接したビード横断面マクロ
(A)と先行電極と後行電極を用いて溶接したビード横
断面マクロ(B)を示す図である。
FIG. 2 is a view showing a bead cross-section macro (A) welded only with a leading electrode and a bead cross-section macro (B) welded with a leading electrode and a trailing electrode.

【符号の説明】[Explanation of symbols]

1 電極ワイヤ 2 TIG電極 3 MIGトーチ 4 TIGトーチ 5 Arガス 6 シールドガス 7 MIGアーク 8 TIGアーク 9 母材 10 肉盛金属 11 極間 1 Electrode Wire 2 TIG Electrode 3 MIG Torch 4 TIG Torch 5 Ar Gas 6 Shielding Gas 7 MIG Arc 8 TIG Arc 9 Base Material 10 Overlay Metal 11 Between Electrodes

フロントページの続き (72)発明者 神戸 良雄 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社研究所内Front Page Continuation (72) Inventor Yoshio Kobe 3-5-4 Tsukiji, Chuo-ku, Tokyo Nittetsu Welding Industry Co., Ltd. Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2電極による肉盛溶接方法において、先
行のDCEP−MIG溶接部を後行のTIG溶接で再溶
融して溶接することを特徴とするAl、Al基材料表面
への肉盛溶接方法。
1. A build-up welding method using a two-electrode, wherein the preceding DCEP-MIG welded portion is remelted and welded by a subsequent TIG welding, and the build-up welding is performed on the surface of an Al or Al-based material. Method.
【請求項2】 DCEP−MIG溶接の電極ワイヤに
は、Cu基材料からなる外皮材の中空部にAl基材料か
らなる芯材線を充填し、Cu量がワイヤ全重量に対して
30〜85重量%であるCu−Al複合ワイヤを用いる
ことを特徴とする請求項1記載のAl、Al基材料への
肉盛溶接方法。
2. An electrode wire for DCEP-MIG welding is prepared by filling a hollow part of an outer cover material made of a Cu base material with a core wire made of an Al base material, the Cu content being 30 to 85 with respect to the total weight of the wire. The overlay welding method for forming an Al or Al-based material according to claim 1, wherein a Cu-Al composite wire whose content is wt% is used.
【請求項3】 先行のDCEP−MIG溶接の電極ワイ
ヤと後行のTIG電極の距離を50〜400mmとする
ことを特徴とする請求項1および請求項2記載のAl、
Al基材料への肉盛溶接方法。
3. The Al according to claim 1 or 2, wherein the distance between the electrode wire of the preceding DCEP-MIG welding and the following TIG electrode is 50 to 400 mm.
Overlay welding method on Al-based material.
JP17454492A 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material Expired - Lifetime JP3075842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17454492A JP3075842B2 (en) 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17454492A JP3075842B2 (en) 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material

Publications (2)

Publication Number Publication Date
JPH0623546A true JPH0623546A (en) 1994-02-01
JP3075842B2 JP3075842B2 (en) 2000-08-14

Family

ID=15980407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17454492A Expired - Lifetime JP3075842B2 (en) 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material

Country Status (1)

Country Link
JP (1) JP3075842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140520A (en) * 2018-05-29 2019-12-20 비즈 주식회사 3d printer making three dimensional artwork and thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140520A (en) * 2018-05-29 2019-12-20 비즈 주식회사 3d printer making three dimensional artwork and thereof

Also Published As

Publication number Publication date
JP3075842B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
EP0445818B1 (en) Method of modifying surface qualities of metallic articles and apparatus therefor
AU2006202925B2 (en) Flux system to reduce copper cracking
CA2040942C (en) Methods of strengthening aluminum castings in the specified local part
JPH0741435B2 (en) Consumable welding rod
KR100343750B1 (en) Pit and blow hole resistant flux-cored wire electrode for gas-shielded arc-welding of galvanized steel sheet
JP3075842B2 (en) Overlay welding method to Al, Al base material
JP3020670B2 (en) Cu-Al composite wire for overlay welding on Al-based material surface
JPH0557480A (en) Composite wire for build up welding to surface of al base material
JPH07251293A (en) Method for hard facing by welding onto aluminum alloy surface
JPH0615482A (en) Filler metal for build-up welding to surface of al-base material
JP3272526B2 (en) Composite wire for overlay welding to Al-based material surface and wear-resistant Al-based member
JP2002346787A (en) Solid wire for pulse mag welding
JP3217536B2 (en) Composite wire for overlay welding on Al-based materials
JPH1034380A (en) Cladding by welding metal and cladding by welding flux cored wire of aluminum or aluminum alloy material
JP3301825B2 (en) Overlay welding method of dissimilar materials to aluminum base material
JP3295245B2 (en) Composite wire for overlay welding on Al-based material surface
JPH06328246A (en) Cladding by welding method on al base material
JP2542313B2 (en) Hardfacing welding method
Śliwński et al. Effect of laser remelting of plasma sprayed coating of Cr-Ni-Re
JPH06246483A (en) Composite wire for build-up welding to surface of ti base material
JPH05337678A (en) Filler metal for build-up welding onto surface of al base material
JP3026897B2 (en) Non-low hydrogen coated arc welding rod
JP2711072B2 (en) Stainless steel flux cored wire
JPH08276292A (en) Non-low hydrogen type coated electrode
CA3175022A1 (en) Welding electrode with functional coatings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000530