JPH06234551A - Formation of thin film ferroelectric substance - Google Patents

Formation of thin film ferroelectric substance

Info

Publication number
JPH06234551A
JPH06234551A JP5023933A JP2393393A JPH06234551A JP H06234551 A JPH06234551 A JP H06234551A JP 5023933 A JP5023933 A JP 5023933A JP 2393393 A JP2393393 A JP 2393393A JP H06234551 A JPH06234551 A JP H06234551A
Authority
JP
Japan
Prior art keywords
solution
thin film
ferroelectric thin
sol
supporting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5023933A
Other languages
Japanese (ja)
Other versions
JP3265677B2 (en
Inventor
Yasuhiro Shimada
恭博 嶋田
Eiji Fujii
英治 藤井
Koji Arita
浩二 有田
Toru Nasu
徹 那須
Akihiro Matsuda
明浩 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP02393393A priority Critical patent/JP3265677B2/en
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to DE69333864T priority patent/DE69333864T2/en
Priority to EP93304609A priority patent/EP0574275B1/en
Priority to EP97106056A priority patent/EP0789395B1/en
Priority to DE69317940T priority patent/DE69317940T2/en
Publication of JPH06234551A publication Critical patent/JPH06234551A/en
Priority to US08/778,953 priority patent/US5717233A/en
Priority to US08/947,712 priority patent/US6126752A/en
Priority to US08/950,920 priority patent/US6080617A/en
Application granted granted Critical
Publication of JP3265677B2 publication Critical patent/JP3265677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To reduce the amt. of unnecessary compds. other than the components of a ferroelectric substance in a heat treating process and to form a film with few defects when the thin film of the ferroelectric substance is formed. CONSTITUTION:A supporting substrate 1 is coated with a sol-gel consisting of metal alkoxides and a solvent or a soln. of a metallic org. agent and the resulting coating film is irradiated with UV by means of a low pressure mercury lamp 3 in oxygen or ozone as atmospheric gas. After or during this irradiation, the coating film is heat-treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強誘電体薄膜の形成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a ferroelectric thin film.

【0002】[0002]

【従来の技術】近年、強誘電体薄膜は、自発分極や高誘
電率の性質を生かした不揮発性RAM(Random Access M
emory)や高集積DRAM(Dynamic Random Access Memor
y)の容量絶縁膜としての応用を目指して活発な研究が行
われている。このような強誘電体薄膜は、金属アルコキ
シドと溶媒からなるゾル−ゲル液または金属有機剤の溶
液を支持基板の上に塗布した後、高温で熱処理すること
によって形成される。この塗布膜はアルキル基や水酸基
など強誘電体薄膜に対して不要な化合物を多量に含んで
いるが、通常、これらの不要な化合物は塗布膜の熱処理
によって除去される。
2. Description of the Related Art Recently, a ferroelectric thin film is a nonvolatile RAM (Random Access Memory) that takes advantage of the properties of spontaneous polarization and high dielectric constant.
emory) and highly integrated DRAM (Dynamic Random Access Memor)
Active research is being conducted with the aim of applying y) as a capacitive insulating film. Such a ferroelectric thin film is formed by applying a sol-gel solution containing a metal alkoxide and a solvent or a solution of a metal organic agent on a supporting substrate and then heat-treating it at a high temperature. This coating film contains a large amount of unnecessary compounds such as alkyl groups and hydroxyl groups with respect to the ferroelectric thin film, but normally, these unnecessary compounds are removed by heat treatment of the coating film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、不要な化合物の除去が強誘電体薄膜の結
晶成長と同時になされるので、これらの不要な化合物が
強誘電体薄膜の乾燥・熱処理過程において結晶成長を著
しく阻害し、良好な電気特性を有する強誘電体薄膜を得
ることが困難であるという課題を有していた。
However, in the above conventional structure, since unnecessary compounds are removed at the same time as crystal growth of the ferroelectric thin film, these unnecessary compounds are dried and heat-treated in the ferroelectric thin film. In the process, there has been a problem that it is difficult to obtain a ferroelectric thin film having a good inhibition of crystal growth and having good electric characteristics.

