JPH06234520A - Oxide thin film laminate having multilayered structure and its production - Google Patents

Oxide thin film laminate having multilayered structure and its production

Info

Publication number
JPH06234520A
JPH06234520A JP5043223A JP4322393A JPH06234520A JP H06234520 A JPH06234520 A JP H06234520A JP 5043223 A JP5043223 A JP 5043223A JP 4322393 A JP4322393 A JP 4322393A JP H06234520 A JPH06234520 A JP H06234520A
Authority
JP
Japan
Prior art keywords
thin film
stable phase
composition
oxide thin
pressure stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5043223A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hidaka
義和 日高
Hidefumi Asano
秀文 浅野
Shinichi Karimoto
慎一 狩元
Minoru Suzuki
実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5043223A priority Critical patent/JPH06234520A/en
Publication of JPH06234520A publication Critical patent/JPH06234520A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide the production method of an oxide thin film laminate having multilayered structure which enables the formation of the high pressure-stable phase of the oxide thin film laminate under a nearly atmospheric pressure that is difficult to perform with the conventional methods through making clear the problems on the formation of the high pressure-stable phase and also to provide the oxide thin film laminate produced by this production method. CONSTITUTION:The oxide thin film laminate having multilayered structure is produced by sequentially laminating oxide thin films having the mutually same or analogous crystal structure and mutually different compositions from each other from the atmospheric pressure-stable phase thin film 2 up to the high pressure-stable phase thin film 3 while cyclically changing the compositions of these thin films. This production method includes a stage for depositing the atmospheric pressure-stable phase thin film 2 by the epitaxial growth using raw materials that can provide both compositions of the atmospheric pressure-stable phase thin film 2 and the high pressure-stable phase thin film 3, and another stage for depositing plural thin films, which have the same or analogous crystal structure mutually same as or analogous to the atmospheric pressure-stable phase thin film 2 and mutually different compositions from each other, up to the high pressure-stable phase thin film 3 by the epitaxial growth while cyclically changing the compositions of the thin films. Thus, this production has the advantage of enabling the synthesis of the high pressure-stable compound under a nearly atmospheric pressure that is difficult to perform by positively using the epitaxial growth for forming the thin films.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多層構造酸化物薄膜およ
びその製造方法、さらに詳細には酸化物薄膜を無限層構
造に積層した多層構造酸化物薄膜およびその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layered oxide thin film and a method for producing the same, and more particularly to a multi-layered oxide thin film in which oxide thin films are laminated in an infinite layer structure and a method for producing the same.

【0002】[0002]

【従来の技術および問題点】種々の材料合成において、
高圧相を作製するには、ブリッジマン炉やLEC法、C
Z法、さらに兆候厚領域においては、キュービックアン
ビル、ダイアモンドアンビル、分割球等の高圧容器を使
用し、適当な温度条件のもとに合成を行う。しかしなが
ら、これらの方法は高価で大型の装置を用いなければな
らない、試料合成スペースが狭く、十分な量の合成がで
きない等の問題点を抱えている。また、これらの極端条
件下では、その場で(in situで)試料作製中に
条件を自由に変えることができないなどの制約がある。
さらに超高圧実験では、圧力媒体としてジルコニアやマ
グネシア粉末などを利用した固体圧となるため、圧力、
温度などの不均一分布により、目的とする相の単一化が
図りにくく、種々の物性測定に使用するための高品質の
試料を得ることが難しい等の問題がある。
2. Description of the Related Art In the synthesis of various materials,
Bridgman furnace, LEC method, C
In the Z method, and in the symptom thickness region, a high pressure vessel such as a cubic anvil, a diamond anvil, and a dividing sphere is used, and synthesis is performed under an appropriate temperature condition. However, these methods have problems that an expensive and large-sized apparatus must be used, a sample synthesis space is small, and a sufficient amount of synthesis cannot be performed. Further, under these extreme conditions, there is a constraint that the conditions cannot be freely changed in-situ (in situ) during sample preparation.
Furthermore, in the ultra-high pressure experiment, the solid pressure using zirconia, magnesia powder, etc. as the pressure medium becomes
Due to the non-uniform distribution of temperature and the like, it is difficult to unify the target phase, and it is difficult to obtain a high-quality sample for use in various physical property measurements.

【0003】また、蒸着法、スパッタリング法、CVD
法、MOCVD法等の成膜法においては、適当な基板上
に通常、常圧安定相を成膜する。高圧相組成の膜は常圧
においては、熱力学的に安定な常圧安定相の形態をとる
ため、通常、高圧安定相を常圧近くで得ることは困難で
ある。唯一CVD法で炭素の高圧相であるダイアモンド
が得られているにすぎない。
Further, vapor deposition method, sputtering method, CVD
In the film forming method such as the MOCVD method and the MOCVD method, the atmospheric stable phase is usually formed on an appropriate substrate. Since a film having a high-pressure phase composition takes the form of a thermodynamically stable normal-pressure stable phase at normal pressure, it is usually difficult to obtain a high-pressure stable phase near normal pressure. Only the high-pressure phase of carbon, diamond, is obtained by the CVD method.

【0004】例えば、銅酸化物超伝導体の中の無限層構
造物質ACuO2(A=アルカリイオン)はCuO2二次
元面とアルカリイオンでできた面の繰り返しによって成
り立っており、銅酸化物の中では最も単純な結晶構造を
持つものである。この化合物は、アルカリイオンAの位
置に、Sr、Ca、Ba等のイオン半径の異なるもの、
あるいはそれらの組み合わせたものを配置することによ
ってAサイトイオンの平均イオン半径rAが変化し、隣
り合うCuO2面間の距離、およびCuO2面内のCu−
Oボンド長を変えることができる。常圧合成では、Ca
0.84Sr0.16CuO2の組成を中心に極めて狭い組成領
域においてのみ、無限層構造が得られる。このような常
圧合成で得られる試料ではキャリアーのドーピングが困
難であり、超伝導を示す試料は得られない。
For example, an infinite layer structure material ACuO 2 (A = alkali ion) in a copper oxide superconductor is formed by repeating a two-dimensional surface of CuO 2 and a surface made of alkali ions. It has the simplest crystal structure among them. This compound has a different ionic radius such as Sr, Ca, or Ba at the position of the alkali ion A,
Or the average ionic radius rA of the A-site ion changed by placing a combination thereof, between the CuO 2 planes adjacent distance, and CuO 2 within plane of Cu-
The O bond length can be changed. In normal pressure synthesis, Ca
An infinite layer structure is obtained only in an extremely narrow composition region centered on the composition of 0.84 Sr 0.16 CuO 2 . It is difficult to dope a carrier in a sample obtained by such atmospheric synthesis, and a sample showing superconductivity cannot be obtained.

