JPH06235031A - Al-aln composite material and its production - Google Patents

Al-aln composite material and its production

Info

Publication number
JPH06235031A
JPH06235031A JP4023197A JP2319792A JPH06235031A JP H06235031 A JPH06235031 A JP H06235031A JP 4023197 A JP4023197 A JP 4023197A JP 2319792 A JP2319792 A JP 2319792A JP H06235031 A JPH06235031 A JP H06235031A
Authority
JP
Japan
Prior art keywords
aln
surface layer
powder
content
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4023197A
Other languages
Japanese (ja)
Inventor
Masahiro Uda
雅廣 宇田
Katsuhisa Osaki
勝久 大崎
Koji Shintani
光二 新谷
Tomomi Yoshida
知身 吉田
Tadao Nagai
忠雄 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP4023197A priority Critical patent/JPH06235031A/en
Publication of JPH06235031A publication Critical patent/JPH06235031A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide an Al-AlN composite material having the AlN concn. changing continuously with respect to a thickness direction. CONSTITUTION:This Al-AlN composite material has >=90wt.% content of the AlN in the front surface layer and >=90wt.% content of the Al in the rear surface layer. These contents increase continuously with respect to the thickness direction from the front surface layer toward the rear surface layer. The Al-AlN composite material is produced by laminating the powder mixtures composed of the Al-AlN superfine powder and the Al metallic powder compounded at different mixing ratios in such a manner that the mixing ratios of the Al-AlN superfine powder having an average grain size of submicron below and the Al metallic powder having >=1mum average grain size attain >=95 in the front surface layer forming layer and <=5 in the rear surface layer forming layer in the term of AlN/(Al+AlN) and increase stepwise from the rear surface layer forming layer to the front surface layer forming layer in intermediate forming layers in a multilayer form and integrally heating and sintering the laminated powders in a nitrogen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成分濃度が高Al側か
ら高AlN側まで連続的に変化するAl−AlN系複合
材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-AlN composite material in which the component concentration continuously changes from the high Al side to the high AlN side, and a method for producing the same.

【0002】[0002]

【従来の技術】AlN系セラミックスは、優れた熱伝導
性,電気絶縁性,圧電性等の特性を活かし、半導体基
板,ヒートシンク,各種機能材料等としての使用が期待
されている。また、溶融金属による侵食に対しても高い
抵抗を示し、且つ耐熱性も十分であることから、各種溶
融金属を収容する容器としても使用されている。
2. Description of the Related Art AlN-based ceramics are expected to be used as semiconductor substrates, heat sinks, various functional materials, etc. by taking advantage of their excellent properties such as thermal conductivity, electrical insulation and piezoelectricity. Further, since it exhibits high resistance to corrosion by molten metal and has sufficient heat resistance, it is also used as a container for storing various molten metals.

【0003】AlN系セラミックスは、焼結によって通
常製造される。たとえば、常圧で焼結する場合、AlN
微粉末と焼結助剤との混合粉末を所定形状に圧粉成形
し、圧粉体を窒素,アルゴン等の非酸化性雰囲気中で1
600〜1850℃程度の高温に加熱することにより焼
結している。
AlN ceramics are usually manufactured by sintering. For example, when sintering at normal pressure, AlN
A powder mixture of fine powder and a sintering aid is compacted into a predetermined shape, and the compact is molded in a non-oxidizing atmosphere such as nitrogen or argon.
It is sintered by heating at a high temperature of about 600 to 1850 ° C.

【0004】難焼結物質であるAlNのみで緻密な焼結
体を製造することは困難である。また、AlNは、液相
を呈せずに2450℃で昇華分解する性質がある。そし
て、常圧で製造されたAlN焼結体の強度は、単に粒子
間の固体拡散に依存する。そのため、十分な固体拡散を
図る上で、極めて長時間或いは高温度の加熱が必要とな
る。
It is difficult to produce a dense sintered body only with AlN, which is a difficult-to-sinter material. Further, AlN has a property of subliming and decomposing at 2450 ° C. without exhibiting a liquid phase. Then, the strength of the AlN sintered body manufactured at normal pressure simply depends on the solid diffusion between particles. Therefore, in order to sufficiently diffuse the solid, heating for a very long time or at a high temperature is required.

【0005】このような問題を克服する焼結法として、
Al粉とAlN粉の混合粉末を窒化反応させて焼結する
反応焼結方法が検討されている。この方法は、Alの窒
化に伴う発熱反応を利用するものである。
As a sintering method that overcomes such problems,
A reactive sintering method has been studied in which a mixed powder of Al powder and AlN powder is nitrided and sintered. This method utilizes the exothermic reaction that accompanies the nitridation of Al.