【0004】この課題を解決する方法の一つとして、例
えば塗布膜を熱処理する前に予め低圧水銀ランプなどか
ら発せられる紫外線を塗布膜に照射して、不要な化合物
の一部を除去する方法が提案されている(例えば、USP
5,119,760 参照)。しかし、この方法は主として184nm
の波長を利用した水酸基の解離反応が支配的となり、残
りのアルキル基の除去が不十分であった。
As one of the methods for solving this problem, for example, a method of irradiating the coating film with ultraviolet rays emitted from a low-pressure mercury lamp or the like before heat treating the coating film to remove a part of unnecessary compounds is known. Proposed (eg USP
See 5,119,760). However, this method is mainly 184 nm
The dissociation reaction of the hydroxyl group using the wavelength was dominant, and the removal of the remaining alkyl group was insufficient.

【0005】本発明は上記従来の課題を解決するもの
で、金属アルコキシドと溶媒からなるゾル−ゲル液また
は金属有機剤の溶液の塗布膜中の余剰化合物を除去し、
電気特性の良好な強誘電体薄膜を形成できる強誘電体薄
膜の形成方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems by removing excess compounds in a coating film of a sol-gel solution consisting of a metal alkoxide and a solvent or a solution of a metal organic agent,
An object of the present invention is to provide a method for forming a ferroelectric thin film, which can form a ferroelectric thin film having good electric characteristics.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の強誘電体薄膜の形成方法は、支持基板の一表
面上に金属アルコキシドと溶媒からなるゾル−ゲル液ま
たは金属有機剤の溶液を塗布する工程と、酸化性雰囲気
ガス中で塗布膜に紫外線を照射した後熱処理を加える
か、または紫外線を照射しながら熱処理を加える工程と
からなる構成を有している。
In order to achieve the above object, a method of forming a ferroelectric thin film of the present invention is a method of forming a sol-gel liquid or a metal organic agent containing a metal alkoxide and a solvent on one surface of a supporting substrate. It has a configuration including a step of applying a solution and a step of applying heat treatment after irradiating a coating film with ultraviolet rays in an oxidizing atmosphere gas, or applying heat treatment while irradiating with ultraviolet rays.

【0007】[0007]

【作用】この構成により、塗布膜中の余剰化合物の多く
は酸素またはオゾンと紫外線との光化学反応によって揮
発性の高い化合物に変換されるので、塗布膜中の水酸基
のみならずアルキル基の多くも除去できる。このような
膜を加熱処理することにより電気特性の優れた強誘電体
薄膜が得られる。
With this structure, most of the surplus compounds in the coating film are converted into highly volatile compounds by the photochemical reaction between oxygen or ozone and ultraviolet rays, so that not only the hydroxyl groups but also most of the alkyl groups in the coating film are converted. Can be removed. By subjecting such a film to heat treatment, a ferroelectric thin film having excellent electrical characteristics can be obtained.

【0008】[0008]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例における強誘電体
薄膜の形成方法に使用する薄膜形成装置の概略図であ
る。図1において、1は支持基板、2は気密容器、3は
低圧水銀ランプ、4はヒータープレート、5は酸素ガ
ス、6は排気口である。例えば(BaxSr1-x)TiO3の膜を形
成する場合、予め(BaxSr1-x)TiO3となるBa/Sr/Tiのモル
比でそれぞれの元素を含有する金属アルコキシドと溶媒
からなるゾル−ゲル液または金属有機剤の溶液を準備
し、この溶液を支持基板1の上に回転塗布法、浸漬−引
き上げ法まはたスプレイ法等で塗布する。この段階で
は、塗布膜中に-OH 基(水酸基)や-CnH2n+1基(アルキ
ル基)などの不要な化合物が多量に含まれている。この
支持基板1を気密容器2のヒータープレート4の上に設
置し、酸素ガス5を常時一定の割合で導入する。気密容
器2の内部では支持基板1の上方に低圧水銀ランプ3が
設けられており、主として波長184nmおよび254nmの紫外
線を放射する。また酸素ガス5は排気口6から常時一定
の割合で排気されており、気密容器2内は一定の分圧の
酸素が維持される。
FIG. 1 is a schematic view of a thin film forming apparatus used in a method for forming a ferroelectric thin film in one embodiment of the present invention. In FIG. 1, 1 is a support substrate, 2 is an airtight container, 3 is a low-pressure mercury lamp, 4 is a heater plate, 5 is oxygen gas, and 6 is an exhaust port. For example, when forming a film of (Ba x Sr 1-x ) TiO 3 , a metal alkoxide and a solvent containing each element in advance at a Ba / Sr / Ti molar ratio of (Ba x Sr 1-x ) TiO 3 are formed. A sol-gel solution or a solution of a metal organic agent is prepared, and this solution is applied onto the supporting substrate 1 by a spin coating method, a dipping-pulling method or a spray method. At this stage, the coating film contains a large amount of unnecessary compounds such as —OH groups (hydroxyl groups) and —C n H 2n + 1 groups (alkyl groups). The support substrate 1 is placed on the heater plate 4 of the airtight container 2, and the oxygen gas 5 is constantly introduced at a constant rate. Inside the airtight container 2, a low-pressure mercury lamp 3 is provided above the support substrate 1 and mainly emits ultraviolet rays having wavelengths of 184 nm and 254 nm. The oxygen gas 5 is constantly exhausted from the exhaust port 6 at a constant rate, so that the oxygen in the airtight container 2 is maintained at a constant partial pressure.