【0005】これに対し、約6万気圧の超高圧のもとで
は、常圧合成で得られる試料の組成より広い組成で無限
層構造を得ることができる。Sr0.86Ca0.14CuO2
やSrCuO2といったAサイト平均イオン半径rAの
大きな化合物を得ることができる。このようなAサイト
イオンの平均イオン半径rAの大きな組成領域の無限層
物質においては、超伝導を示すものがあり、その転移温
度は110Kにも達することが知られている。このよう
に、無限層構造物質は、単純な結晶構造にもかかわら
ず、高い超伝導転移温度が得られることから、高温超伝
導機構の解明、より高い転移温度をもつ超伝導体実現に
重要な役割を果たすものと思われる。しかしながら、超
高圧合成装置においては、高圧発生部における試料合成
のための堆積が小さいため、種々の物性測定に用いるに
十分な堆積の試料を得ることができない。また、圧力媒
体として固体粉末を用いるため、試料中で圧力、温度の
不均一が生じ易い。このため、高品質の試料を得るのが
難しいのが現状である。
On the other hand, under an ultrahigh pressure of about 60,000 atm, an infinite layer structure can be obtained with a composition wider than that of the sample obtained by atmospheric synthesis. Sr 0.86 Ca 0.14 CuO 2
It is possible to obtain a compound having a large A site average ionic radius rA, such as SrCuO 2 or SrCuO 2 . It is known that some infinite layer materials having a composition region having a large average ionic radius rA of A site ions exhibit superconductivity and the transition temperature thereof reaches 110K. In this way, infinite layer structure materials have a high superconducting transition temperature despite their simple crystal structure, so they are important for elucidating the high-temperature superconducting mechanism and realizing superconductors with higher transition temperatures. Seems to play a role. However, in the ultra-high pressure synthesizer, since the amount of deposit for synthesizing the sample in the high pressure generating part is small, it is not possible to obtain a sample with sufficient deposit to be used for various physical property measurements. Moreover, since solid powder is used as the pressure medium, nonuniformity of pressure and temperature is likely to occur in the sample. Therefore, it is currently difficult to obtain a high quality sample.

【0006】これに対して、蒸着法、スパッタリング法
などの薄膜技術により、無限層構造物質の高圧相の薄膜
作製の試みが多くなされている。焼結体に比べ広い組成
範囲で無限層構造が実現できており、中には110K以
上の超伝導開始温度を示す試料も報告されている。しか
しながら、いずれの試料においてもブロードな超伝導転
移しか示していない。これは、試料内の組成の不均一、
結晶性の悪さ、キャリアードーピングの不十分さからく
るものと考えられる。高圧安定相の単一組成膜を直接M
gOやSrTiO3等の他の単結晶基板上に堆積する方
法では、格子の不整合が大きく高品質の高圧相組成の薄
膜を作製することは困難である。
On the other hand, many attempts have been made to produce a thin film of a high-pressure phase of an infinite layer structure substance by a thin film technique such as a vapor deposition method and a sputtering method. An infinite layer structure has been realized in a wider composition range than that of a sintered body, and among them, a sample showing a superconducting start temperature of 110 K or higher has been reported. However, all samples show only broad superconducting transition. This is due to the non-uniformity of composition in the sample,
It is considered that this is due to poor crystallinity and insufficient carrier doping. Direct high pressure stable phase single composition film
With the method of depositing on another single crystal substrate such as gO or SrTiO 3, it is difficult to produce a high-quality thin film having a high-pressure phase composition because of large lattice mismatch.

【0007】キャリアーをドーピングするには、通常、
空孔の形成や異種元素の置換によって、非化学量論組成
の膜を作製する。このキャリアーのドーピングのため
に、本来熱力学に不安定な高圧相において、より熱力学
的に不安定な非化学量論組成の高圧相の膜を実現するこ
とは極めて困難である。
For doping carriers,
A film with a non-stoichiometric composition is produced by forming vacancies and substituting different elements. Due to this carrier doping, it is extremely difficult to realize a film of a high-pressure phase having a non-stoichiometric composition that is more thermodynamically unstable in a high-pressure phase that is originally thermodynamically unstable.

【0008】以上に述べたような無限層構造作製におけ
る困難さは、いずれも高圧相実現の困難さによるもので
ある。このような高圧相作製上の困難を克服するため、
薄膜作製技術を用い、エピタキシャル成長による超格子
構造を実現し、層間に働く応力により高圧相を安定化さ
せかつキャリアーをドーピングする無限層構造物質およ
びその製造方法の開発が望まれていた。
The difficulty in producing the infinite layer structure as described above is due to the difficulty in realizing the high-pressure phase. In order to overcome such difficulties in producing a high-pressure phase,
It has been desired to develop an infinite layer structure material that realizes a superlattice structure by epitaxial growth using a thin film manufacturing technique, stabilizes a high-pressure phase by stress acting between layers, and doping carriers, and a manufacturing method thereof.

【0009】[0009]

【発明が解決しようとする問題点】本発明は、高圧安定
相作製上の問題点を明かにし、従来困難であった、高圧
安定相を常圧近くで得るための薄膜の構造およびその製
造方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has revealed the problems in producing a high-pressure stable phase and has heretofore been difficult. Is to provide.