【0006】本発明者等も、反応焼結法の一種として極
めて微細なAl粉末を使用する方法を開発し、特開平2
−275772号公報で紹介した。この方法において
は、平均粒径が0.5μm以下のAl粉末を他の粉末原
料と混合し、粉末混合物を圧粉成形した圧粉体を窒素雰
囲気下で加熱することによって、AlN焼結体を製造し
ている。使用するAl粉末は、粒径がサブミクロンオー
ダーであることから非常に表面活性が高い。そのため、
従来の焼結法に比較して大幅に低い600〜800℃程
度の温度において十分な窒化反応が進行し、密度,強度
等の物理的特性に優れたAlN焼結体が得られる。
The present inventors also developed a method of using extremely fine Al powder as a kind of reaction sintering method, and disclosed in Japanese Unexamined Patent Publication
It was introduced in Japanese Patent Publication No. 275772. In this method, Al powder having an average particle size of 0.5 μm or less is mixed with another powder raw material, and the green compact obtained by compacting the powder mixture is heated in a nitrogen atmosphere to form an AlN sintered body. Manufacturing. The Al powder used has a very high surface activity because the particle size is on the order of submicrons. for that reason,
A sufficient nitriding reaction proceeds at a temperature of about 600 to 800 ° C., which is significantly lower than that of the conventional sintering method, and an AlN sintered body excellent in physical properties such as density and strength can be obtained.

【0007】[0007]

【発明が解決しようとする課題】新しく提案した方法に
よって製造されたAlN焼結体は、AlN本来の特性を
活かして、放熱部品,電気絶縁材料,半導体搭載基板,
圧電素子,耐熱・耐火構造部材等の広範な分野における
素材として期待される。
The AlN sintered body manufactured by the newly proposed method takes advantage of the original characteristics of AlN to dissipate the heat dissipation component, the electrically insulating material, the semiconductor mounting board,
It is expected as a material in a wide range of fields such as piezoelectric elements and heat / fire resistant structural members.

【0008】しかし、AlN単体であることから、他の
構造部材に組み付けることが難しい。たとえば、はんだ
に対する濡れ性が悪いことから、金属製の構造部品には
んだ付けすることができない。また、高温流体が通過す
るダクト,排気管等の内張材として使用する場合、ボル
ト止め等ができないため施工が困難になる。
However, since it is an AlN simple substance, it is difficult to assemble it to other structural members. For example, because of poor wettability with solder, it cannot be soldered to metal structural parts. Further, when it is used as a lining material for ducts, exhaust pipes, etc. through which a high-temperature fluid passes, it cannot be bolted and the construction becomes difficult.

【0009】本発明は、このような問題を解消すべく案
出されたものであり、AlN本来の特性を損なうことな
く、他の部材に対して容易に組み付けることができる性
質を付与したAlN系複合材料を提供することを目的と
する。
The present invention has been devised to solve such a problem, and an AlN-based material having a property of being easily assembled to other members without impairing the original characteristics of AlN. The purpose is to provide a composite material.

【0010】[0010]

【課題を解決するための手段】本発明のAl−AlN系
複合材料は、その目的を達成するため、表面層のAlN
含有量が90重量%以上、裏面層のAl含有量が90重
量%以上で、表面層から裏面層に向けた厚み方向に関し
てAl含有量が傾斜的に増加していることを特徴とす
る。
In order to achieve the object, the Al--AlN composite material of the present invention has a surface layer of AlN.
It is characterized in that the Al content is 90% by weight or more, the Al content in the back surface layer is 90% by weight or more, and the Al content gradually increases in the thickness direction from the front surface layer to the back surface layer.

【0011】このAl−AlN系複合材料は、サブミク
ロン以下の平均粒径をもつAl−AlN超微粉末と1μ
m以下の平均粒径を持つAl金属粉末との混合比率をA
lN/(Al+AlN)換算で表面層形成層では95以
上,裏面層形成層では5以下,中間層形成層では裏面層
形成層から表面層形成層に向けて段階的に高くなるよう
に、異なる混合比率で配合したAl−AlN超微粉末及
びAl金属粉末の粉末混合物を多層状に積み重ね、窒素
雰囲気中で一体的に加熱焼結することにより製造され
る。
This Al-AlN composite material comprises Al-AlN ultrafine powder having an average particle size of submicron or less and 1 μm.
The mixing ratio with Al metal powder having an average particle diameter of m or less is A
In terms of 1N / (Al + AlN), the surface layer forming layer has 95 or more, the back surface layer forming layer has 5 or less, and the intermediate layer forming layer has different mixing so that the surface layer forming layer gradually increases from the back surface layer forming layer. It is manufactured by stacking a powder mixture of Al-AlN ultrafine powder and Al metal powder mixed in a ratio in multiple layers and integrally heating and sintering in a nitrogen atmosphere.