【0010】以上のようにして、支持基板1の上に形成
された塗布膜はヒータープレート4の上で紫外線に曝さ
れる。この紫外線は波長184nmおよび254nmの輝線を含
み、それぞれ155kcal/mol および113kcal/mol の量子エ
ネルギーを有する。これらの量子エネルギーは、塗布膜
中の残留化合物の化学結合エネルギー、例えばC-O(76.4
kcal/mol), C-C(84.3kcal/mol), C-H(97.6kcal/mol), O
-H(109.3kcal/mol), C=C(140.5kcal/mol)などより大き
い。したがって、塗布膜へ紫外線を照射した結果、水酸
基やアルキルキ基の多くがフリーラジカルや励起分子と
なって塗布膜の表面近傍に遊離する。
The coating film formed on the support substrate 1 as described above is exposed to ultraviolet rays on the heater plate 4. This ultraviolet ray includes emission lines with wavelengths of 184 nm and 254 nm and has quantum energies of 155 kcal / mol and 113 kcal / mol, respectively. These quantum energies are chemical bond energies of residual compounds in the coating film, such as CO (76.4
kcal / mol), CC (84.3kcal / mol), CH (97.6kcal / mol), O
-H (109.3kcal / mol), C = C (140.5kcal / mol), etc. Therefore, as a result of irradiating the coating film with ultraviolet rays, most of the hydroxyl groups and alkyl groups become free radicals or excited molecules and are released near the surface of the coating film.

【0011】一方、波長184nm の紫外線は気密容器2内
の酸素ガス5に作用して多量のオゾンを発生させる。こ
のオゾンと波長254nm の紫外線との相互作用により酸素
ラジカルが生成される。この酸素ラジカルと紫外線照射
によって塗布膜から直接遊離したフリーラジカルまたは
励起分子とが光化学反応してCO2 やH2O などの揮発性の
低分子化合物となり、この低分子化合物は気密容器2内
の雰囲気ガスの置換によって容易に除去することができ
る。その後、ヒータープレート4を昇温して塗布膜を熱
処理することにより支持基板1の上に(BaxSr1-x)TiO3
を得る。
On the other hand, ultraviolet rays having a wavelength of 184 nm act on the oxygen gas 5 in the airtight container 2 to generate a large amount of ozone. Oxygen radicals are generated by the interaction between this ozone and ultraviolet rays having a wavelength of 254 nm. The oxygen radicals and the free radicals or excited molecules directly liberated from the coating film by UV irradiation undergo a photochemical reaction to become volatile low-molecular compounds such as CO 2 and H 2 O, which are stored in the airtight container 2. It can be easily removed by replacing the atmosphere gas. Then, the heater plate 4 is heated to heat the coating film to obtain a (Ba x Sr 1-x ) TiO 3 film on the supporting substrate 1.

【0012】以上の工程において、塗布膜中の不要な化
合物の除去は紫外線照射によって直接塗布膜からフリー
ラジカルまたは励起分子を遊離した後、紫外線と酸素の
相互作用によって生じた酸素ラジカルとの光化学反応に
よる揮発性の低分子化合物の生成によって行うので、水
酸基のみならずアルキル基の除去にも極めて有効であ
る。
In the above steps, unnecessary compounds in the coating film are removed by free radicals or excited molecules released directly from the coating film by irradiation with ultraviolet rays, and then photochemical reaction with oxygen radicals generated by interaction between ultraviolet rays and oxygen. Since it is carried out by forming a volatile low-molecular compound by the method, it is extremely effective for removing not only a hydroxyl group but also an alkyl group.