【0010】[0010]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明による多層構造酸化物薄膜は、同じまたは
類似の結晶構造を有し、異なる組成の酸化物薄膜を組成
を周期的に変えて前記常圧安定相より高圧安定相まで逐
次積層して成ることを特徴とする。
In order to solve the above problems, the multi-layered oxide thin film according to the present invention has the same or similar crystal structure, and oxide thin films having different compositions are periodically prepared. Alternatively, it is characterized in that the normal pressure stable phase and the high pressure stable phase are sequentially laminated.

【0011】また本発明による多層構造酸化物薄膜の製
造方法は、常圧安定相と高圧安定相の組成を実現可能な
原料で常圧安定相薄膜をエピタキシャル成長により堆積
する工程、前記常圧安定相薄膜と同じまたは類似の結晶
構造を有し、異なる組成の膜を組成を周期的に変えてエ
ピタキシャル成長により高圧安定相薄膜まで複数堆積す
る工程を含むことを特徴とする。
In the method for producing a multi-layered oxide thin film according to the present invention, the atmospheric pressure stable phase thin film is deposited by epitaxial growth using a raw material capable of realizing the composition of the atmospheric pressure stable phase and the high pressure stable phase. The method is characterized by including a step of depositing a plurality of films having the same or similar crystal structure as the thin film and different compositions, by periodically changing the composition to form a high-pressure stable phase thin film by epitaxial growth.

【0012】すなわち、本発明は薄膜作製技術を用い、
エピタキシャル成長による超格子構造を実現し、層間に
働く応力により高圧相を安定化させ、かつキャリアーを
ドーピングした無限層構造物質の多層構造酸化物薄膜お
よびその製造方法を得ることを特徴としている。
That is, the present invention uses a thin film forming technique,
The present invention is characterized in that a superlattice structure is realized by epitaxial growth, a high-pressure phase is stabilized by a stress acting between layers, and a carrier-doped multi-layered oxide thin film of an infinite layer structure material and a manufacturing method thereof are obtained.

【0013】本発明では、高圧安定相を得るため、育成
しようとする高圧安定相の組成と常圧安定相の組成の2
種類を実現することができる原料を使用するものであ
る。原料の形態は本発明において基本的に限定されるも
のではなく、成膜法により異なることができる。蒸着法
の場合は、加熱により液状にしたものであり、スパッタ
リング法の場合は焼結体である。いずれも高純度のもの
を使用する。
In the present invention, in order to obtain a high-pressure stable phase, the composition of the high-pressure stable phase to be grown and the composition of the normal-pressure stable phase are 2
It uses raw materials that can realize different types. The form of the raw material is not basically limited in the present invention, and can be changed depending on the film forming method. In the case of the vapor deposition method, it is made into a liquid state by heating, and in the case of the sputtering method, it is a sintered body. All of them are of high purity.

【0014】成膜装置内にこのような原料ソースを設置
し、原子あるいは分子状の形で目的とする薄膜の構成元
素を同時あるいは順次に飛ばす。適当な基板を用い、単
結晶成長が起こる基板温度で、まず、常圧安定相の薄膜
薄膜を作製する。次に各元素の堆積速度を調節すること
により常圧安定相組成から高圧安定相組成へ向かって薄
膜の組成を連続的に変化させていく。この時、常圧安定
相の上に順次エピタキシャル成長させていくことによ
り、不安定相が順次安定化されていく。このようにする
ことにより高圧安定相組成を実現することができる。
Such a raw material source is installed in the film forming apparatus, and the constituent elements of the target thin film are simultaneously or sequentially blown in the form of atoms or molecules. First, using a suitable substrate, at a substrate temperature at which single crystal growth occurs, a thin film of a stable phase at atmospheric pressure is prepared. Next, by adjusting the deposition rate of each element, the composition of the thin film is continuously changed from the normal pressure stable phase composition to the high pressure stable phase composition. At this time, the unstable phase is sequentially stabilized by sequentially performing epitaxial growth on the normal pressure stable phase. By doing so, a high-pressure stable phase composition can be realized.

【0015】この高圧相部分をさらに安定化させるため
に、好ましくは高圧相組成の上から常圧安定相組成へ向
かって組成を漸次変化させた膜を堆積させる。このよう
にして常圧安定相から高圧安定相、さらに常圧安定相と
いうように周期的な組成変化を実現する。
In order to further stabilize the high-pressure phase portion, a film having a composition which gradually changes from the high-pressure phase composition toward the normal-pressure stable phase composition is deposited. In this way, a periodic composition change is realized from the normal pressure stable phase to the high pressure stable phase and further to the normal pressure stable phase.

【0016】このようなエピタキシャル成長による連続
的な格子変形を利用することにより、合成が困難な高圧
相を安定化させ常圧へもたらすことができる。また、キ
ャリアーのドーピングについても、成膜中の組成調節に
より欠陥や価数の異なる元素を導入することにより実現
することができる。このように、本発明は、薄膜作製技
術を用い、エピタキシャル成長による超格子構造を実現
し、層間に働く応力による格子変形を利用し高圧相を安
定化させ、かつキャリアーがドーピングされた薄膜を得
ることができる膜構造およびその製造方法を提示するも
のである。
By utilizing such continuous lattice deformation by epitaxial growth, it is possible to stabilize the high-pressure phase which is difficult to synthesize and bring it to normal pressure. Further, carrier doping can also be realized by introducing defects or elements having different valences by adjusting the composition during film formation. As described above, the present invention realizes a superlattice structure by epitaxial growth using a thin film manufacturing technique, stabilizes a high-pressure phase by utilizing lattice deformation due to stress acting between layers, and obtains a carrier-doped thin film. The present invention provides a membrane structure capable of achieving the above and a manufacturing method thereof.