【0012】[0012]

【作 用】本発明のAl−AlN系複合材料において
は、表面側のAlN含有量を高くすることにより、Al
N本来の特性を発揮させている。他方、裏面側のAl含
有量を高くすることにより、ネジ切り等の機械切削性や
はんだ付け性を向上させている。そして、裏面側から表
面側の厚み方向に関してAlとAlNとの混合比率を傾
斜的に変化させることにより、内部に亀裂や応力集中の
原因となる不連続点の発生を抑えている。これにより、
AlNの特性が活用され、しかも施工が容易な複合材料
となる。
[Operation] In the Al-AlN composite material of the present invention, by increasing the AlN content on the surface side, Al
N The original characteristics are exhibited. On the other hand, by increasing the Al content on the back surface side, mechanical cutting property such as thread cutting and solderability are improved. Then, by changing the mixing ratio of Al and AlN in an inclined manner in the thickness direction from the back surface side to the front surface side, the occurrence of discontinuities causing cracks and stress concentration inside is suppressed. This allows
The characteristics of AlN are utilized, and the composite material is easy to construct.

【0013】表面層のAlN含有量は、熱伝導性,耐熱
・耐火性等のAlN本来の特性を利用する上から90重
量%以上が必要である。特に電気絶縁性を利用した用途
にあっては、表面層のAlN含有量を99重量%以上に
することが好ましい。
The AlN content of the surface layer must be 90% by weight or more in order to utilize the original properties of AlN such as thermal conductivity, heat resistance and fire resistance. In particular, for applications using electric insulation, the AlN content of the surface layer is preferably 99% by weight or more.

【0014】裏面層のAl含有量は、機械切削性,はん
だ付け性等を考慮して90重量%以上が必要である。A
l含有量が90重量%未満の裏面層では、Al含有量の
低下に応じてAlN含有量が多くなる。そのため、裏面
側に機械切削を行うとき、欠け,破損等の欠陥が発生す
る。また、はんだ付け前処理等としてプレコートを施す
場合、形成された予備めっき層にブリスター等の欠陥が
発生し易くなる。
The Al content of the back surface layer is required to be 90% by weight or more in consideration of machinability, solderability and the like. A
In the back surface layer having an I content of less than 90% by weight, the AlN content increases as the Al content decreases. Therefore, when performing mechanical cutting on the back surface side, defects such as chipping and breakage occur. Further, when precoating is performed as a soldering pretreatment, defects such as blisters are likely to occur in the formed preliminary plating layer.

【0015】そして、裏面層から表面層に向けて、Al
N含有比率が傾斜的に高くなっている。このような濃度
勾配をもつ複合材料は、表面層形成層,中間層形成層及
び裏面層形成層ごとにAl−AlN超微粉末とAl金属
粉末との混合比率を変え、異なる混合比率の混合粉末を
層状に積み重ね、全体を一体的に焼結することにより製
造される。その際に、Al−AlN超微粉末中のAlは
窒化されてAlNとなり、Al−AlN超微粉の含有比
率が高い部分のAlN含有比率が高くなる。
Then, from the back surface layer to the front surface layer, Al
The N content ratio is gradually increasing. The composite material having such a concentration gradient has different mixing ratios of Al-AlN ultrafine powder and Al metal powder for each of the surface layer forming layer, the intermediate layer forming layer and the back surface layer forming layer, and the mixed powders having different mixing ratios are used. Are stacked in layers and the whole is integrally sintered. At that time, Al in the Al-AlN ultrafine powder is nitrided to AlN, and the AlN content ratio in the portion where the content ratio of the Al-AlN ultrafine powder is high becomes high.

【0016】表面層形成層,中間層形成層及び裏面層形
成層におけるAl−AlN超微粉末とAl金属粉末との
混合比率は、最終製品の濃度勾配を考慮して定められ
る。しかし、表面層のAlN含有量が90重量%以上で
裏面層のAl含有量が90重量%以上のAlーAlN焼
結体を得るためには、AlN/(Al+AlN)換算
(重量比)で、表面層形成層では95以上,裏面層形成
層では5以下,中間層形成層では裏面層形成層から表面
層形成層に向けて段階的に高くすることが必要である。
また、中間層形成層は、製品焼結体の厚みに応じて1層
或いは2層以上とし、各層間で混合比率を変えても良
い。
The mixing ratio of the Al-AlN ultrafine powder and the Al metal powder in the surface layer forming layer, the intermediate layer forming layer and the back surface layer forming layer is determined in consideration of the concentration gradient of the final product. However, in order to obtain an Al-AlN sintered body in which the AlN content of the front surface layer is 90% by weight or more and the Al content of the back surface layer is 90% by weight or more, in terms of AlN / (Al + AlN) conversion (weight ratio), It is necessary that the surface layer forming layer has 95 or more, the back surface layer forming layer has 5 or less, and the intermediate layer forming layer has a stepwise increase from the back surface layer forming layer to the surface layer forming layer.
Further, the intermediate layer forming layer may be one layer or two or more layers depending on the thickness of the product sintered body, and the mixing ratio may be changed between the respective layers.

【0017】使用されるAl−AlN超微粉末は、1μ
m以下すなわちサブミクロンオーダの平均粒径をもつこ
とが必要である。平均粒径がサブミクロンオーダとなる
と、従来の粉末とは異なった挙動を呈し、反応活性が非
常に高くなる。そのため、600〜800℃程度の比較
的低い温度でも、十分に窒化焼結反応が進行する。
The Al-AlN ultrafine powder used is 1 μm.
It is necessary to have an average particle size of m or less, that is, a submicron order. When the average particle size is on the order of submicron, the behavior is different from that of the conventional powder, and the reaction activity becomes very high. Therefore, the nitriding / sintering reaction sufficiently proceeds even at a relatively low temperature of about 600 to 800 ° C.

【0018】このような超微細粉末は、たとえばAlに
窒素プラズマを照射して強制的に溶融・蒸発させ、雰囲
気中の窒素と反応させた後、凝縮して回収することによ
り製造される。このときの蒸発速度,雰囲気中の窒素分
圧等を制御することにより、得られたAl−AlN超微
粉末のAlN含有量を変えることができる。また、Al
−AlN超微粉末中のAlは、焼結雰囲気中の窒素と反
応してAlNとなるので、原料段階でのAl−AlN超
微粉末のAlN含有量を大幅に低減させる必要はない。
むしろ、所定量のAlを含有している方が焼結時の窒化
反応が円滑に進行する。
Such ultra-fine powder is produced, for example, by irradiating Al with nitrogen plasma to forcibly melt and evaporate Al, reacting with nitrogen in the atmosphere, and then condensing and collecting. The AlN content of the obtained Al-AlN ultrafine powder can be changed by controlling the evaporation rate at this time, the partial pressure of nitrogen in the atmosphere, and the like. Also, Al
Since Al in the -AlN ultrafine powder reacts with nitrogen in the sintering atmosphere to form AlN, it is not necessary to significantly reduce the AlN content of the Al-AlN ultrafine powder in the raw material stage.
Rather, the nitriding reaction at the time of sintering proceeds more smoothly when the alloy contains a predetermined amount of Al.

【0019】Al−AlN系の超微粉と混合されるAl
粉末としては、数ミクロン程度の粒径をもつ市販の金属
粉末を使用することができる。この程度の粒径は、金属
粉末の活性度向上に影響を与えず、焼結時にAlの融点
近傍に加熱されても窒化反応はほとんど進行しない。
Al mixed with Al-AlN superfine powder
As the powder, a commercially available metal powder having a particle size of about several microns can be used. The particle size of this extent does not affect the improvement of the activity of the metal powder, and the nitriding reaction hardly progresses even when heated near the melting point of Al during sintering.

【0020】更に、焼結反応を促進させ、焼結体の密度
を向上させる少量の添加物を配合することも可能であ
る。この種の添加物としては、SrCO3 ,BaCO
3 ,Y23 ,La23 ,CeO,PrO2 ,NdO3
,Sm23 等のアルカリ土類金属酸化物や希土類金
属酸化物等がある。これらアルカリ土類金属酸化物や希
土類金属酸化物等は、AlNと濡れ性のよい低融点アル
ミネート化合物を形成して液相焼結を進行させる。
Further, it is possible to add a small amount of an additive which promotes the sintering reaction and improves the density of the sintered body. Additives of this type include SrCO 3 , BaCO
3 , Y 2 O 3 , La 2 O 3 , CeO, PrO 2 , NdO 3
, Sm 2 O 3 and other alkaline earth metal oxides and rare earth metal oxides. These alkaline earth metal oxides and rare earth metal oxides form a low melting point aluminate compound having good wettability with AlN and promote liquid phase sintering.

【0021】また、Al−AlN系超微粉によって焼結
性が改善されることから、焼結体の緻密化を阻害するも
のとして扱われていたBN,Si34 ,MgO,Si
2,MnO2 ,SiC等、或いはスピネル相を形成す
るAl23 ,ZrO2 ,TiO2 ,Cr23 ,Ni
CO3 ,Ni等を配合させることも可能である。これら
の添加物は、熱伝導率,熱膨張率等を調整する助剤とし
て使用される。特にSiCを配合した複合材料は、熱伝
導率が低い全率固溶体を形成する特徴を活用し、基材を
保護する用途が期待される。
Further, since the sinterability is improved by the Al--AlN superfine powder, BN, Si 3 N 4 , MgO, Si, which has been treated as an obstacle to the densification of the sintered body, is used.
O 2 , MnO 2 , SiC, etc., or Al 2 O 3 , ZrO 2 , TiO 2 , Cr 2 O 3 , Ni that form a spinel phase
It is also possible to mix CO 3 , Ni and the like. These additives are used as an auxiliary agent for adjusting thermal conductivity, thermal expansion coefficient and the like. In particular, a composite material containing SiC is expected to be used for protecting a base material by utilizing the characteristic of forming a solid solution having a low thermal conductivity.

【0022】[0022]

【実施例】Al−AlN系粉末として、アークプラズマ
法によって調製した平均粒径0.2μmの超微粉を使用
した。このAl−AlN系粉末のAlN含有量は、30
重量%であった。他方、Al金属粉末としては、粒径が
5〜12μmで純度99.8重量%の市販Al粉末を使
用した。Al−AlN系粉末及びAl金属粉末を表1に
示す割合で配合し、均一に混合し、6種類の粉末混合物
A〜Fを調製した。そして、各粉末混合物A〜Fをそれ
ぞれ表1に示す厚みで6層に積み重ね、全体の厚みが1
0mmの多層状粉末積層体を得た。
Example As the Al-AlN-based powder, ultrafine powder having an average particle size of 0.2 μm prepared by an arc plasma method was used. The AlN content of this Al-AlN powder is 30.
% By weight. On the other hand, as the Al metal powder, a commercially available Al powder having a particle size of 5 to 12 μm and a purity of 99.8% by weight was used. The Al-AlN-based powder and the Al metal powder were mixed in the proportions shown in Table 1 and uniformly mixed to prepare 6 types of powder mixtures AF. Then, each of the powder mixtures A to F was stacked in 6 layers with the thickness shown in Table 1, and the total thickness was 1
A 0 mm multilayer powder laminate was obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】多層粉末積層体を内径13mmの鋼製ダイ
ス中に入れ、20MPaの圧力を加えて全体の厚みを5
mmに減厚した圧粉成形体に成形した。次いで、圧粉成
形体を電気炉に装入した。炉内に窒素ガスを送り込みな
がら、窒素気流中で圧粉成形体を650℃に24時間加
熱焼結した。加熱中に炉内を観察したところ、2Al+
2 →2AlNの窒化反応に基づく発光がみられた。
The multi-layered powder laminate was put into a steel die having an inner diameter of 13 mm, and a pressure of 20 MPa was applied to make the total thickness 5
It was molded into a powder compact having a thickness reduced to mm. Then, the green compact was placed in an electric furnace. The green compact was heated and sintered at 650 ° C. for 24 hours in a nitrogen stream while feeding nitrogen gas into the furnace. When observing the inside of the furnace during heating, 2Al +
Light emission based on the nitriding reaction of N 2 → 2AlN was observed.

【0025】焼結が終了した段階で、炉冷し、常温近く
まで降温した焼結体を電気炉から取り出した。得られた
焼結体の表面及び裏面をそれぞれ0.1mmの厚みで研
削して、厚み4.8mmの焼結体製品を得た。AlNリ
ッチの表面層は、硬度がHv=1300と高く、ほぼA
lN単体製品と同じ値を示した。他方、Alリッチの裏
面層は、金属Alよりも若干高いHv =150の硬度を
もっていた。
When the sintering was completed, the furnace was cooled and the temperature of the sintered body was lowered to near room temperature, and the sintered body was taken out of the electric furnace. The front surface and the back surface of the obtained sintered body were ground to a thickness of 0.1 mm to obtain a sintered product having a thickness of 4.8 mm. The AlN-rich surface layer has a hardness as high as H v = 1300 and is almost A
It showed the same value as the 1N single product. On the other hand, the Al-rich backside layer had a hardness of Hv = 150, which was slightly higher than that of metallic Al.