【0013】また本実施例では気密容器2内の雰囲気と
して酸素ガス5を用いたが、オゾンを直接導入してやれ
ば同様の効果が得られる。
Although oxygen gas 5 is used as the atmosphere in the airtight container 2 in this embodiment, the same effect can be obtained by directly introducing ozone.

【0014】また本実施例では余剰な化合物を酸素ガス
5中での紫外線照射により除去した後支持基板1を熱処
理したが、酸素ガス5中で紫外線を照射しながら支持基
板1の熱処理を行っても同様の効果が得られる。
In the present embodiment, the supporting substrate 1 is heat-treated after removing the excess compound by irradiating the ultraviolet rays in the oxygen gas 5. However, the supporting substrate 1 is heat-treated while irradiating the ultraviolet rays in the oxygen gas 5. Also has the same effect.

【0015】また本実施例では紫外線の光源として低圧
水銀ランプ3を用いたが、波長192nm や248nm に発振線
を有するエキシマレーザー光を気密容器2に導入して支
持基板1の上に照射しても同様の効果が得られる。
In this embodiment, the low-pressure mercury lamp 3 was used as a light source for ultraviolet rays, but an excimer laser beam having an oscillation line with a wavelength of 192 nm or 248 nm was introduced into the airtight container 2 and irradiated onto the supporting substrate 1. Also has the same effect.

【0016】また本実施例では強誘電体薄膜として(Bax
Sr1-x)TiO3膜を製造する場合について説明したが、PZT
膜またはPLZT膜など他の強誘電体薄膜の製造方法に使用
しても同様の効果が得られることはいうまでもない。
In this embodiment, the ferroelectric thin film (Ba x
I explained the case of producing Sr 1-x ) TiO 3 film.
It is needless to say that the same effect can be obtained by using it in a method of manufacturing another ferroelectric thin film such as a film or PLZT film.

【0017】また本実施例では単に支持基板1として説
明したが、半導体素子や集積回路が形成された半導体基
板、ガラス基板等の表面にも同様にして強誘電体薄膜を
形成することができる。
In this embodiment, the supporting substrate 1 is simply described, but a ferroelectric thin film can be similarly formed on the surface of a semiconductor substrate having a semiconductor element or an integrated circuit formed thereon, a glass substrate or the like.

【0018】[0018]

【発明の効果】以上のように本発明によれば、支持基板
の一表面上に金属アルコキシドと溶媒からなるゾル−ゲ
ル液または金属有機剤の溶液を塗布する工程と、酸素雰
囲気ガス中で塗布膜に紫外線を照射する工程を有し、紫
外線の照射によって塗布膜から遊離したフリーラジカル
または励起分子と酸素と紫外線の相互作用によって生じ
たオゾンとの光化学反応により塗布膜中の不要な化合物
を効果的に除去できるので、熱処理工程において結晶成
長に阻害要因の少ない電気特性の優れた強誘電体薄膜の
形成方法を実現できる。
As described above, according to the present invention, a step of applying a sol-gel solution containing a metal alkoxide and a solvent or a solution of a metal organic agent on one surface of a supporting substrate, and applying in an oxygen atmosphere gas. There is a step of irradiating the film with ultraviolet rays, and the unnecessary compounds in the coating film are effective due to the photochemical reaction between free radicals or excited molecules liberated from the coating film by ultraviolet irradiation and ozone generated by the interaction of oxygen and ultraviolet rays. Therefore, it is possible to realize a method of forming a ferroelectric thin film having excellent electrical characteristics, which has few factors for inhibiting crystal growth in the heat treatment step.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における強誘電体薄膜の形成
方法に使用する薄膜形成装置の概略図
FIG. 1 is a schematic view of a thin film forming apparatus used in a method for forming a ferroelectric thin film according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 支持基板 3 低圧水銀ランプ(紫外線を照射する光源) 4 ヒータープレート 5 酸素ガス(酸化性雰囲気ガス) 1 Support substrate 3 Low-pressure mercury lamp (light source for irradiating ultraviolet rays) 4 Heater plate 5 Oxygen gas (oxidizing atmosphere gas)

