JPH06235080A - Corrosion preventive method for concrete structure by thermally sprayed metallic film - Google Patents

Corrosion preventive method for concrete structure by thermally sprayed metallic film

Info

Publication number
JPH06235080A
JPH06235080A JP5019966A JP1996693A JPH06235080A JP H06235080 A JPH06235080 A JP H06235080A JP 5019966 A JP5019966 A JP 5019966A JP 1996693 A JP1996693 A JP 1996693A JP H06235080 A JPH06235080 A JP H06235080A
Authority
JP
Japan
Prior art keywords
corrosion
thermally sprayed
current
reinforcing bars
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5019966A
Other languages
Japanese (ja)
Inventor
Toshiya Uchibori
利也 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP5019966A priority Critical patent/JPH06235080A/en
Publication of JPH06235080A publication Critical patent/JPH06235080A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To optimize the supply of protective current and to improve a corrosion preventive effect and corrosion preventive life by changing the film thicknesses of thermally sprayed metallic films according to the surface area and corrosion condition of reinforcing bars and electrically insulating the these films in each of the respective film thickness blocks with an external power source system. CONSTITUTION:The film thicknesses of the thermally sprayed metallic films formed on the surfaces of the concrete structure are changed according to the various values of the surface area of the reinforcing bars or the corrosion condition in the respective parts of the structure. The thermally sprayed metallic films are electrically insulated in each of the blocks varying in the film thicknesses and the required DC current is passed in each of these blocks. As a result, the protective current is passed at the large current density in the parts of the reinforcing bars where the surface area is large or the corrosion is intensive and at the small current density in the parts of the reinforcing bar where the area is small or the corrosion is slight. Then, the adequate corrosion preventive effect is exhibited according to the various values of the surface areas and corrosion condition of the reinforcing bars and since the consumption of the thermally sprayed films increases in proportion to the energizing current, the life over the entire part of the thermally sprayed films is averaged and the corrosion preventive life, etc., are prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、桟橋、道路橋、橋脚、
建築構造物などの鉄筋コンクリート構造物を金属溶射皮
膜で電気防食する方法に関する。
The present invention relates to a pier, a road bridge, a pier,
The present invention relates to a method of performing galvanic protection of a reinforced concrete structure such as a building structure with a metal spray coating.

【0002】[0002]

【従来の技術】近年、鉄筋コンクリート構造物中の鉄筋
が、細骨材に含まれる塩分や海塩粒子の侵入などによっ
て腐食されることが問題となっている。その防食対策と
して電気防食法が注目されており、コンクリート構造物
の表面に鉄筋等よりも電位の卑な金属溶射皮膜を密着さ
せる流電陽極方式、又は、金属溶射皮膜を直流電源装置
の正極に接続し、鉄筋を直流電源装置の負極に接続して
直流電流を鉄筋に流入させる外部電源方式が知られてい
るが、従来、外部電源方式においては金属溶射皮膜前面
を直流電源装置の単一回路に接続していた。
2. Description of the Related Art In recent years, there has been a problem that the reinforcing bars in a reinforced concrete structure are corroded by the intrusion of salt contained in fine aggregates or sea salt particles. As an anticorrosion measure, the electrocorrosion method has been attracting attention.A galvanic anode method in which a surface of a concrete structure is sprayed with a metal spray coating having a potential lower than that of reinforcing bars, or a metal spray coating is used as the positive electrode of a DC power supply device. An external power supply method is known, in which the connection is made and the rebar is connected to the negative electrode of the DC power supply device to allow a direct current to flow into the rebar.However, in the conventional external power supply system, the front surface of the metal sprayed coating is a single circuit of the DC power supply device. Was connected to.

【0003】[0003]

【発明が解決しようとする課題】このため、外部電源方
式においては、金属溶射皮膜のどの部分の通電電流も一
定となる。その結果、コンクリート構造物中の鉄筋の表
面積の大きい部分や腐食の激しい部分では、防食電流が
不足して防食効果が十分でなく、また、これらの部分の
防食効果を十分にするために防食電流を増加すると、金
属溶射皮膜全体の溶出速度を速め、防食寿命を短縮する
ことになる。
Therefore, in the external power supply system, the current supplied to any portion of the metal spray coating is constant. As a result, the corrosion prevention current is insufficient and the corrosion prevention effect is not sufficient at the part where the surface area of the reinforcing bar in the concrete structure is large or the corrosion is severe. Increasing the value increases the elution rate of the entire metal spray coating and shortens the corrosion protection life.

【0004】本発明は、上記の問題点を解消し、コンク
リート構造物中の鉄筋の表面積の大小や腐食速度の大小
に応じた防食電流を、コンクリート構造物表面の金属溶
射皮膜に供給することを可能にし、十分な防食効果と防
食寿命を合わせて有するコンクリート構造物の防食方法
を提供しようとするものである。
The present invention solves the above problems and supplies an anti-corrosion current to the metal spray coating on the surface of the concrete structure depending on the surface area of the reinforcing bars in the concrete structure and the corrosion rate. The present invention is intended to provide a method for preventing corrosion of a concrete structure that has both sufficient corrosion resistance and sufficient corrosion protection life.

【0005】[0005]

【課題を解決するための手段】本発明は、コンクリート
構造物各部の鉄筋の表面積の大小及び又は腐食状況に応
じて、前記構造物表面に形成する金属溶射皮膜の膜厚を
変化させ、膜厚の異なる区画毎に金属溶射皮膜を電気的
に絶縁し、前記区画毎に所要の直流電流を流すことを特
徴とするコンクリート構造物の電気防食方法である。
According to the present invention, the film thickness of a metal sprayed coating formed on the surface of a concrete structure is changed according to the size of the surface area of the reinforcing bars in each part of the concrete structure and / or the corrosion condition. Is electrically insulated from the metal sprayed coating in each of the different sections, and a required direct current is passed through each of the sections.

【0006】[0006]

【作用】本発明は、コンクリート構造物中の鉄筋の表面
積の大きい部分や腐食の激しい部分について金属溶射皮
膜の膜厚を厚くし、鉄筋の表面積の狭い部分や腐食の軽
微な部分については金属溶射皮膜の膜厚を薄くして、膜
厚の異なる区画毎に電気的に絶縁し、直流電源装置には
前記膜厚別に回路を設け、又は、前記膜厚別に直流電源
装置を設置し、前記区画と直流電源装置又は直流電源装
置回路を電気的に接続することにより、鉄筋の表面積の
大きい部分や腐食の激しい部分には大きな電流密度で防
食電流を流し、鉄筋の表面積の小さい部分や腐食の軽微
な部分には小さな電流密度で防食電流を流すことができ
るので、コンクリート構造物中の鉄筋の表面積の大小及
び腐食状況に応じた適正な防食効果を上げることがで
き、また、溶射皮膜の消耗量は通電電流に比例して増加
するため、溶射皮膜全体の寿命が平均化され、防食寿命
を延ばすことが可能となった。
The present invention increases the film thickness of the metal sprayed coating on a portion of the concrete structure having a large surface area of the reinforcing bars or a portion that is severely corroded, and it is applied to a portion of the concrete structure having a small surface area of the reinforcing bars or a portion having a slight corrosion. The thickness of the film is reduced to electrically insulate the sections having different thicknesses, and the DC power supply device is provided with a circuit according to the film thickness, or the DC power supply apparatus is provided according to the film thickness. By electrically connecting a DC power supply device or a DC power supply circuit to a part of the rebar with a large surface area or a part with severe corrosion, an anticorrosion current is applied with a large current density, and a part of the rebar with a small surface area or a small amount of corrosion Since the anticorrosion current can be applied to a large area with a small current density, it is possible to obtain an appropriate anticorrosion effect according to the size of the surface area of the reinforcing bar in the concrete structure and the corrosion condition. Since consumption is increasing in proportion to the applied current, the life of the entire thermal spray coating is averaged, it becomes possible to extend the corrosion life.