【0026】焼結体をダイヤモンドカッターで切断し、
厚み方向に沿った成分変動及び切断面の組織を調査し
た。成分変動は、焼結体の厚み方向に直角に0.2mm
ごとに切断し、各切断面のX線回折ピーク強度からAl
N含有量を推定した。
The sintered body is cut with a diamond cutter,
The composition variation along the thickness direction and the structure of the cut surface were investigated. The component variation is 0.2 mm perpendicular to the thickness direction of the sintered body.
Each of the cut surfaces, and from the X-ray diffraction peak intensity of each cut surface,
The N content was estimated.

【0027】得られたAlN含有量を焼結体の厚み方向
との関係で表したところ、図1に示す関係が成立してい
ることが判った。粉末混合物Aから形成された裏面層で
は、AlN含有量が5重量%と低く、92重量%以上の
Alを含有していた。他方、粉末混合物Fから形成され
た表面層では、AlN含有量が93重量%と高く、2重
量%未満のAlを含んでいるに過ぎなかった。そして、
粉末混合物B〜Eから形成された中間層では、それぞれ
の粉末混合物B〜EのAlN含有量を中心として、裏面
層側でAlN含有量が低く、表面層側でAlN含有量が
高い濃度勾配をもっていた。
When the obtained AlN content was expressed in relation to the thickness direction of the sintered body, it was found that the relation shown in FIG. 1 was established. The back layer formed from the powder mixture A had a low AlN content of 5% by weight, and contained 92% by weight or more of Al. On the other hand, the surface layer formed from the powder mixture F had a high AlN content of 93% by weight and contained only less than 2% by weight of Al. And
In the intermediate layer formed from the powder mixtures B to E, the AlN content is low on the back surface side and the AlN content is high on the front surface side with a concentration gradient centering on the AlN content of each of the powder mixtures B to E. I was there.

【0028】圧粉状態で各粉末混合物A〜Fの界面に相
当する部分には、不連続的な成分変動が検出されなかっ
た。AlN含有量は、図1に示すように裏面層から表面
層に向けて連続的に高くなっていた。これは、多層粉末
積層体を加圧成形する際に粉末混合物A〜Fが形成する
各層の間に部分的な均一化が行われ、各粉末混合物A〜
F間でAlN含有量の差が緩和されたことを示すもので
ある。また、加熱中の拡散反応も、各層間の均一化を促
進させる一因となっている。
In the pressed state, no discontinuous component fluctuation was detected in the portions corresponding to the interfaces of the powder mixtures AF. The AlN content was continuously higher from the back surface layer toward the front surface layer as shown in FIG. This is because partial homogenization is performed between the layers formed by the powder mixtures A to F when the multi-layer powder laminate is pressure-molded.
This shows that the difference in AlN content between F was relaxed. In addition, the diffusion reaction during heating also contributes to promoting the homogenization between the layers.

【0029】また、顕微鏡観察の結果、AlN含有量の
高い表面層側では、AlNマトリックスの中にAlが分
散した組織が形成されていた。そして、分散しているA
l粒子の中にAlNが巻き込まれていることが観察され
た。他方、純Alに近い裏面側では、Alの粒界にAl
Nが分散した組織が形成されていた。Al粒子の粒界に
分散しているAlNは、表面層側に向かうほど視野に占
める割合が多くなり、AlN含有量40〜50重量%に
当る中間部分でマトリックスを形成していることが判っ
た。
As a result of microscopic observation, a structure in which Al was dispersed in an AlN matrix was formed on the surface layer side having a high AlN content. And the dispersed A
It was observed that AlN was caught in the 1 particle. On the other hand, on the back surface side close to pure Al, Al
A structure in which N was dispersed was formed. It was found that the AlN dispersed in the grain boundary of the Al particles has a larger proportion in the visual field as it goes toward the surface layer side, and forms a matrix in the intermediate portion where the AlN content is 40 to 50% by weight. .

【0030】この組織変化は、焼結体の厚み方向に関し
て連続して観察された。すなわち、ごく一部に不均質な
組織がみられるものの、全体としてAlベースからAl
Nベースのマトリックスへと連続的に変化していた。こ
の組織変化は、図1に示したAlN含有量の変化と整合
性よく対応していた。また、厚み方向全体を通じて、A
lの結晶粒径は数十μm程度であった。
This structural change was continuously observed in the thickness direction of the sintered body. That is, although an inhomogeneous structure is seen in only a small part, the Al base to Al
It was continuously changing to an N-based matrix. This microstructural change corresponded well with the change in the AlN content shown in FIG. In addition, in the entire thickness direction, A
The crystal grain size of 1 was about several tens of μm.

【0031】得られたAl−AlN系複合材料は、Al
Nの性質を示す表面層及びAlに近い性質を示す裏面層
とをもっている。そして、表面層と裏面層との間では、
連続的に変化する成分及び組織となっている。そのた
め、表面層側を高熱伝導性,高電気絶縁性,圧電性,耐
溶湯侵食性,耐火・耐熱性等を活かした用途に使用し、
裏面層側を他の構造部材に固定する部分とすることがで
きる。
The obtained Al-AlN composite material is Al
It has a front surface layer showing the property of N and a back surface layer showing the property close to Al. And between the front surface layer and the back surface layer,
The composition and structure change continuously. Therefore, the surface layer side is used for applications that take advantage of high thermal conductivity, high electrical insulation, piezoelectricity, molten metal erosion resistance, fire resistance, heat resistance, etc.
The back surface layer side can be a portion fixed to another structural member.

【0032】たとえば、高温の溶融金属が流動する溶湯
供給管等の内面に対するライニング材として使用すると
き、耐久性に優れた且つ配管系が容易に得られる。ま
た、半導体搭載基板,ヒートシンク等として使用すると
き、放熱特性に優れ且つ周辺部材に対する接合が容易な
ものとなる。また、Alリッチな裏面層に直接ワイヤボ
ンディングすることができる長所ももっている。
For example, when it is used as a lining material for the inner surface of a molten metal supply pipe or the like in which a molten metal at high temperature flows, a pipe system having excellent durability can be easily obtained. Further, when used as a semiconductor mounting board, a heat sink, etc., it has excellent heat dissipation characteristics and can be easily joined to peripheral members. Further, it has an advantage that it can be directly wire-bonded to the Al-rich back surface layer.

【0033】なお、以上の実施例においては、常圧下で
の焼結によってAl−AlN系複合材料を製造する場合
を説明した。しかし、本発明はこれに拘束されるもので
はなく、圧粉成形と加熱焼結とを同時に行うホットプレ
ス等の他の焼結法によってAl−AlN系複合材料を製
造することができるのは勿論である。
In the above examples, the case where an Al-AlN composite material is manufactured by sintering under normal pressure has been described. However, the present invention is not limited to this, and it goes without saying that the Al—AlN composite material can be manufactured by another sintering method such as hot pressing in which powder compacting and heat sintering are simultaneously performed. Is.

【0034】[0034]

【発明の効果】以上に説明したように、本発明のAl−
AlN系複合材料は、AlNリッチの表面層とAlリッ
チの裏面層とをもち、表面層と裏面層との間で成分及び
組織が連続的に変化している。そのため、Alリッチの
裏面層側を周辺構造部材に容易に取り付けることがで
き、表面層側にあるAlNの特性を活かした高機能部品
として使用される。
As described above, according to the present invention, the Al-
The AlN-based composite material has an AlN-rich front surface layer and an Al-rich back surface layer, and the components and the structure are continuously changed between the front surface layer and the back surface layer. Therefore, the Al-rich back surface layer side can be easily attached to the peripheral structural member, and the Al-rich back surface layer side is used as a high-performance component utilizing the characteristics of AlN on the surface layer side.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例で製造されたAl−AlN系複
合材料における厚み方向に沿ったAlN含有量の変化を
示す。
FIG. 1 shows a change in AlN content along the thickness direction in an Al—AlN composite material manufactured in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大崎 勝久 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社新材料研究所内 (72)発明者 新谷 光二 北海道札幌市北区北十三条西八丁目文部省 用地(番地なし)北海道大学工学部内 (72)発明者 吉田 知身 北海道札幌市北区北十三条西八丁目文部省 用地(番地なし)北海道大学工学部内 (72)発明者 永井 忠雄 北海道札幌市北区北十三条西八丁目文部省 用地(番地なし)北海道大学工学部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Katsuhisa Osaki, Inventor, Katsuhisa, 1st, 7th Takatani Shinmachi, Ichikawa City, Chiba, Nisshin Steel Co., Ltd., New Materials Research Center (72) Koji Shintani, Kita-kujo, Kita-ku, Sapporo, Hokkaido West 8-chome Ministry of Education (no street number) Hokkaido University Faculty of Engineering (72) Inventor Satoshi Yoshida Kita-kujojo, Kita-ku, Sapporo-shi, Hokkaido Hokkaido 8-chome Ministry of Education (no street number) Hokkaido University Faculty of Engineering (72) Inventor Tadao Nagai Hokkaido, Kita-ku, Kita-Sanjo Nishi 8-chome Ministry of Education Land (no street number) Hokkaido University Faculty of Engineering