フロントページの続き (72)発明者 那須 徹 大阪府門真市大字門真1006番地 松下電子 工業株式会社内 (72)発明者 松田 明浩 大阪府門真市大字門真1006番地 松下電子 工業株式会社内Front page continued (72) Inventor Toru Nasu 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electronics Co., Ltd. (72) Akihiro Matsuda, 1006 Kadoma, Kadoma City, Osaka Matsushita Electronics Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 支持基板の一表面上に金属アルコキシド
と溶媒からなるゾル−ゲル液または金属有機剤の溶液を
塗布する工程と、酸化性雰囲気ガス中で前記ゾル−ゲル
液または金属有機剤の溶液からなる塗布膜に紫外線を照
射する工程と、その後前記支持基板を熱処理する工程と
を有する強誘電体薄膜の形成方法。
1. A step of applying a sol-gel solution comprising a metal alkoxide and a solvent or a solution of a metal organic agent on one surface of a supporting substrate, and a step of applying the sol-gel solution or the metal organic agent in an oxidizing atmosphere gas. A method of forming a ferroelectric thin film, comprising: a step of irradiating a coating film made of a solution with ultraviolet rays; and a step of subsequently heat treating the supporting substrate.
【請求項2】 支持基板の一表面上に金属アルコキシド
と溶媒からなるゾル−ゲル液または金属有機剤の溶液を
塗布する工程と、酸化性雰囲気ガス中で前記ゾル−ゲル
液または金属有機剤の溶液からなる塗布膜に紫外線を照
射すると同時に前記支持基板を熱処理する工程とを有す
る強誘電体薄膜の形成方法。
2. A step of applying a sol-gel solution comprising a metal alkoxide and a solvent or a solution of a metal organic agent on one surface of a supporting substrate, and a step of applying the sol-gel solution or the metal organic agent in an oxidizing atmosphere gas. A method of forming a ferroelectric thin film, which comprises the step of irradiating a coating film made of a solution with ultraviolet rays and heat treating the supporting substrate at the same time.
【請求項3】 支持基板の一表面上に金属アルコキシド
と溶媒からなるゾル−ゲル液または金属有機剤の溶液を
塗布する工程と、オゾンを含有する雰囲気ガス中で前記
ゾル−ゲル液または金属有機剤の溶液からなる塗布膜に
紫外線を照射する工程と、その後前記支持基板を熱処理
する工程とを有する強誘電体薄膜の形成方法。
3. A step of applying a sol-gel solution comprising a metal alkoxide and a solvent or a solution of a metal organic agent on one surface of a supporting substrate, and the sol-gel solution or the metal organic solution in an atmosphere gas containing ozone. A method of forming a ferroelectric thin film, which comprises a step of irradiating a coating film made of a solution of an agent with ultraviolet rays, and a step of heat-treating the supporting substrate thereafter.
【請求項4】 支持基板の一表面上に金属アルコキシド
と溶媒からなるゾル−ゲル液または金属有機剤の溶液を
塗布する工程と、オゾンを含有する雰囲気ガス中で前記
ゾル−ゲル液または金属有機剤の溶液からなる塗布膜に
紫外線を照射すると同時に前記支持基板を熱処理する工
程とを有する強誘電体薄膜の形成方法。
4. A step of applying a sol-gel solution comprising a metal alkoxide and a solvent or a solution of a metal organic agent on one surface of a supporting substrate, and the sol-gel solution or a metal organic solution in an atmosphere gas containing ozone. A method of forming a ferroelectric thin film, which comprises the step of irradiating a coating film made of a solution of an agent with ultraviolet rays and heat treating the supporting substrate at the same time.
【請求項5】 塗布膜に照射する紫外線の光源が182nm
と253nm に輝線を有する低圧水銀ランプである請求項
1、2、3または4記載の強誘電体薄膜の形成方法。
5. The light source of ultraviolet rays irradiating the coating film is 182 nm
5. The method for forming a ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is a low-pressure mercury lamp having a bright line at 253 nm.
【請求項6】 塗布膜に照射する紫外線の光源が192nm
と248nm の範囲で発振するエキシマレーザである請求項
1、2、3または4記載の強誘電体薄膜の形成方法。
6. The light source of ultraviolet rays for irradiating the coating film is 192 nm
5. A method of forming a ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is an excimer laser oscillating in the range of 248 nm.
JP02393393A 1992-06-12 1993-02-12 Method of forming ferroelectric thin film Expired - Fee Related JP3265677B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP02393393A JP3265677B2 (en) 1993-02-12 1993-02-12 Method of forming ferroelectric thin film
EP93304609A EP0574275B1 (en) 1992-06-12 1993-06-14 Semiconductor device having capacitor
EP97106056A EP0789395B1 (en) 1992-06-12 1993-06-14 Manufacturing method for semiconductor device having capacitor
DE69317940T DE69317940T2 (en) 1992-06-12 1993-06-14 Semiconductor device with capacitor
DE69333864T DE69333864T2 (en) 1992-06-12 1993-06-14 Manufacturing method for semiconductor device with capacitor
US08/778,953 US5717233A (en) 1992-06-12 1997-01-06 Semiconductor device having capacitior and manufacturing method thereof
US08/947,712 US6126752A (en) 1992-06-12 1997-10-09 Semiconductor device having capacitor and manufacturing apparatus thereof
US08/950,920 US6080617A (en) 1992-06-12 1997-10-15 Semiconductor device having capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02393393A JP3265677B2 (en) 1993-02-12 1993-02-12 Method of forming ferroelectric thin film