【0007】例えば、橋梁についてみると、鉄筋の表面
積が大きい,塩害による腐食の激しい梁については、そ
の他の部分に比べて金属溶射皮膜の膜厚を厚くし、この
梁の部分と他の部分とを別々の回路を介して直流電源に
接続し、梁の金属溶射皮膜には、その他の部分に比べて
大きな電流密度で防食電流を流すことにより、コンクリ
ート構造物の鉄筋表面及び腐食状況に応じた適正な防食
効果を上げることができ、金属溶射皮膜全体の寿命を平
均化することが可能になった。
For example, regarding a bridge, for a beam having a large surface area of reinforcing bars and severe corrosion due to salt damage, the film thickness of the metal spray coating is made thicker than that of the other part, and the beam part and other parts are Is connected to the DC power supply via separate circuits, and the metal sprayed coating on the beam is supplied with an anticorrosion current with a larger current density than the other parts, so that the surface of the concrete structure and the corrosion condition can be adjusted. The proper anticorrosion effect can be enhanced, and the life of the entire metal spray coating can be averaged.

【0008】[0008]

【実施例】水:セメント:砂:砂利の比を 0.5:1:
2:4とし、塩化物を5kg/m2の割合で混入したコ
ンクリートを使用して1m×2m×10cmのコンクリ
ートブロックを製作し、その片側1m×1mの区画には
直径19mmの鉄筋を、該鉄筋の表面積がコンクリート
表面積と同面積を占める量だけ埋設(以下、A区画とい
う)し、他の1m×1mの区画には直径19mmの鉄筋
を、該鉄筋の表面積がコンクリート表面積の2倍の面積
を占める量だけ埋設(以下、B区画という)した。この
コンクリートブロックを2か月間養生した後、A区画の
うちB区画側10cm幅を除いたA区画表面に、亜鉛溶
射皮膜を100μm厚に均一に溶射し、B区画表面の全
面及びA区画のうちB区画側10cm幅の表面に、亜鉛
溶射皮膜を200μm厚に均一に溶射し、B区画のA区
画側端部近傍の亜鉛溶射皮膜の早期消耗を防止し、溶射
皮膜全体の寿命を平均化させた。次いで、このコンクリ
ートブロックのA、B各区画に、図1に示したように、
3か所づつ設けた孔に電位測定用電極を埋設し、自然電
位を測定した。
Example: Water: cement: sand: gravel ratio of 0.5: 1:
2: 4, using concrete mixed with chloride at a ratio of 5 kg / m 2 , a concrete block of 1 m × 2 m × 10 cm was manufactured, and a reinforcing bar having a diameter of 19 mm was placed in a section of 1 m × 1 m on each side. It is buried by the amount that the surface area of the reinforcing bar occupies the same area as the concrete surface area (hereinafter referred to as section A), and the other 1 m x 1 m section has a reinforcing bar with a diameter of 19 mm, and the surface area of the reinforcing bar is twice the surface area of the concrete. Was buried (hereinafter referred to as Section B). After curing this concrete block for 2 months, a zinc sprayed coating was uniformly sprayed to a thickness of 100 μm on the A partition surface of the A partition except the 10 cm width of the B partition side, and the entire surface of the B partition and the A partition The surface of 10 cm width on the B section side is uniformly sprayed with a zinc sprayed coating to a thickness of 200 μm to prevent premature wear of the zinc sprayed coating near the end of the B section on the A section side and average the life of the entire sprayed coating. It was Then, in each of the A and B sections of this concrete block, as shown in FIG.
Electrodes for potential measurement were embedded in the holes provided at three places, and the spontaneous potential was measured.