【0017】図1は、本多層構造薄膜の構造であり、1
は薄膜作製基板、2は常圧安定相薄膜、3は高圧安定相
薄膜、図2は図1における薄膜中の繰り返し単位につい
て書きだしたものであり、1は常圧安定相薄膜、2は常
圧安定相薄膜1と同様な結晶構造を持ち、高圧安定相に
少し近い組成を持つ相薄膜、3は薄膜2と同様な結晶構
造を持ち、さらに高圧安定相により近い組成を持つ相薄
膜、…n−1は高圧安定相と同様な結晶構造を持ち、高
圧安定相から、少し常圧安定相側へずれた組成を持つ相
薄膜、nは高圧安定相薄膜を示す。
FIG. 1 shows the structure of the present multi-layered thin film.
1 is a thin film production substrate, 2 is a normal pressure stable phase thin film, 3 is a high pressure stable phase thin film, FIG. 2 is a description of repeating units in the thin film in FIG. 1, 1 is a normal pressure stable phase thin film, and 2 is a normal pressure stable phase thin film. A phase thin film having a crystal structure similar to that of the pressure stable phase thin film 1 and having a composition slightly close to the high pressure stable phase, 3 having a crystal structure similar to that of the thin film 2, and having a composition closer to that of the high pressure stable phase, n-1 is a phase thin film having a crystal structure similar to that of the high pressure stable phase and having a composition slightly deviated from the high pressure stable phase to the normal pressure stable phase side, and n is a high pressure stable phase thin film.

【0018】種々の薄膜作製法により基板上に、常圧安
定相組成の膜1から2,3…n−1,n,n−1…3,
2,1と順次組成の異なる膜を堆積させ、エピタキシャ
ル成長させることにより、高圧相が安定化される。この
ような1,2,3…n−1,n,n−1…3,2,1の
各組成の薄膜作製段階において、組成制御により、空孔
あるいは異種を導入し、化学量論組成からの組成ずれを
起こさせることにより、キャリアーのドーピングを行う
ことができる。
Films 1 to 2, 3 ... n-1, n, n-1 ... 3, of normal pressure stable phase composition are formed on a substrate by various thin film forming methods.
The high-pressure phase is stabilized by depositing films having different compositions in the order of 2 and 1 and performing epitaxial growth. At the stage of forming a thin film of each composition of 1,2,3 ... n-1, n, n-1, ... The carrier doping can be performed by causing the composition shift of the above.

【0019】本発明は薄膜作製技術を用いるため、任意
の組成分布を実現することができる。このように様々な
条件の下で、広範囲な種類の組成の超格子を得ることが
できることを特徴とする多層構造酸化物薄膜およびその
製造方法である。
Since the present invention uses a thin film forming technique, any composition distribution can be realized. Thus, the multi-layered oxide thin film and the method for producing the same are characterized in that superlattices having a wide variety of compositions can be obtained under various conditions.

【0020】本発明は、薄膜作製において、類似の結晶
構造、結晶の対称性、近い値の格子定数を持つ物質間で
見られるエピタキシャル成長を積極的に利用することに
より、従来、合成が困難であるところの高圧安定化合物
を、常圧近くで合成することができる。
In the present invention, it is difficult to synthesize a thin film by making positive use of epitaxial growth observed between substances having a similar crystal structure, crystal symmetry, and a lattice constant of a close value in the production of a thin film. However, the high-pressure stable compound can be synthesized at near normal pressure.

【0021】上述のような多層構造薄膜の一例として
は、たとえば、一般式 (A1-xx1-yCuO2 (ここでA、BはそれぞれMg,Sr,Ca,Baいず
れかのアルカリ土類元素、あるいはそれらが混合した物
であり、A,B=kMg+lSr+mCa+nBa、た
だしk+l+m+n=1,0≦k≦1,0≦l≦1,0
≦m≦1,0≦n≦1)を常圧安定相より高圧安定相ま
で積層した多層構造薄膜を挙げることができる。
As an example of the above-mentioned multi-layer structure thin film, for example, the general formula (A 1-x B x ) 1-y CuO 2 (A and B are Mg, Sr, Ca and Ba respectively) Alkaline earth element or a mixture thereof, A, B = kMg + lSr + mCa + nBa, provided that k + l + m + n = 1,0 ≦ k ≦ 1,0 ≦ l ≦ 1,0
There can be mentioned a thin film having a multilayer structure in which ≦ m ≦ 1,0 ≦ n ≦ 1) is laminated from a normal pressure stable phase to a high pressure stable phase.

【0022】このような酸化物多層構造薄膜を製造する
場合、常圧安定相薄膜より少なくとも高圧安定相薄膜ま
で、堆積する膜の組成を0≦x≦1,0≦y≦1の間で
逐次周期的に変化させながらエピタキシャル成長させ超
格子構造を作る。
In the case of producing such an oxide multi-layer structure thin film, the composition of the deposited film is sequentially changed from 0 atmospheric pressure stable phase thin film to at least high pressure stable phase thin film in the range of 0 ≦ x ≦ 1, 0 ≦ y ≦ 1. A superlattice structure is produced by epitaxial growth while periodically changing.

【0023】また、上述のような多層構造薄膜の一例と
して、一般式 (AxByCz)CuO2 (ここでA、BはそれぞれMg,Sr,Ca,Baいず
れかのアルカリ土類元素、あるいはそれらが混合した物
であり、A,B=kMg+lSr+mCa+nBa、た
だしk+l+m+n=1,0≦k≦1,0≦l≦1,0
≦m≦1,0≦n≦1、また、CはLa,Ce,Pr,
Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの希土類あるいはSc,Yのいずれかの
元素、あるいはそれらが混合したものであり、C=n1
La+n2Ce+n3Pr+n4Nd+n5Pm+n6Sm
+n7Eu+n8Gd+n9Tb+n10Dy+n11Ho+
12Er+n13Tm+n14Yb+n15Lu+n16Sc+
17Y、ただしn1+n2+n3+n4+n5+n6+n7
8+n9+n10+n11+n12+n13+n14+n15+n16
+n17=1,0≦n1≦1,0≦n2≦1,0≦n3
1,0≦n4≦1,0≦n5≦1,0≦n6≦1,0≦n7
≦1,0≦n8≦1,0≦n9≦1,0≦n10≦1,0≦
11≦1,0≦n12≦1,0≦n13≦1,0≦n14
1,0≦n15≦1,0≦n16≦1,0≦n17≦1、さら
にx+y+z=1,0≦x≦1,0≦y≦1,0≦z≦
1)を常圧安定相より高圧安定相まで積層した多層構造
薄膜を挙げることができる。
As an example of the above-mentioned multi-layered thin film, the general formula (AxByCz) CuO 2 (where A and B are Mg, Sr, Ca and Ba are alkaline earth elements, or a mixture thereof is used). A, B = kMg + lSr + mCa + nBa, where k + l + m + n = 1,0 ≦ k ≦ 1,0 ≦ l ≦ 1,0
≦ m ≦ 1, 0 ≦ n ≦ 1, and C is La, Ce, Pr,
Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, T
A rare earth element of m, Yb or Lu, or an element of Sc or Y, or a mixture thereof, and C = n 1
La + n 2 Ce + n 3 Pr + n 4 Nd + n 5 Pm + n 6 Sm
+ N 7 Eu + n 8 Gd + n 9 Tb + n 10 Dy + n 11 Ho +
n 12 Er + n 13 Tm + n 14 Yb + n 15 Lu + n 16 Sc +
n 17 Y, provided that n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 +
n 8 + n 9 + n 10 + n 11 + n 12 + n 13 + n 14 + n 15 + n 16
+ N 17 = 1,0 ≦ n 1 ≦ 1,0 ≦ n 2 ≦ 1,0 ≦ n 3
1,0 ≤ n 4 ≤ 1, 0 ≤ n 5 ≤ 1, 0 ≤ n 6 ≤ 1, 0 ≤ n 7
≤1,0 ≤n 8 ≤1,0 ≤n 9 ≤1,0 ≤n 10 ≤1,0≤
n 11 ≤1,0 ≤n 12 ≤1,0 ≤n 13 ≤1,0 ≤n 14
1,0 ≦ n 15 ≦ 1,0 ≦ n 16 ≦ 1,0 ≦ n 17 ≦ 1, further x + y + z = 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦
An example of the thin film is a multilayer structure in which 1) is laminated from a stable phase at normal pressure to a stable phase at high pressure.

【0024】このような酸化物多層構造薄膜を製造する
場合、常圧安定相薄膜より少なくとも高圧安定薄膜ま
で、堆積する膜の組成を0≦x≦1,0≦y≦1,0≦
z≦1の間で逐次周期的に変化させながらエピタキシャ
ル成長させ超格子構造を作る。
In the case of producing such an oxide multi-layered thin film, the composition of the film to be deposited is 0≤x≤1,0≤y≤1,0≤ from the normal pressure stable phase thin film to at least the high pressure stable thin film.
A superlattice structure is produced by epitaxial growth while sequentially and periodically changing within z ≦ 1.

【0025】[0025]

【実施例1】SrO,CaO,CuOの3種類の原料を
蒸着源としてそれぞれクヌードセンセルに入れ、Ca:
Sr:Cu=(1−x):x:1の比になるように、適
当な温度に加熱したエピタキシャル成長用単結晶基板上
に堆積させた。基板近くに外部から酸素ガスを導入し、
rfコイルにより、高周波電界印加することにより、酸
素プラズマを発生させ、基板上での酸化反応を促進させ
た。基板はCa0.86Sr0.14CuO2の格子定数に近い
値を持つ、SrTiO3単結晶基板を使用した。
Example 1 Three types of raw materials, SrO, CaO, and CuO, were placed in a Knudsen cell as vapor deposition sources, and Ca:
It was deposited on a single crystal substrate for epitaxial growth heated to an appropriate temperature so that the ratio of Sr: Cu = (1-x): x: 1 was obtained. Introduce oxygen gas from the outside near the substrate,
By applying a high-frequency electric field with the rf coil, oxygen plasma was generated to accelerate the oxidation reaction on the substrate. As the substrate, a SrTiO 3 single crystal substrate having a value close to the lattice constant of Ca 0.86 Sr 0.14 CuO 2 was used.

【0026】膜堆積にあたっては、まず、基板上に組成
がx=0.14である、Ca0.86Sr0.14CuO2の膜
を約100Å堆積させ、次にx=0.16の組成のもの
を厚さ30Åさらにその上にx=0.18のものを30
Å、次にx=0.20のものというようにして、順次堆
積させ、x=0.86の高温安定相組成までの膜を成長
させた。次に、この上から、漸次xの値を小さい方へ変
化させながら常圧安定組成までの膜を堆積させた。この
膜のX線回折パターンに見られる回折線の位置が常圧安
定相に対応するピーク位置から、高圧安定相に対応する
ピーク位置まで広がったブロードなピークであること、
さらに、超格子の周期に対応する面間隔に対応する位置
にピークが見られることからも順次格子定数の変化した
膜が得られ、その中に高圧安定相が存在していることを
示すものである。膜作製時、高圧安定相組成の膜を堆積
させる際、モル比で(Ca,Sr):Cu=0.98:
1となるようにした膜においては、図3に示すように、
110Kで超伝導転移を示す膜が得られた。Srの替わ
りにBaを用いた場合、得られた膜の超伝導転移温度は
90Kであった。
In depositing the film, first, a film of Ca 0.86 Sr 0.14 CuO 2 having a composition of x = 0.14 is deposited on the substrate in an amount of about 100 Å, and then a film having a composition of x = 0.16 is formed into a thick film. 30 Å Furthermore, if x = 0.18, then 30
Å, then x = 0.20 and so on were sequentially deposited to grow a film up to a high temperature stable phase composition of x = 0.86. Next, from above, a film having a stable composition at atmospheric pressure was deposited while gradually changing the value of x to a smaller value. The position of the diffraction line seen in the X-ray diffraction pattern of this film is a broad peak spreading from the peak position corresponding to the normal pressure stable phase to the peak position corresponding to the high pressure stable phase,
Furthermore, the fact that peaks are seen at the positions corresponding to the interplanar spacings corresponding to the period of the superlattice also yields films with successively varying lattice constants, indicating that a high-pressure stable phase exists in them. is there. When a film having a high-pressure stable phase composition is deposited during film formation, the molar ratio is (Ca, Sr): Cu = 0.98:
In the film made to be 1, as shown in FIG.
A film showing a superconducting transition was obtained at 110K. When Ba was used instead of Sr, the superconducting transition temperature of the obtained film was 90K.

【0027】[0027]

【実施例2】(Sr0.84Nd0.16)Cu1.22および
(Ca0.84Sr0.16)Cu1.22の2種類の組成を持つ
円盤状の焼結体を作製し、スパッタリング用ターゲット
として用いた。これら2種類の組成のターゲットを同時
に放電させ、適当な温度に加熱したエピタキシャル成長
用単結晶基板を交互に2つのターゲットの近くに移動さ
せ、薄膜を堆積させた。基板はCa0.86Sr0.14CuO
2の格子定数に近い値を持つSrTiO3単結晶基板を使
用した。膜の組成および厚さはターゲット近くで滞在時
間により調節した。基板の実際移動は、回転式基板ホル
ダーを用いた。この様な方法によりそれぞれ厚さ40
Å、50Åの(Sr0.84Nd0.16)Cu1. 22および
(Ca0.84Sr0.16)Cu1.22の組成の膜を交互に堆
積させ全膜厚3000Åの膜を得ることができた。膜の
X線回折パターンに見られる回折線の位置が常圧安定相
と高圧安定相に対応する位置にあること、さらに、超格
子の周期に対応する面間隔に対応する位置にピークが見
られることから常圧安定相の膜に挟まれて高圧安定相が
安定化されていることを示すものである。磁化率の温度
依存性測定の結果、このようにして得られた多層膜試料
はTc=60Kで超伝導転移を示すことを確認した。S
rの替わりにMgまたはBaを用い、Ndの替わりに、
La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,T
b,Dy,Ho,Er,Tm,Yb,Luの希土類ある
いはSc,Y等を用いた場合、最高70Kの超伝導転移
温度の膜を得ることができた。
Example 2 A disk-shaped sintered body having two compositions of (Sr 0.84 Nd 0.16 ) Cu 1.2 O 2 and (Ca 0.84 Sr 0.16 ) Cu 1.2 O 2 was prepared and used as a sputtering target. Targets of these two types of compositions were discharged at the same time, and the single crystal substrate for epitaxial growth heated to an appropriate temperature was moved alternately near the two targets to deposit a thin film. Substrate is Ca 0.86 Sr 0.14 CuO
A SrTiO 3 single crystal substrate having a value close to the lattice constant of 2 was used. The composition and thickness of the film were adjusted by the residence time near the target. A rotating substrate holder was used for the actual movement of the substrate. With such a method, the thickness is 40
Å, was obtained 50Å of a (Sr 0.84 Nd 0.16) Cu 1. 2 O 2 and (Ca 0.84 Sr 0.16) Cu 1.2 O 2 of the film of the total thickness 3000Å film is deposited alternately composition. The positions of the diffraction lines seen in the X-ray diffraction pattern of the film are at the positions corresponding to the stable phase at normal pressure and the stable phase at high pressure, and a peak is found at the position corresponding to the interplanar spacing corresponding to the period of the superlattice. This means that the high-pressure stable phase is stabilized by being sandwiched between the normal-pressure stable phase films. As a result of measuring the temperature dependence of the magnetic susceptibility, it was confirmed that the multilayer film sample thus obtained exhibits a superconducting transition at Tc = 60K. S
Mg or Ba is used instead of r, and Nd is replaced by
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
When a rare earth element such as b, Dy, Ho, Er, Tm, Yb, and Lu or Sc, Y was used, a film having a superconducting transition temperature of 70K at maximum could be obtained.

【0028】[0028]

【発明の効果】本発明によれば、従来、常圧近くで合成
が困難であるところの高圧安定化合物を、薄膜作製にお
けるエピタキシャル成長を積極的に利用することによ
り、作成することができるという利点がある。
EFFECTS OF THE INVENTION According to the present invention, there is an advantage that a high-pressure stable compound, which has hitherto been difficult to synthesize near atmospheric pressure, can be produced by positively utilizing epitaxial growth in thin film production. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本薄膜の構造。FIG. 1 shows the structure of the thin film.

【図2】図1における薄膜中の繰り返し単位を示す。FIG. 2 shows a repeating unit in the thin film in FIG.

【図3】実施例1によって得られた(Ca,Sr)0.98
CuO2の膜の抵抗測定における超伝導転移を示す。
FIG. 3 (Ca, Sr) 0.98 obtained according to Example 1.
3 shows a superconducting transition in resistance measurement of a CuO 2 film.

【符号の説明】[Explanation of symbols]

1 薄膜作製用基板 2 常圧安定相 3 高圧安定相 1 Substrate for thin film production 2 Normal pressure stable phase 3 High pressure stable phase

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 12/06 ZAA 7244−5G 13/00 565 D 7244−5G H01L 39/24 ZAA B 9276−4M (72)発明者 鈴木 実 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01B 12/06 ZAA 7244-5G 13/00 565 D 7244-5G H01L 39/24 ZAA B 9276-4M (72) Inventor Minoru Suzuki 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】同じまたは類似の結晶構造を有し、異なる
組成の酸化物薄膜を組成を周期的に変えて前記常圧安定
相より高圧安定相まで逐次積層して成ることを特徴とす
る多層構造酸化物薄膜。
1. A multi-layer comprising oxide thin films having the same or similar crystal structure and different compositions, which are sequentially laminated from the normal pressure stable phase to the high pressure stable phase by periodically changing the composition. Structural oxide thin film.
【請求項2】積層した複数の膜の組成は、一般式 (A1-xx1-yCuO2 (ここでA、BはそれぞれMg,Sr,Ca,Baいず
れかのアルカリ土類元素、あるいはそれらが混合した物
であり、A,B=kMg+lSr+mCa+nBa、た
だしk+l+m+n=1,0≦k≦1,0≦l≦1,0
≦m≦1,0≦n≦1)であることを特徴とする請求項
1記載の多層構造酸化物薄膜。
2. The composition of a plurality of laminated films is represented by the general formula (A 1-x B x ) 1-y CuO 2 (where A and B are Mg, Sr, Ca and Ba, respectively). An element or a mixture thereof, A, B = kMg + lSr + mCa + nBa, provided that k + l + m + n = 1,0 ≦ k ≦ 1,0 ≦ l ≦ 1,0
2. The multi-layered oxide thin film according to claim 1, wherein ≦ m ≦ 1,0 ≦ n ≦ 1).
【請求項3】積層した複数の膜の組成は、一般式 (AxByCz)CuO2 (ここでA、BはそれぞれMg,Sr,Ca,Baいず
れかのアルカリ土類元素、あるいはそれらが混合した物
であり、A,B=kMg+lSr+mCa+nBa、た
だしk+l+m+n=1,0≦k≦1,0≦l≦1,0
≦m≦1,0≦n≦1、また、CはLa,Ce,Pr,
Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの希土類あるいはSc,Yのいずれかの
元素、あるいはそれらが混合したものであり、C=n1
La+n2Ce+n3Pr+n4Nd+n5Pm+n6Sm
+n7Eu+n8Gd+n9Tb+n10Dy+n11Ho+
12Er+n13Tm+n14Yb+n15Lu+n16Sc+
17Y、ただしn1+n2+n3+n4+n5+n6+n7
8+n9+n10+n11+n12+n13+n14+n15+n16
+n17=1,0≦n1≦1,0≦n2≦1,0≦n3
1,0≦n4≦1,0≦n5≦1,0≦n6≦1,0≦n7
≦1,0≦n8≦1,0≦n9≦1,0≦n10≦1,0≦
11≦1,0≦n12≦1,0≦n13≦1,0≦n14
1,0≦n15≦1,0≦n16≦1,0≦n17≦1、さら
にx+y+z=1,0≦x≦1,0≦y≦1,0≦z≦
1)であることを特徴とする請求項1記載の多層構造酸
化物薄膜。
3. The composition of a plurality of laminated films is represented by the general formula (AxByCz) CuO 2 (where A and B are each an alkaline earth element of Mg, Sr, Ca or Ba, or a mixture thereof). And A, B = kMg + 1lsr + mCa + nBa, where k + l + m + n = 1,0 ≦ k ≦ 1,0 ≦ l ≦ 1,0
≦ m ≦ 1, 0 ≦ n ≦ 1, and C is La, Ce, Pr,
Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, T
A rare earth element of m, Yb or Lu, or an element of Sc or Y, or a mixture thereof, and C = n 1
La + n 2 Ce + n 3 Pr + n 4 Nd + n 5 Pm + n 6 Sm
+ N 7 Eu + n 8 Gd + n 9 Tb + n 10 Dy + n 11 Ho +
n 12 Er + n 13 Tm + n 14 Yb + n 15 Lu + n 16 Sc +
n 17 Y, provided that n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 +
n 8 + n 9 + n 10 + n 11 + n 12 + n 13 + n 14 + n 15 + n 16
+ N 17 = 1,0 ≦ n 1 ≦ 1,0 ≦ n 2 ≦ 1,0 ≦ n 3
1,0 ≤ n 4 ≤ 1, 0 ≤ n 5 ≤ 1, 0 ≤ n 6 ≤ 1, 0 ≤ n 7
≤1,0 ≤n 8 ≤1,0 ≤n 9 ≤1,0 ≤n 10 ≤1,0≤
n 11 ≤1,0 ≤n 12 ≤1,0 ≤n 13 ≤1,0 ≤n 14
1,0 ≦ n 15 ≦ 1,0 ≦ n 16 ≦ 1,0 ≦ n 17 ≦ 1, further x + y + z = 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦
The multi-layered oxide thin film according to claim 1, which is 1).
【請求項4】 常圧安定相と高圧安定相の組成を実現可
能な原料で常圧安定相薄膜をエピタキシャル成長により
堆積する工程、前記常圧安定相薄膜と同じまたは類似の
結晶構造を有し、異なる組成の膜を組成を周期的に変え
てエピタキシャル成長により高圧安定相薄膜まで複数堆
積する工程を含むことを特徴とする多層構造酸化物薄膜
の製造方法。
4. A step of depositing a normal pressure stable phase thin film by epitaxial growth using a raw material capable of realizing a composition of a normal pressure stable phase and a high pressure stable phase, having the same or similar crystal structure as the normal pressure stable phase thin film, A method for producing a multi-layered oxide thin film, comprising a step of depositing a plurality of high-pressure stable phase thin films by epitaxial growth while periodically changing the composition of different compositions.
【請求項5】 エピタキシャル成長させる薄膜の組成
は、一般式 (A1-xx1-yCuO2 (ここでA、BはそれぞれMg,Sr,Ca,Baいず
れかのアルカリ土類元素、あるいはそれらが混合した物
であり、A,B=kMg+lSr+mCa+nBa、た
だしk+l+m+n=1,0≦k≦1,0≦l≦1,0
≦m≦1,0≦n≦1)であり、堆積する膜の組成を0
≦x≦1,0≦y≦1の間で逐次周期的に変化させなが
らエピタキシャル成長させ超格子構造を作ることを特徴
とする請求項4記載の多層構造酸化物薄膜の製造方法。
5. The composition of the thin film to be epitaxially grown is represented by the general formula (A 1-x B x ) 1-y CuO 2 (wherein A and B are alkaline earth elements of Mg, Sr, Ca and Ba, respectively, Alternatively, they are a mixture thereof, and A and B = kMg + 1lsr + mCa + nBa, provided that k + l + m + n = 1,0 ≦ k ≦ 1,0 ≦ l ≦ 1,0
≦ m ≦ 1,0 ≦ n ≦ 1), and the composition of the deposited film is 0
The method for producing a multi-layered oxide thin film according to claim 4, wherein a superlattice structure is formed by epitaxial growth while sequentially and periodically changing between ≤x≤1, 0≤y≤1.
【請求項6】 積層した複数の膜の組成は、一般式 (AxByCz)CuO2 (ここでA、BはそれぞれMg,Sr,Ca,Baいず
れかのアルカリ土類元素、あるいはそれらが混合した物
であり、A,B=kMg+lSr+mCa+nBa、た
だしk+l+m+n=1,0≦k≦1,0≦l≦1,0
≦m≦1,0≦n≦1、また、CはLa,Ce,Pr,
Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの希土類あるいはSc,Yのいずれかの
元素、あるいはそれらが混合したものであり、C=n1
La+n2Ce+n3Pr+n4Nd+n5Pm+n6Sm
+n7Eu+n8Gd+n9Tb+n10Dy+n11Ho+
12Er+n13Tm+n14Yb+n15Lu+n16Sc+
17Y、ただしn1+n2+n3+n4+n5+n6+n7
8+n9+n10+n11+n12+n13+n14+n15+n16
+n17=1,0≦n1≦1,0≦n2≦1,0≦n3
1,0≦n4≦1,0≦n5≦1,0≦n6≦1,0≦n7
≦1,0≦n8≦1,0≦n9≦1,0≦n10≦1,0≦
11≦1,0≦n12≦1,0≦n13≦1,0≦n14
1,0≦n15≦1,0≦n16≦1,0≦n17≦1、さら
にx+y+z=1,0≦x≦1,0≦y≦1,0≦z≦
1)であり、堆積する膜の組成を0≦x≦1,0≦y≦
1,0≦z≦1の間で逐次周期的に変化させながらエピ
タキシャル成長させ超格子構造を作ることを特徴とする
多層構造酸化物薄膜の製造方法。
6. The composition of a plurality of laminated films is represented by the general formula (AxByCz) CuO 2 (where A and B are each an alkaline earth element of Mg, Sr, Ca or Ba, or a mixture thereof). And A, B = kMg + 1lsr + mCa + nBa, where k + l + m + n = 1,0 ≦ k ≦ 1,0 ≦ l ≦ 1,0
≦ m ≦ 1, 0 ≦ n ≦ 1, and C is La, Ce, Pr,
Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, T
A rare earth element of m, Yb or Lu, or an element of Sc or Y, or a mixture thereof, and C = n 1
La + n 2 Ce + n 3 Pr + n 4 Nd + n 5 Pm + n 6 Sm
+ N 7 Eu + n 8 Gd + n 9 Tb + n 10 Dy + n 11 Ho +
n 12 Er + n 13 Tm + n 14 Yb + n 15 Lu + n 16 Sc +
n 17 Y, provided that n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 +
n 8 + n 9 + n 10 + n 11 + n 12 + n 13 + n 14 + n 15 + n 16
+ N 17 = 1,0 ≦ n 1 ≦ 1,0 ≦ n 2 ≦ 1,0 ≦ n 3
1,0 ≤ n 4 ≤ 1, 0 ≤ n 5 ≤ 1, 0 ≤ n 6 ≤ 1, 0 ≤ n 7
≤1,0 ≤n 8 ≤1,0 ≤n 9 ≤1,0 ≤n 10 ≤1,0≤
n 11 ≤1,0 ≤n 12 ≤1,0 ≤n 13 ≤1,0 ≤n 14
1,0 ≤ n 15 ≤ 1, 0 ≤ n 16 ≤ 1, 0 ≤ n 17 ≤ 1, further x + y + z = 1,0 ≤ x ≤ 1,0 ≤ y ≤ 1, 0 ≤ z ≤
1), and the composition of the deposited film is 0 ≦ x ≦ 1, 0 ≦ y ≦
1. A method for producing a multi-layered oxide thin film, which comprises epitaxially growing while sequentially and periodically changing between 1,0 ≦ z ≦ 1 to form a superlattice structure.
JP5043223A 1993-02-08 1993-02-08 Oxide thin film laminate having multilayered structure and its production Pending JPH06234520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043223A JPH06234520A (en) 1993-02-08 1993-02-08 Oxide thin film laminate having multilayered structure and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043223A JPH06234520A (en) 1993-02-08 1993-02-08 Oxide thin film laminate having multilayered structure and its production