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面層のAlN含有量が90重量%以
上、裏面層のAl含有量が90重量%以上で、表面層か
ら裏面層に向けた厚み方向に関してAl含有量が傾斜的
に増加していることを特徴とするAl−AlN系複合材
料。
1. The surface layer has an AlN content of 90% by weight or more and the back layer has an Al content of 90% by weight or more, and the Al content gradually increases in the thickness direction from the surface layer to the back layer. An Al-AlN composite material.
【請求項2】 サブミクロン以下の平均粒径をもつAl
−AlN超微粉末と1μm以上の平均粒径を持つAl金
属粉末との混合比率をAlN/(Al+AlN)換算で
表面層形成層では95以上,裏面層形成層では5以下,
中間層形成層では裏面層形成層から表面層形成層に向け
て段階的に高くなるように、異なる混合比率で配合した
Al−AlN超微粉末及びAl金属粉末の粉末混合物を
多層状に積み重ね、窒素雰囲気中で一体的に加熱焼結す
ることを特徴とするAl−AlN系複合材料の製造方
法。
2. Al having an average particle size of submicron or less
-The mixing ratio of the AlN ultrafine powder and the Al metal powder having an average particle size of 1 μm or more is 95 or more in the surface layer forming layer and 5 or less in the back surface layer forming layer in terms of AlN / (Al + AlN).
In the intermediate layer forming layer, a powder mixture of Al-AlN ultrafine powder and Al metal powder mixed in different mixing ratios is stacked in multiple layers so that the surface layer forming layer gradually increases in height from the back surface layer forming layer. A method for producing an Al-AlN-based composite material, which comprises integrally heating and sintering in a nitrogen atmosphere.
JP4023197A 1992-01-13 1992-01-13 Al-aln composite material and its production Withdrawn JPH06235031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023197A JPH06235031A (en) 1992-01-13 1992-01-13 Al-aln composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023197A JPH06235031A (en) 1992-01-13 1992-01-13 Al-aln composite material and its production

Publications (1)

Publication Number Publication Date
JPH06235031A true JPH06235031A (en) 1994-08-23

Family

ID=12103947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023197A Withdrawn JPH06235031A (en) 1992-01-13 1992-01-13 Al-aln composite material and its production

Country Status (1)

Country Link
JP (1) JPH06235031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464904C (en) * 2007-06-01 2009-03-04 北京科技大学 Method for preparing Al/AlN electronic package material
CN111515404A (en) * 2020-05-15 2020-08-11 富耐克超硬材料股份有限公司 Preparation method of cBN/Al composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464904C (en) * 2007-06-01 2009-03-04 北京科技大学 Method for preparing Al/AlN electronic package material
CN111515404A (en) * 2020-05-15 2020-08-11 富耐克超硬材料股份有限公司 Preparation method of cBN/Al composite material
CN111515404B (en) * 2020-05-15 2023-05-12 富耐克超硬材料股份有限公司 Preparation method of cBN/Al composite material

Similar Documents

Publication Publication Date Title
JP4997431B2 (en) Method for producing high thermal conductivity silicon nitride substrate
WO2020203787A1 (en) Silicon nitride substrate, silicon nitride-metal complex, silicon nitride circuit board, and semiconductor package
Omori Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)
US8575051B2 (en) Heat sink having a high thermal conductivity
US8511535B1 (en) Innovative braze and brazing process for hermetic sealing between ceramic and metal components in a high-temperature oxidizing or reducing atmosphere
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JP3629783B2 (en) Circuit board
Yan et al. Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing
JP2005184021A (en) Heat sink using high temperature conductive diamond sintered body and its manufacturing method
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JPH06235031A (en) Al-aln composite material and its production
CN112334239A (en) Ceramic metalized substrate and preparation method thereof
JP3461054B2 (en) Composite material
KR102660216B1 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
JPH06321511A (en) Ultrafine aluminum nitride particle, its production and ultrafine particulate sintered compact
JPH07172921A (en) Aluminum nitride sintered material and its production
JPH0693468A (en) Formation of a1n series ceramics coating
US10202681B2 (en) Copper-gallium sputtering target
US8232232B2 (en) Oxide target for laser vapor deposition and method of manufacturing the same
US5605558A (en) Nitrogenous aluminum-silicon powder metallurgical alloy
JP4177467B2 (en) High toughness hard alloy and manufacturing method thereof
Atarashiya Aluminum nitride/metal composites using ultra-fine aluminum particles and their application for joining
JPH01272770A (en) Formation of ceramic layer on metallic body
JPH0292872A (en) Bonding between ceramic material and copper material
WO2023145339A1 (en) Thermoelectric conversion material, thermoelectric conversion material composition, thermoelectric conversion element, thermoelectric conversion module, thermoelectric conversion system, method for producing thermoelectric conversion material composition, and method for producing thermoelectric conversion material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408