JP3075842B2 - Overlay welding method to Al, Al base material - Google Patents

Overlay welding method to Al, Al base material

Info

Publication number
JP3075842B2
JP3075842B2 JP17454492A JP17454492A JP3075842B2 JP 3075842 B2 JP3075842 B2 JP 3075842B2 JP 17454492 A JP17454492 A JP 17454492A JP 17454492 A JP17454492 A JP 17454492A JP 3075842 B2 JP3075842 B2 JP 3075842B2
Authority
JP
Japan
Prior art keywords
welding
electrode
metal
wire
dcep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17454492A
Other languages
Japanese (ja)
Other versions
JPH0623546A (en
Inventor
繁 栗原
康俊 中田
弘之 小池
良雄 神戸
Original Assignee
日鐵溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵溶接工業株式会社 filed Critical 日鐵溶接工業株式会社
Priority to JP17454492A priority Critical patent/JP3075842B2/en
Publication of JPH0623546A publication Critical patent/JPH0623546A/en
Application granted granted Critical
Publication of JP3075842B2 publication Critical patent/JP3075842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はAl、Al基材料表面に
耐摩耗性と耐熱性を付与する肉盛溶接方法に関し、特に
ピットやブローホール等の溶接欠陥発生が少ない肉盛溶
接金属を得る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a build-up welding method for imparting abrasion resistance and heat resistance to the surface of Al and Al-based materials, and in particular, to obtain a build-up weld metal with less occurrence of welding defects such as pits and blow holes. It is about the method.

【0002】[0002]

【従来の技術とその課題】Al、Al基材料は鉄鋼材料
に比較して、軽量で熱伝導性、耐食性が優れていること
から自動車部品をはじめ広い分野で使用されている。し
かしAl、Al基材料合金は一般に鉄鋼材料に比べ強
度、耐摩耗性、耐熱性の面で劣っており、素材そのまま
では、鉄鋼材料の代替材料として適用できる部位、部品
は限られているため、Al、Al基材料の表面に硬質層
を形成させる方法が検討されている。その方法として、
PVD、CVDにより薄い硬質皮膜層を形成する方法、
溶射により比較的厚い硬質皮膜層を形成する方法、電子
ビーム、レーザなどの高密度エネルギー源を用いて基材
表面とともに合金化金属を溶融させ硬質合金化層を形成
する方法、MIGアーク、TIGアークを用いて硬質肉
盛金属を形成する方法等がある。
2. Description of the Related Art Al and Al-based materials are used in a wide range of fields including automobile parts because of their light weight, excellent thermal conductivity and excellent corrosion resistance as compared with steel materials. However, Al, Al-based material alloys are generally inferior in strength, abrasion resistance, and heat resistance as compared with steel materials, and the parts and parts that can be used as substitutes for steel materials are limited as they are, A method of forming a hard layer on the surface of Al or an Al-based material has been studied. As a method,
A method of forming a thin hard coating layer by PVD, CVD,
A method of forming a relatively thick hard coating layer by thermal spraying, a method of forming a hard alloyed layer by melting an alloyed metal together with a substrate surface using a high-density energy source such as an electron beam or a laser, MIG arc, TIG arc And a method of forming a hardfacing metal using the method.

【0003】この内、MIGアーク、TIGアークを用
いたAl、Al合金の肉盛溶接法としては、特開昭58
−179569号公報に、溶加材にAlまたはAl合金
粉末とNbC粉末、TiC粉末、VC粉末との混合粉末
を用い、TIGアークによるAl系材料への表面硬化方
法が開示されている。しかし、溶加材に粉末を用いた場
合、その溶加材の安定送給、組成の偏析など問題があ
り、均一組成の肉盛金属が得にくい。例えば、NbC、
TiC粉末等のセラミックスとAl合金粉との混合粉で
は、一般に炭化物等のセラミックスなどは破砕粉である
ため異形粉であり、安定送給は困難で、比重の異なる混
合粉では、組成的に均一な送給は困難である。従って、
添加金属の希釈量が変動するため、得られる肉盛金属の
組成が不均一となり、耐摩耗性、耐熱性などの特性が変
動する原因となる。
[0003] Among them, a method of overlay welding of Al and Al alloy using MIG arc and TIG arc is disclosed in
Japanese Patent Application Publication No. 179569 discloses a method of surface hardening an Al-based material by a TIG arc using a mixed powder of Al or an Al alloy powder and NbC powder, TiC powder, and VC powder as a filler material. However, when powder is used as the filler material, there are problems such as stable feeding of the filler material and segregation of the composition, and it is difficult to obtain a build-up metal having a uniform composition. For example, NbC,
In the mixed powder of ceramics such as TiC powder and Al alloy powder, ceramics such as carbide are generally crushed powders and therefore irregular shaped powders, so that stable feeding is difficult, and in the case of mixed powders having different specific gravities, the composition is uniform. Delivery is difficult. Therefore,
Since the amount of dilution of the added metal fluctuates, the composition of the resulting build-up metal becomes non-uniform, which causes fluctuations in properties such as wear resistance and heat resistance.

【0004】更には、特開平3−169495号公報、
特開平3−169496号公報には、Al外皮にAl以
外の金属線材やセラミックス線材が収容された複合溶加
材を用いたAlの表面硬化方法が開示されている。溶加
材に複合線材を用いた場合、外皮金属内部に内包された
芯材の融点が外皮金属の融点より高いと外皮金属が先に
溶融し、その後内包された芯材が溶融するといった状態
となる。この様な現象が生じると合金層に外皮金属成分
が多い箇所と芯材成分が多い箇所と言うように肉盛金属
に成分の偏析が生じ易く、均一組成に肉盛金属が得にく
い。
Further, Japanese Patent Laid-Open No. 3-169495,
Japanese Patent Application Laid-Open No. 3-169496 discloses a method for hardening Al using a composite filler material in which a metal wire other than Al or a ceramic wire is housed in an Al shell. When the composite wire is used as the filler material, if the melting point of the core material included in the outer metal is higher than the melting point of the outer metal, the outer metal will melt first, and then the inner core will melt. Become. When such a phenomenon occurs, segregation of components is likely to occur in the build-up metal, such as a place where the outer layer metal component is large in the alloy layer and a place where the core material component is large, and it is difficult to obtain the build-up metal with a uniform composition.

【0005】一方、Al、Al基材料表面への肉盛溶接
でもAl、Al基材料の溶接と同様、溶融状態において
2、N2、O2等を吸収し易いため、ピットやブローホ
ールなどの溶接欠陥を生成し易く、溶加材からもたらさ
れるガス成分が、その発生の大きな要因となる。肉盛層
の表面、内部に発生するピットやブローホール等の溶接
欠陥は一般に水素によるものであるとされている。その
水素源としては、母材及び溶接ワイヤに付着または吸着
された水分・有機物・腐食生成物などの分解による水
素、母材及び溶接ワイヤ中に固溶している水素、シール
ドガス中の水素及び水分、アーク雰囲気中に巻き込まれ
た周辺空気、等が原因であると考えられている。またA
l、Al基材料の表面には酸化皮膜(Al23)が形成
され易く、これが溶接中に巻き込まれ、ピット、ブロー
ホールの発生原因になる。更に、酸化皮膜(Al23
は溶接中2000℃以上で生成されるため、ブローホー
ルが酸化皮膜によって、溶接金属中にトラップされてし
まうことがある。
On the other hand, as in the case of welding Al and Al-based materials, it is easy to absorb H 2 , N 2 , O 2, etc. in the molten state in the overlay welding on the surface of Al or Al-based materials. Is easily generated, and a gas component brought from the filler metal is a major factor in the generation. It is generally considered that welding defects such as pits and blowholes generated on the surface and inside of the buildup layer are caused by hydrogen. As the hydrogen source, hydrogen due to decomposition of moisture, organic substances, corrosion products, etc. attached or adsorbed to the base material and the welding wire, hydrogen dissolved in the base material and the welding wire, hydrogen in the shielding gas and It is thought to be due to moisture, ambient air entrained in the arc atmosphere, and the like. A
(1) An oxide film (Al 2 O 3 ) is easily formed on the surface of the Al-based material, which gets caught during welding and causes pits and blow holes. Furthermore, an oxide film (Al 2 O 3 )
Is generated at 2000 ° C. or higher during welding, so that blow holes may be trapped in the weld metal by the oxide film.

【0006】そこで、ピット、ブローホールを低減させ
る方法として、次の様な技術が提案されている。例え
ば、特開昭55−86696号公報はワイヤ表面に付着
している水分、有機物、腐食生成物、酸化皮膜を溶接の
直前に機械研削装置を設け除去するか、アルカリ洗浄装
置を設け化学的に除去するかして、ピット、ブローホー
ルを低減させるものである。また、特開昭58−154
461号公報ではワイヤ送給ケーブルの間に、AC(交
流)−TIG又はDCEP(直流電極プラス)−TIG
によるワイヤ酸化皮膜除去クリーニング装置を設けてい
る。しかし、これらの技術はいづれもワイヤに付着して
いる水分、有機物、腐食生成物、酸化皮膜を除去してピ
ット、ブローホールを低減させるものであり、母材に付
着している水分、有機物、腐食生成物、酸化皮膜、母材
中のガス成分によって生じるピット、ブローホールの防
止策にたいしては十分ではない。
Therefore, the following technique has been proposed as a method for reducing pits and blowholes. For example, Japanese Unexamined Patent Publication No. 55-86669 discloses that moisture, organic matter, corrosion products, and oxide films adhering to the surface of a wire are removed by providing a mechanical grinding device immediately before welding, or by providing an alkaline cleaning device and chemically removing the oxide film. By removing them, pits and blowholes are reduced. Also, Japanese Patent Application Laid-Open No. 58-154
No. 461 discloses an AC (AC) -TIG or DCEP (DC electrode plus) -TIG between wire feeding cables.
And a wire oxide film removal cleaning device is provided. However, all of these technologies remove moisture, organic matter, corrosion products, and oxide films attached to the wire to reduce pits and blowholes, and reduce moisture, organic matter, It is not enough to prevent pits and blowholes caused by corrosion products, oxide films, and gas components in the base material.

【0007】また、特開昭51−1339号公報ではA
C−TIG法又はDCEP−TIG法を先行させて、そ
の予熱効果で溶接金属中の拡散水素量を減少させるとと
もにアークのクリーニング作用を利用して母材の酸化皮
膜を除去し、その直後にDCEN(直流電極マイナス)
−TIG法で溶接を行い、ピット、ブローホールのない
健全な溶接金属を得ている。同様な技術として、特開昭
53−29245号公報ではDCEP−TIG法を先行
させて、母材を溶融させ母材中のガス成分を除去しその
直後にAC−TIG法で溶接を行い表面ピット解消させ
ている。これら技術は、先行電極で母材表面の水分や酸
化物、母材中のガス成分を除去した後、後行の電極にフ
ィラワイヤを挿入して溶接を行う方法であるため、ワイ
ヤに付着している水分、酸化物によって生じるピット、
ブローホールやフィラワイヤによって溶融プールに持ち
込まれる空気中の水分によって生じるピット、ブローホ
ールの防止策に対しては十分ではない。
In Japanese Patent Application Laid-Open No. 51-1339, A
Prior to the C-TIG method or the DCEP-TIG method, the preheating effect reduces the amount of diffused hydrogen in the weld metal, removes the oxide film of the base metal by utilizing the arc cleaning action, and immediately thereafter, the DCEN (DC electrode minus)
-Welding by TIG method to obtain sound weld metal without pits and blowholes. As a similar technique, Japanese Unexamined Patent Publication No. 53-29245 discloses a method in which a DCEP-TIG method is preceded, a base material is melted, gas components in the base material are removed, and immediately thereafter, welding is performed by an AC-TIG method to perform surface pitting. Has been eliminated. These techniques involve removing the moisture and oxides on the surface of the base material and gas components in the base material with the preceding electrode, and then inserting a filler wire into the succeeding electrode for welding. Pits caused by moisture, oxides,
It is not enough to prevent pits and blowholes caused by moisture in the air brought into the molten pool by blowholes and filler wires.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記のような
ピットやブローホールの低減化方法における問題点を解
決するべくなされたもので、その目的とするところは、
ピットやブローホールなどの溶接欠陥が発生せず、健全
な肉盛溶接部が得られる溶接方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems in the method for reducing pits and blowholes as described above.
An object of the present invention is to provide a welding method in which a welding defect such as a pit or a blowhole does not occur and a sound overlay weld can be obtained.

【0009】[0009]

【課題を解決するための手段】本発明の溶接方法は下記
の構成を要旨とするものである。即ち、2電極による肉
盛溶接法において、先行のDCEP−MIG溶接部を後
行のTIG溶接で再溶融して溶接するとともにDCEP
−MIG溶接の電極ワイヤには、Cu基材料からなる外
皮材の中空部にAl基材料からなる芯材線を充填し、C
u量がワイヤ全重量に対して30〜85重量%であるC
u−Al複合ワイヤを用い、且つ先行のDCEP−MI
G溶接の電極ワイヤと後行のTIG電極の距離を50〜
400mmとすることを特徴とするAl、Al基材料へ
の肉盛溶接方法である。
SUMMARY OF THE INVENTION The welding method of the present invention has the following constitution. That is, in the overlay welding method using two electrodes, the preceding DCEP-MIG welding portion is re-melted and welded by the subsequent TIG welding, and the DCEP-MIG welding is performed.
-The electrode wire of MIG welding is filled with a core wire made of an Al-based material in a hollow portion of a skin material made of a Cu-based material,
C whose u amount is 30 to 85% by weight based on the total weight of the wire
U-Al composite wire and prior DCEP-MI
The distance between the electrode wire for G welding and the subsequent TIG electrode should be 50-
This is a method for overlay welding to Al or an Al-based material, characterized in that the thickness is 400 mm.

【0010】[0010]

【作用】以下、本発明を図面に従って詳細に説明する。
図1は本発明の方法を示す縦断面図である。先行電極を
DCEP−MIG溶接の電極ワイヤ(1)とするのは、
シールドガスとして噴射したArガス(5)がMIGア
ーク(7)中でイオン化し、母材表面(9)にあたり酸
化皮膜を除去するクリーニング作用を有していること、
また溶着速度が高く、高速度で溶接ができるためであ
る。尚、DCEN(直流電極マイナス)−MIG溶接で
は母材表面のクリーニング作用がないため、母材表面の
酸化皮膜の影響を受け健全な溶接ができなくなる。後行
電極にTIGトーチ(4)を配置するのは、DCEP−
MIG溶接では周辺空気が巻き込み、空気中の水分がピ
ット、ブローホールを誘発させることがあるため後行電
極のTIGアーク(8)でDCEP−MIG溶接で得ら
れた肉盛金属(10)を再溶融させ肉盛金属中に発生し
たピット、ブローホールを除去させるためである。
The present invention will be described below in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing the method of the present invention. The leading electrode is an electrode wire (1) for DCEP-MIG welding.
Ar gas (5) injected as a shielding gas is ionized in the MIG arc (7) and has a cleaning action of removing an oxide film on the base material surface (9);
In addition, the welding speed is high, and welding can be performed at a high speed. In DCEN (DC electrode minus) -MIG welding, there is no cleaning action on the surface of the base material, so that sound welding cannot be performed due to the influence of the oxide film on the surface of the base material. The arrangement of the TIG torch (4) on the trailing electrode is based on DCEP-
In MIG welding, the surrounding air may be entrained, and moisture in the air may induce pits and blow holes. This is for removing pits and blow holes generated in the overlay metal by melting.

【0011】更に、DCEP−MIG電極ワイヤ(1)
とTIG電極(2)との距離を50〜400mmにする
のが良い。50〜400mmとすることでアーク相互の
干渉をなくし、DCEP−MIG溶接で得られた肉盛金
属(10)を再溶融させることができる。両電極の極間
が50mm未満ではアーク相互の干渉が起こり安定した
溶接が行えなくなる。また400mmを超えるとDCE
P−MIG溶接で得られた肉盛金属(10)の温度が降
下してしまい、予熱効果がなくなり肉盛金属(10)を
TIGアーク(8)で十分に溶融させることができない
ため、未溶融部にピット、ブローホールが残ってしま
う。また、装置自体が大型になるため操作性も悪くな
る。
Further, a DCEP-MIG electrode wire (1)
The distance between the TIG electrode (2) and the TIG electrode (2) is preferably 50 to 400 mm. By setting the thickness to 50 to 400 mm, interference between arcs can be eliminated, and the overlay metal (10) obtained by DCEP-MIG welding can be re-melted. If the gap between the two electrodes is less than 50 mm, interference between the arcs will occur and stable welding cannot be performed. In addition, DCE exceeds 400 mm
Since the temperature of the overlay metal (10) obtained by the P-MIG welding drops, the preheating effect is lost and the overlay metal (10) cannot be sufficiently melted by the TIG arc (8), so that it is not melted. Pit and blowhole remain in the part. In addition, operability is deteriorated because the device itself becomes large.

【0012】更に、電極ワイヤ(1)にはCu基材料か
らなる外皮材の中空部にAl基材料からなる芯材線を充
填し、Cu量がワイヤ全重量に対して30〜85重量%
であるワイヤを用いる。外皮金属が芯材金属よりも融点
が高い場合、即ち外皮がCu基材料、芯材がAl基材料
であれば、合金化した溶滴が移行するため良好な肉盛金
属が得られるが、逆に外皮金属が芯材金属よりも融点が
低い場合、即ち外皮がAl基材料、芯材がCu基材料で
は外皮金属の融点が低いためアーク熱やジュール熱によ
って先に溶融してしまい、芯材が溶け残った状態をつく
り、合金化がうまく進行できず、肉盛金属の硬さが変動
するなど肉盛金属の品質が安定しない。
Further, the electrode wire (1) is filled with a core wire made of an Al-based material in a hollow portion of a shell material made of a Cu-based material, and the Cu content is 30 to 85% by weight based on the total weight of the wire.
Is used. If the shell metal has a higher melting point than the core metal, that is, if the shell is a Cu-based material and the core is an Al-based material, a good overlay metal is obtained because the alloyed droplets migrate, When the shell metal has a lower melting point than the core metal, that is, when the shell is an Al-based material and the core material is a Cu-based material, the melting point of the shell metal is low, so that the core metal is first melted by arc heat or Joule heat. However, the quality of the build-up metal is not stable, for example, the alloying cannot proceed well and the hardness of the build-up metal fluctuates.

【0013】また肉盛金属の耐摩耗性が安定して得られ
る肉盛金属の硬さは、ビッカース硬さHv150以上必
要であり、Hv150未満では耐摩耗性の向上が期待さ
れない。Al−Cu複合ワイヤによる肉盛金属の組織は
高Cu側でα相とθ相(CuAl2)とからなり、θ相
の存在により耐摩耗性、耐熱性を有するものである。即
ち、Cu量が30%未満の場合では、溶接によって得ら
れる肉盛金属のCu量が不足し、殆どα相のみとなって
しまい、その硬さはHv150に達せず耐摩耗材に適し
ない。一方、Cu量が85%をこえた場合では、脆弱な
η2相が現れ、割れが発生する。従って、Al基材料か
らなる外皮内にCu基材からなる芯材線を充填したCu
−Al複合ワイヤのCu量は30〜85%の範囲内とす
る必要がある。以下に実施例を示す。
[0013] The hardness of the build-up metal, which can stably obtain the wear resistance of the build-up metal, must be Vickers hardness Hv150 or more, and if it is less than Hv150, no improvement in wear resistance is expected. The structure of the build-up metal by the Al-Cu composite wire is composed of an α phase and a θ phase (CuAl 2 ) on the high Cu side, and has wear resistance and heat resistance due to the presence of the θ phase. That is, if the Cu content is less than 30%, the Cu content of the overlay metal obtained by welding is insufficient, and almost only the α phase is present, and the hardness does not reach Hv150, which is not suitable for a wear-resistant material. On the other hand, when the Cu content exceeds 85%, a brittle η 2 phase appears and cracks occur. Therefore, Cu filled with a core wire made of a Cu base in an outer skin made of an Al-based material
-The Cu content of the Al composite wire must be in the range of 30 to 85%. Examples will be described below.

【0014】[0014]

【実施例】【Example】

実施例1 溶接試験は母材にJIS A 5083P:10t×5
0w×150lを使用し、先行電極(DCEP:直流電
極プラス)にはCu量が70wt%のCu外皮Al−C
u複合ワイヤ(1.2mm)を、後行電極にはDCEN
(直流電極マイナス)−TIG法を用いてビードオンプ
レート法により溶接を行い得られたビード横断面のブロ
ーホールの低減化状況を調査した。ブローホールの低減
化状況は溶接ビードを横断面に5断面切断し、各々の断
面を1μmのダイヤモンド粒によるバフ研磨により仕上
げ、光学顕微鏡(20倍)にて撮影を行い、得られたビ
ード横断面形状の写真からブローホール全面積と肉盛金
属面積とを画像解析装置によって測定し、ブローホール
面積率(ブローホール全面積/肉盛金属全面積)を求め
評価した。硬さは溶接ビードの横断面中央ビード表面か
ら溶融境界部まで0.5mmピッチでビッカース硬度計
を用いて測定し、硬さの平均値を求めた。また肉盛金属
の割れの有無は溶接ビード断面を光学顕微鏡(×10
0)で観察した。溶接条件を以下に示す。
Example 1 In the welding test, JIS A 5083P: 10 t × 5
Using 0 w × 150 l, the outer electrode (DCEP: DC electrode plus) has a Cu shell Al-C with a Cu content of 70 wt%.
u composite wire (1.2 mm) and DCEN
(DC electrode minus) Using the TIG method, the reduction of blowholes in the cross section of the bead obtained by welding by the bead-on-plate method was investigated. The blow hole was reduced by cutting the weld bead into 5 cross-sections, finishing each cross-section by buffing with 1 μm diamond grains, and photographing with an optical microscope (20 ×). From the photograph of the shape, the total area of the blowhole and the area of the buildup metal were measured by an image analyzer, and the blowhole area ratio (total area of the blowhole / total area of the buildup metal) was determined and evaluated. The hardness was measured using a Vickers hardness meter at a 0.5 mm pitch from the center bead surface of the transverse cross section of the weld bead to the fusion boundary, and the average value of the hardness was determined. The presence or absence of cracks in the build-up metal was determined by examining the cross section of the weld bead using an optical microscope (× 10
0). The welding conditions are shown below.

【0015】尚、先行電極と後行電極の極間を40、1
00、500mmと変化させた。 溶接条件 先行電極 後行電極 DCEP−MIG電極 DCEN−TIG電極 溶接電流 140A 溶接電流 120A アーク電圧21V アーク電圧16V 溶接速度 40cm/min 溶接速度 40cm/min シールドガス Ar:25l/min シールドガス He:25l/min ワイヤ突き出し長さ 15mm
The distance between the leading electrode and the trailing electrode is 40, 1
00 and 500 mm. Welding conditions Leading electrode Trailing electrode DCEP-MIG electrode DCEN-TIG electrode Welding current 140A Welding current 120A Arc voltage 21V Arc voltage 16V Welding speed 40cm / min Welding speed 40cm / min Shielding gas Ar: 25l / min Shielding gas He: 25l / min Wire protrusion length 15mm

【0016】表1に、先行電極だけで溶接したビード横
断面のブローホール面積率、先行電極と後行電極の極間
を変えて溶接したビード横断面のブローホール面積率、
硬さ割れの結果を示す。また、図2に先行電極だけで溶
接したビード横断面マクロ(A)と先行電極と後行電極
を用いて溶接したビード横断面マクロ(B)を示す。
Table 1 shows the blow hole area ratio of the bead cross section welded only with the leading electrode, the blow hole area ratio of the bead cross section welded by changing the gap between the leading electrode and the trailing electrode,
The results of hardness cracking are shown. FIG. 2 shows a bead cross-sectional macro (A) welded with only the leading electrode and a bead cross-sectional macro (B) welded with the leading and trailing electrodes.

【0017】[0017]

【表1】 [Table 1]

【0018】表1より先行電極(DCEP)だけで溶接
したビード(A)にはブローホールが多数発生している
が、先行電極(DCEP)+後行電極(DCEN)で溶
接したビード(C)はブローホールの発生が約1/10
に減少した。極間が40mmとした場合(B)はアーク
が干渉しあい溶接ができなかった。また極間を500m
mにした場合(D)は先行電極で溶接したビードが冷却
されて、後行電極で十分再溶融できなかったため、ブロ
ーホール面積率の低減化効果は極間100mmにくらべ
少なかった。硬さはHv250〜280であり耐摩耗性
の点から十分であり、割れは無かった。
According to Table 1, the bead (A) welded with only the leading electrode (DCEP) has many blowholes, but the bead (C) welded with the leading electrode (DCEP) + the trailing electrode (DCEN). Is about 1/10 of blowhole
Decreased to. When the distance between the electrodes was 40 mm (B), the arcs interfered and welding could not be performed. 500m between poles
In the case of (m), since the bead welded by the preceding electrode was cooled and could not be sufficiently re-melted by the succeeding electrode, the effect of reducing the blowhole area ratio was less than 100 mm between the electrodes. The hardness was Hv250 to 280, which was sufficient from the viewpoint of wear resistance, and there was no crack.

【0019】実施例2 溶接試験は母材にJIS A 5083P:10t×5
0w×150lを使用し、先行電極(DCEP:直流電
極プラス)にはCu量がそれぞれ25、60、90wt
%のCu外皮Al−Cu複合ワイヤ(1.2mm)とC
u量が60wt%のAl外皮Al−Cu複合ワイヤを、
後行電極にはAC(交流)−TIG法を用いてビードオ
ンプレート法により溶接を行い得られたビード横断面の
ブローホールの面積率、硬さの平均、硬さの変動を調査
した。ブローホール面積率、硬さは実施例1と同じ方法
にて測定し、硬さの変動は硬さの最大値と最小値の範囲
で表した。溶接条件を以下に示す。
Example 2 In the welding test, JIS A 5083P: 10 t × 5
Using 0 w × 150 l, the amount of Cu was 25, 60, and 90 wt% for the leading electrode (DCEP: DC electrode plus), respectively.
% Cu sheath Al-Cu composite wire (1.2 mm) and C
An Al sheath Al-Cu composite wire having a u content of 60 wt%
The following electrode was subjected to welding by a bead-on-plate method using an AC (AC) -TIG method, and the area ratio, average hardness, and variation in hardness of blow holes in a bead cross section obtained by welding were investigated. The blowhole area ratio and hardness were measured in the same manner as in Example 1, and the variation in hardness was expressed in the range of the maximum value and the minimum value of hardness. The welding conditions are shown below.