Publications (1)

Publication Number Publication Date
JPH06234520A true JPH06234520A (en) 1994-08-23

Family

ID=12657920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043223A Pending JPH06234520A (en) 1993-02-08 1993-02-08 Oxide thin film laminate having multilayered structure and its production

Country Status (1)

Country Link
JP (1) JPH06234520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084126A (en) * 2007-10-02 2009-04-23 Fujifilm Corp Perovskite-oxide lamination, piezoelectric device, and liquid discharge device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084126A (en) * 2007-10-02 2009-04-23 Fujifilm Corp Perovskite-oxide lamination, piezoelectric device, and liquid discharge device

Similar Documents

Publication Publication Date Title
大里齊 Research and development of microwave dielectric ceramics for wireless communications
Norton Synthesis and properties of epitaxial electronic oxide thin-film materials
Christen et al. The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices
US5032568A (en) Deposition of superconducting thick films by spray inductively coupled plasma method
EP0426570B1 (en) Process and system for preparing a superconducting thin film of oxide
Mercey et al. Thin film deposition: a novel synthetic route to new materials
EP0406126B2 (en) Substrate having a superconductor layer
JP2933225B2 (en) Metal oxide material
US5361720A (en) Epitaxial deposition
JPH06234520A (en) Oxide thin film laminate having multilayered structure and its production
JP2950422B2 (en) Metal oxide material
JPS63242532A (en) Super conductor and its manufacture
EP0372808B1 (en) Process for preparing a perovskite type superconductor film
US5340793A (en) Layer-by-layer process for forming Bi -containing oxide superconducting films
JP3579690B2 (en) A method and apparatus for producing a composite oxide thin film and a composite oxide thin film produced by the method.
JPH06263440A (en) Thin oxide film and its production
US5244873A (en) Process for preparing a thin film of bi-type oxide superconductor
EP0412986B1 (en) Epitaxial deposition
EP0329103B2 (en) Process for manufacturing thin film of high-Tc superconducting oxide
JPS63236794A (en) Production of superconductive thin film of oxide
EP0412007A2 (en) Process for preparing superconducting thin films
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH05301715A (en) Oxide superconductor, and production of oxide thin film
JPH06316415A (en) Thin oxide superconductor film
JP2003059352A (en) High-temperature superconductor film having flat surface