【0009】次に、前記亜鉛溶射皮膜と直流電源装置の
正極を電線で接続し、鉄筋と直流電源装置の負極を電線
で接続して、A、B区画共に亜鉛溶射皮膜から鉄筋に対
して5mA/m2 の電流を通電し、1週間後、前記電位
測定電極で通電停止直後の鉄筋の電位と、通電停止4時
間後の鉄筋の電位を測定した。結果は、表1に示すよう
に、A区画では3か所の電位測定電極で100mV以上
の分極量を示し、鉄筋が良好に防食されていたことが判
明したが、B区画の3か所の電極ではいずれも100m
Vを下回る値を示し、鉄筋に対する防食が十分でなかっ
たことが分かる。
Next, the zinc sprayed coating and the positive electrode of the DC power supply device are connected by an electric wire, and the reinforcing bar and the negative electrode of the DC power supply device are connected by an electric wire. A current of / m 2 was applied, and one week later, the potential of the rebar immediately after the termination of energization and the potential of the rebar 4 hours after the termination of energization were measured using the potential measuring electrodes. As a result, as shown in Table 1, it was found that in the A section, the potential measuring electrodes at three locations showed a polarization amount of 100 mV or more, indicating that the reinforcing bars were well protected, but in the B section, three locations. 100m for all electrodes
A value below V is shown, indicating that the corrosion protection for the reinforcing bars was not sufficient.

【0010】[0010]

【表1】 [Table 1]

【0011】一方、前記亜鉛溶射皮膜をA、B区画の境
界で電気的に絶縁し、A、B区画の亜鉛溶射皮膜を直流
電源装置の別々の回路の正極に電線で接続し、鉄筋と直
流電源装置の負極を電線で接続してA区画の亜鉛溶射皮
膜から鉄筋に対して5mA/m2 の電流を通電し、B区
画の亜鉛溶射皮膜から鉄筋に対して10mA/m2 の電
流を通電し、1週間後、前記電位測定電極で通電停止直
後の鉄筋の電位と、通電停止4時間後の鉄筋の電位を測
定した。結果は、表2に示すように、A、B区画のいず
れの電位測定電極でも100mV以上の分極量を示し、
良好な防食効果が平均的に得られたことが分かる。
On the other hand, the zinc spray coating is electrically insulated at the boundary between the A and B compartments, and the zinc spray coatings in the A and B compartments are connected to the positive electrodes of the separate circuits of the DC power supply device by electric wires to reinforce and rebar. Connect the negative electrode of the power supply device with an electric wire and apply a current of 5 mA / m 2 to the rebar from the zinc sprayed coating in the A section and a current of 10 mA / m 2 to the rebar from the zinc sprayed coating in the B section. Then, one week later, the potential of the rebar immediately after the stop of energization and the potential of the rebar 4 hours after the stop of energization were measured by the potential measuring electrodes. As shown in Table 2, the results show that the potential measurement electrodes in both A and B sections showed a polarization amount of 100 mV or more,
It can be seen that a good anticorrosion effect was obtained on average.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【発明の効果】本発明は、上記の構成を採用し、大きな
防食効果を必要とするコンクリート構造物の表面には他
の部分より厚めの金属溶射皮膜を形成し、大きな電流密
度で防食電流を流すことにより、所望の防食効果を確保
することができ、その結果、金属溶射皮膜全体の寿命を
平均化することができるので、同じ厚さの金属溶射皮膜
を形成し、同じ大きさの電流密度の防食電流を流す従来
法に比べて極めて経済的効果が大きい。
EFFECT OF THE INVENTION The present invention adopts the above-mentioned constitution and forms a metal spray coating thicker than other portions on the surface of a concrete structure requiring a large anticorrosion effect, so that the anticorrosion current can be increased at a large current density. By flowing, the desired anticorrosion effect can be secured, and as a result, the life of the entire metal spray coating can be averaged, so that a metal spray coating of the same thickness can be formed and the current density of the same magnitude can be formed. Compared with the conventional method of applying the anticorrosion current, the economic effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で使用したコンクリートブロックの電位
測定用電極の埋設位置を示した図である。
FIG. 1 is a diagram showing an embedding position of a potential measuring electrode of a concrete block used in an example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート構造物各部の鉄筋の表面積
の大小及び又は腐食状況に応じて、前記構造物表面に形
成する金属溶射皮膜の膜厚を変化させ、膜厚の異なる区
画毎に金属溶射皮膜を電気的に絶縁し、前記区画毎に所
要の直流電流を流すことを特徴とするコンクリート構造
物の電気防食方法。
1. The metal sprayed coating formed on the surface of the concrete structure is changed in accordance with the surface area of the reinforcing bars in each part of the concrete structure and / or the corrosion condition, and the metal sprayed coating is divided into sections having different film thicknesses. Is electrically insulated, and a required direct current is applied to each of the compartments.
JP5019966A 1993-02-08 1993-02-08 Corrosion preventive method for concrete structure by thermally sprayed metallic film Pending JPH06235080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5019966A JPH06235080A (en) 1993-02-08 1993-02-08 Corrosion preventive method for concrete structure by thermally sprayed metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5019966A JPH06235080A (en) 1993-02-08 1993-02-08 Corrosion preventive method for concrete structure by thermally sprayed metallic film

Publications (1)

Publication Number Publication Date
JPH06235080A true JPH06235080A (en) 1994-08-23

Family

ID=12013938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5019966A Pending JPH06235080A (en) 1993-02-08 1993-02-08 Corrosion preventive method for concrete structure by thermally sprayed metallic film

Country Status (1)

Country Link
JP (1) JPH06235080A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869917A1 (en) * 2004-05-10 2005-11-11 Daniel Bernard Fabrication of a construction material with a base of concrete, terracotta or wood coated with a layer of metal or alloy to provide an aesthetic and/or protective finish for a wide range of building applications
JP2015200003A (en) * 2014-04-10 2015-11-12 住友大阪セメント株式会社 Electric anticorrosion method of concrete structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869917A1 (en) * 2004-05-10 2005-11-11 Daniel Bernard Fabrication of a construction material with a base of concrete, terracotta or wood coated with a layer of metal or alloy to provide an aesthetic and/or protective finish for a wide range of building applications
JP2015200003A (en) * 2014-04-10 2015-11-12 住友大阪セメント株式会社 Electric anticorrosion method of concrete structure

Similar Documents

Publication Publication Date Title
US3354063A (en) Method and system for protecting corrosible metallic structures
WO1989010435A1 (en) Inhibiting corrosion in reinforced concrete
US20100038261A1 (en) Composite anode for cathodic protection
CA2880235A1 (en) Galvanic anode and method of corrosion protection
US5449563A (en) Galvanic protection of rebar by zinc wire
EP1022356A2 (en) Cathodic protection of reinforced concrete
JP2012144771A (en) Electric anticorrosion method for reinforced concrete structure
JPH06235080A (en) Corrosion preventive method for concrete structure by thermally sprayed metallic film
US2204823A (en) Composite electrode for protecting buried metallic structures from corrosion
KR20040016446A (en) Cathodic protection of reinforced concrete with impregnated corrosion inhibitor
JP7483190B2 (en) Sacrificial anode monitoring sensor and monitoring method
JP6951053B2 (en) Monitoring method of sacrificial anode method in concrete structure
JP2003129262A (en) Electric protection part for corrosion prevention of concrete steel material
JP4151254B2 (en) Reinforced concrete anticorrosion system
JP2649090B2 (en) Desalination method for RC / SRC structure
JP3521195B2 (en) Method for preventing corrosion of steel material of mortar or concrete member and material for preventing corrosion of steel material used therefor
JP2000026174A (en) Method for preventing corrosion of reinforcing bar in concrete
JP2649089B2 (en) Desalination method for RC / SRC structure
JP3798189B2 (en) Repair method for concrete structures
JP7377460B2 (en) Cathodic protection methods, backfill selection methods, drainage terminal installation methods, and concrete structures
JPS62287086A (en) Method for preventing corrosion of reinforcing bar in reinforced concrete structure
Bennett et al. Extending the life of concrete patch repair with chemically enhanced zinc anodes
Galvanic Galvanic cathodic protection of reinforced and prestressed concrete using a thermally sprayed aluminum coating
JP3766043B2 (en) Anticorrosion reinforced concrete assembly and its anticorrosion method
JP7492676B2 (en) Method for estimating corrosion current density, method for estimating deterioration of steel material, and method for controlling anticorrosive current