【0020】 溶接条件 先行電極 後行電極 DCEP−MIG電極 AC−TIG電極 溶接電流 140A 溶接電流 120A アーク電圧21V アーク電圧12V 溶接速度 40cm/min 溶接速度 40cm/min シールドガス Ar:25l/min シールドガス Ar:25l/min ワイヤ突き出し長さ 15mm 表2にブローホール面積率、硬さ、ビードの割れの状況
を示す。
Welding conditions Leading electrode Trailing electrode DCEP-MIG electrode AC-TIG electrode Welding current 140A Welding current 120A Arc voltage 21V Arc voltage 12V Welding speed 40cm / min Welding speed 40cm / min Shielding gas Ar: 25l / min Shielding gas Ar : 25 l / min Wire protrusion length 15 mm Table 2 shows the blow hole area ratio, hardness, and the state of bead cracking.

【0021】[0021]

【表2】 [Table 2]

【0022】表2よりCu量が25wt%の(E)は硬
さがHv110と低く耐摩耗性の点で劣っている。Cu
量が60wt%では硬さがHv223で割れも無く良好
であった。Cu量が90wt%では硬さがHv368で
高く、ビードに割れが発生した。Al外皮で芯材がCu
のAl−Cu複合ワイヤ(H)は肉盛金属の硬さの変動
が大きく、硬さの安定した肉盛金属が得られない。尚、
ブローホール面積率は少なく良好であった。
According to Table 2, (E) having a Cu content of 25 wt% has a low hardness of Hv110 and is inferior in wear resistance. Cu
When the amount was 60 wt%, the hardness was Hv223, which was good without cracking. When the Cu content was 90 wt%, the hardness was high at Hv368, and cracks occurred in the beads. The core is Cu with Al skin
In the Al-Cu composite wire (H), the hardness of the build-up metal varies greatly, and a build-up metal with a stable hardness cannot be obtained. still,
The blowhole area ratio was small and good.

【0023】[0023]

【発明の効果】以上の如く本発明方法によればピットや
ブローホール等の溶接欠陥発生が少なく、Al、Al基
材料表面に耐摩耗性と耐熱性を付与する肉盛金属を得る
ことができる。
As described above, according to the method of the present invention, it is possible to obtain a build-up metal which has less occurrence of welding defects such as pits and blowholes and imparts abrasion resistance and heat resistance to the surface of Al or Al-based material. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を示す縦断面図、FIG. 1 is a longitudinal sectional view showing a method of the present invention;

【図2】先行電極だけで溶接したビード横断面マクロ
(A)と先行電極と後行電極を用いて溶接したビード横
断面マクロ(B)を示す図である。
FIG. 2 is a diagram showing a bead cross-sectional macro (A) welded with only a leading electrode and a bead cross-sectional macro (B) welded with a leading electrode and a trailing electrode.

【符号の説明】[Explanation of symbols]

1 電極ワイヤ 2 TIG電極 3 MIGトーチ 4 TIGトーチ 5 Arガス 6 シールドガス 7 MIGアーク 8 TIGアーク 9 母材 10 肉盛金属 11 極間 DESCRIPTION OF SYMBOLS 1 Electrode wire 2 TIG electrode 3 MIG torch 4 TIG torch 5 Ar gas 6 Shielding gas 7 MIG arc 8 TIG arc 9 Base metal 10 Overlay metal 11 Between poles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神戸 良雄 東京都中央区築地三丁目5番4号 日鐵 溶接工業株式会社 研究所内 (56)参考文献 特開 昭53−34653(JP,A) 特開 昭52−8941(JP,A) 特公 昭51−21604(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B23K 9/04 B23K 9/16 B23K 35/02 B23K 35/18 B23K 103:10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Yoshio Kobe, Inventor, Nippon Steel Welding Industry Co., Ltd. Researcher, 3-5-4 Tsukiji, Chuo-ku, Tokyo (56) Reference JP-A-53-34653 (JP, A) 52-8941 (JP, A) JP 51-21604 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B23K 9/04 B23K 9/16 B23K 35/02 B23K 35/18 B23K 103: 10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2電極による肉盛溶接方法において、先
行のDCEP−MIG溶接部を後行のTIG溶接で再溶
融して溶接することを特徴とするAl、Al基材料表面
への肉盛溶接方法。
1. A cladding welding method using two electrodes, wherein a preceding DCEP-MIG weld is re-melted and welded by a subsequent TIG welding to a surface of an Al or Al-based material. Method.
【請求項2】 DCEP−MIG溶接の電極ワイヤに
は、Cu基材料からなる外皮材の中空部にAl基材料か
らなる芯材線を充填し、Cu量がワイヤ全重量に対して
30〜85重量%であるCu−Al複合ワイヤを用いる
ことを特徴とする請求項1記載のAl、Al基材料への
肉盛溶接方法。
2. An electrode wire for DCEP-MIG welding is filled with a core wire made of an Al-based material in a hollow portion of a shell material made of a Cu-based material, and the Cu content is 30 to 85 with respect to the total weight of the wire. 2. The method for overlay welding on Al and Al-based materials according to claim 1, wherein a Cu-Al composite wire having a weight percentage of Cu is used.
【請求項3】 先行のDCEP−MIG溶接の電極ワイ
ヤと後行のTIG電極の距離を50〜400mmとする
ことを特徴とする請求項1および請求項2記載のAl、
Al基材料への肉盛溶接方法。
3. A method according to claim 1, wherein the distance between the electrode wire of the preceding DCEP-MIG welding and the subsequent TIG electrode is 50 to 400 mm.
Overlay welding method to Al-based material.
JP17454492A 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material Expired - Lifetime JP3075842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17454492A JP3075842B2 (en) 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17454492A JP3075842B2 (en) 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material

Publications (2)

Publication Number Publication Date
JPH0623546A JPH0623546A (en) 1994-02-01
JP3075842B2 true JP3075842B2 (en) 2000-08-14

Family

ID=15980407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17454492A Expired - Lifetime JP3075842B2 (en) 1992-07-01 1992-07-01 Overlay welding method to Al, Al base material

Country Status (1)

Country Link
JP (1) JP3075842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102143879B1 (en) * 2018-05-29 2020-08-12 비즈 주식회사 3d printer making three dimensional artwork and thereof

Also Published As

Publication number Publication date
JPH0623546A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
EP0445818B1 (en) Method of modifying surface qualities of metallic articles and apparatus therefor
KR100708267B1 (en) Self-shielded flux cored electrode
US20140339201A1 (en) Flux system to reduce copper cracking
JP2678804B2 (en) Method for forming pure Cu build-up layer on iron alloy substrate
KR100343750B1 (en) Pit and blow hole resistant flux-cored wire electrode for gas-shielded arc-welding of galvanized steel sheet
JP6263296B2 (en) Wire for welding dissimilar materials and manufacturing method thereof
JP3184236B2 (en) Aluminum alloy welding method
JP3075842B2 (en) Overlay welding method to Al, Al base material
JP3020670B2 (en) Cu-Al composite wire for overlay welding on Al-based material surface
JPH0557480A (en) Composite wire for build up welding to surface of al base material
JP3889897B2 (en) Two-electrode vertical electrogas arc welding method with excellent welding workability and back bead appearance
JPH07251293A (en) Method for hard facing by welding onto aluminum alloy surface
JP2731966B2 (en) Overlay welding method for Al or Al alloy surface
JP2542313B2 (en) Hardfacing welding method
JPH1034380A (en) Cladding by welding metal and cladding by welding flux cored wire of aluminum or aluminum alloy material
JPH0615482A (en) Filler metal for build-up welding to surface of al-base material
WO2019026192A1 (en) Wire for welding dissimilar materials, and method for manufacturing same
JP3217536B2 (en) Composite wire for overlay welding on Al-based materials
JP3301825B2 (en) Overlay welding method of dissimilar materials to aluminum base material
JP3295245B2 (en) Composite wire for overlay welding on Al-based material surface
Śliwński et al. Effect of laser remelting of plasma sprayed coating of Cr-Ni-Re
JPH06328246A (en) Cladding by welding method on al base material
JP3020558B2 (en) Overlay welding method by MIG welding
JPH07204886A (en) Composite wire for build-up welding to surface of al-based material and wear resistant al-based member
JPH06246483A (en) Composite wire for build-up welding to surface of ti base material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000530