Publications (2)

Publication Number Publication Date
JPH06234551A true JPH06234551A (en) 1994-08-23
JP3265677B2 JP3265677B2 (en) 2002-03-11

Family

ID=12124336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02393393A Expired - Fee Related JP3265677B2 (en) 1992-06-12 1993-02-12 Method of forming ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP3265677B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996029726A1 (en) * 1995-03-17 1996-09-26 Symetrix Corporation Uv radiation process for making electronic devices having low-leakage-current and low-polarization fatigue
JP2017045992A (en) * 2015-08-28 2017-03-02 国立大学法人北陸先端科学技術大学院大学 Method for forming pzt ferroelectric film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133050A (en) * 1992-10-23 2000-10-17 Symetrix Corporation UV radiation process for making electronic devices having low-leakage-current and low-polarization fatigue
WO1996029726A1 (en) * 1995-03-17 1996-09-26 Symetrix Corporation Uv radiation process for making electronic devices having low-leakage-current and low-polarization fatigue
JP2017045992A (en) * 2015-08-28 2017-03-02 国立大学法人北陸先端科学技術大学院大学 Method for forming pzt ferroelectric film
WO2017038676A1 (en) * 2015-08-28 2017-03-09 国立大学法人北陸先端科学技術大学院大学 Method for forming pzt ferroelectric film
CN108352443A (en) * 2015-08-28 2018-07-31 国立大学法人北陆先端科学技术大学院大学 The forming method of PZT ferroelectric films
US10431731B2 (en) 2015-08-28 2019-10-01 Japan Advanced Institute Of Science And Technology Method for forming PZT ferroelectric film
TWI709532B (en) * 2015-08-28 2020-11-11 國立大學法人北陸先端科學技術大學院大學 The method of forming PZT ferroelectric film
CN108352443B (en) * 2015-08-28 2021-11-05 国立大学法人北陆先端科学技术大学院大学 Method for forming PZT ferroelectric film

Also Published As

Publication number Publication date
JP3265677B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
US5221561A (en) Process for the photochemical treatment of a material using a flash tube light source
US4718974A (en) Photoresist stripping apparatus using microwave pumped ultraviolet lamp
US6015759A (en) Surface modification of semiconductors using electromagnetic radiation
US4678536A (en) Method of photochemical surface treatment
KR970030378A (en) Tantalum oxide film deposition forming method and apparatus
US20040209194A1 (en) Ultraviolet-light radiating apparatus, wet etching apparatus and wet etching method using ultravioletlight, and method of manufacturing semiconductor device
KR100294583B1 (en) Composition for formation of electrode pattern
JP3265677B2 (en) Method of forming ferroelectric thin film
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPH06157033A (en) Formation of metal oxide thin film
JP3450463B2 (en) Method for manufacturing semiconductor device
US20060290284A1 (en) Lamp with phosphor layer on an exterior surface and method of applying the phosphor layer
JP2002083803A (en) Dry processing device such as etching device and ashing device
JP2005217244A (en) Substrate treatment method, manufacturing method of semiconductor device, and hydrotreating device
JPH06333917A (en) Preprocessing method for semiconductor wafer before oxidization
JP2934601B2 (en) Vacuum device, evacuation method using the vacuum device, and device using the vacuum device
JP4291193B2 (en) Optical processing apparatus and processing apparatus
JPH0429220B2 (en)
KR100368980B1 (en) Method for annealing dielectric film of capacitor
JPH0586648B2 (en)
JP2931963B2 (en) Thin film formation method using alkoxide as raw material
JPH0882790A (en) Removing device of residual film on color filter for liquid crystal display panel
JPS6175528A (en) Si surface processing by irradiation of multiple laser beam
JPH0618173B2 (en) Thin film formation method
JPH05198498A (en) Ashing device for resist film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees