JPH06234445A - Conveying method and conveying line for band-shaped object - Google Patents

Conveying method and conveying line for band-shaped object

Info

Publication number
JPH06234445A
JPH06234445A JP1996993A JP1996993A JPH06234445A JP H06234445 A JPH06234445 A JP H06234445A JP 1996993 A JP1996993 A JP 1996993A JP 1996993 A JP1996993 A JP 1996993A JP H06234445 A JPH06234445 A JP H06234445A
Authority
JP
Japan
Prior art keywords
displacement
magnetic field
conveying
amount
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1996993A
Other languages
Japanese (ja)
Inventor
Tomohide Kamiyama
山 知 英 神
Hiroyuki Uchida
田 裕 之 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1996993A priority Critical patent/JPH06234445A/en
Publication of JPH06234445A publication Critical patent/JPH06234445A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Advancing Webs (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

PURPOSE:To achieve stably conveying and high speed conveying a magnetic material band- shaped object by controlling conveying vertical directional displacement and conveying width directional displacement from magnetic field intensity in accordance with the vertical directional displacement from a conveying pass line and from an electrifying amount in accordance with the width directional displacement from the center of a band-shaped object supporter and the magnetic field intensity. CONSTITUTION:A displacement amount in a vertical direction of a magnetic material band- shaped object during conveyance is measured by a displacement meter 5 and fed to a compensating circuit 11 as a voltage signal. In the compensating circuit 11, the signal is compensation calculated and fed to an arithmetic circuit 13 as a voltage signal. Next in the arithmetic circuit 13, an electrifying quantity to an electromagnet 3a is obtained. A current value determined by calculation is conducted to the electromagnet 3a, and attracting force by a magnetic field is generated to suppress displacement of the band-shaped object. Next in a width direction, a displaced amount detected by displacement meters 4a, 4b is fed to a compensating circuit 12 as a voltage signal. In an arithmetic circuit 14, width direction generated electromagnetic force is calculated from a voltage signal of width directional displacement and calculated flux density, and electromagnetic force in an opposite direction to the displacement is generated to suppress the displacement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属薄板等の磁性を有
する帯状物を連続的に処理する設備における搬送方法及
び搬送ラインに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carrying method and a carrying line in equipment for continuously treating magnetic strips such as thin metal plates.

【0002】[0002]

【従来の技術】一般に金属帯状物搬送ライン、例えば熱
処理工程における鋼帯搬送ラインおいては、搬送時の鋼
帯の幅方向位置変動により鋼帯が炉壁に接触して破断し
たり、支持ロールからのロールアウトが発生する。ま
た、垂直方向位置変動に伴い、メッキなどの表面処理工
程においては亜鉛等の付着量が不均一になるといった問
題が発生する。
2. Description of the Related Art Generally, in a metal strip conveying line, for example, a steel strip conveying line in a heat treatment process, the steel strip comes into contact with a furnace wall and breaks due to a change in the widthwise position of the steel strip during conveyance, or a supporting roll. Rollout from the. In addition, the problem of non-uniform deposition of zinc or the like occurs in the surface treatment process such as plating due to the vertical position variation.

【0003】このような問題を解決するため搬送幅方向
の変動制御装置としては、特開平3−297753号公
報のように、鋼帯への通電及び鋼帯に流れる電流の方向
と直交する向きに鋼帯に磁界をかけこれにより発生する
電磁力で鋼帯のずれを防止する、非接触式の位置制御方
法が提案されている。
As a fluctuation control device in the conveying width direction for solving such a problem, as disclosed in Japanese Patent Laid-Open No. 3-297753, there is a direction orthogonal to the direction of the current passing through the steel strip and the current flowing through the steel strip. A non-contact type position control method has been proposed in which a magnetic field is applied to a steel strip to prevent the steel strip from being displaced by an electromagnetic force generated thereby.

【0004】また、搬送方向に垂直な方向の変動制御装
置としては、特開昭51−62107号公報に開示され
たものがある。その概要を図4に示す。これにおいて
は、帯状物1に長手方向に配列したノズル6a,6bよ
り帯状物1にジェット気流7を吹付け、該ジェット気流
の表裏の強さを変えて帯状物1を波形に変形させながら
搬送することで、帯状物の垂直方向変動を抑制する。
Further, as a fluctuation control device in a direction perpendicular to the carrying direction, there is one disclosed in Japanese Patent Laid-Open No. 51-62107. The outline is shown in FIG. In this case, a jet stream 7 is blown onto the strip 1 from nozzles 6a and 6b arranged in the strip 1 in the longitudinal direction, and the strip 1 is conveyed while being deformed into a waveform by changing the strength of the front and back of the jet stream. By doing so, vertical fluctuations of the band-shaped material are suppressed.

【0005】[0005]

【発明が解決しようとする課題】このように帯状物を搬
送するラインにおいては、帯状物を許容範囲内で安定し
て搬送させるために、搬送方向と垂直な方向(帯状物の
表面に垂直が方向)及び幅方向の変動を制御する必要が
ある。
Thus, in the line for conveying the belt-like material as described above, in order to stably convey the belt-like material within the allowable range, a direction perpendicular to the conveying direction (perpendicular to the surface of the belt-like material is It is necessary to control the variation in the direction) and the width direction.

【0006】前記特開平3−297753号公報の変動
制御装置では、搬送方向と垂直な方向の位置制御を行っ
ていないために、被搬送物が鋼帯など磁性を有する帯状
物の場合には、それが電磁石に吸着して搬送不可能とな
る可能性がある。
In the fluctuation control device disclosed in Japanese Patent Laid-Open No. 3-297753, since the position control in the direction perpendicular to the carrying direction is not performed, when the transported object is a magnetic strip such as a steel strip, There is a possibility that it will be attracted to the electromagnet and it will become impossible to carry it.

【0007】また、前記特開昭51−62107号公報
の変動制御装置では、帯状物に可圧縮性流体を吹付ける
ので、帯状物の高周波数の垂直変動には追従できず、更
に変動を大きくする危険性もある。
Further, in the fluctuation control device disclosed in Japanese Patent Laid-Open No. 51-62107, since a compressible fluid is sprayed on the band-shaped material, it is not possible to follow the vertical fluctuation of the band-shaped material at a high frequency, and the fluctuation is further increased. There is also a risk of

【0008】本発明は、磁性を有する金属帯状物の、搬
送方向と垂直な方向のずれと幅方向のずれを抑制するこ
とを第1の目的とし、該金属帯状物の比較的に高速の振
動的なこれらのずれを効果的に抑制することを第2の目
的とする。
A first object of the present invention is to suppress the deviation of the magnetic metal strip in the direction perpendicular to the conveying direction and the deviation in the width direction thereof, and the vibration of the metal strip at a relatively high speed. A second object is to effectively suppress these deviations.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1)磁性を有する金属帯状物を搬送する方法におい
て、搬送パスラインからの垂直方向変位量に応じた磁界
強度を演算する工程と、帯状物支持装置の中心からの幅
方向変位量及び該磁界強度に応じた通電量を演算する工
程からなり、搬送垂直方向変位及び搬送幅方向変位を制
御する事を特徴とする搬送方法。
(1) In a method for transporting a magnetic metal strip, a step of calculating a magnetic field strength according to a vertical displacement amount from a transport path line, a widthwise displacement amount from a center of the strip supporting device, and the magnetic field A conveyance method comprising a step of calculating an energization amount according to strength and controlling a conveyance vertical direction displacement and a conveyance width direction displacement.

【0010】(2)磁性を有する金属帯状物を搬送する
装置において、搬送パスラインからの垂直方向変位量に
応じた磁界強度を付与する2つの通電装置を搬送パスラ
インからの距離が互い違いとなるように配置し、且つ電
磁石と前後の通電装置間に搬送平面垂直方向の変位計と
搬送平面幅方向の変位計を有する事を特徴とする搬送ラ
イン。
(2) In a device for transporting a metal strip having magnetism, the distances from the transport path line are different between the two current-carrying devices that apply magnetic field strength according to the amount of vertical displacement from the transport path line. And a displacement line in the direction perpendicular to the plane of conveyance and a displacement gauge in the direction of the width of the plane of conveyance are arranged between the electromagnets and the front and rear energizing devices.

【0011】(3)連続した2種以上の磁性材帯状物を
搬送する方法において、搬送パスラインからの垂直方向
変位量と、該異種材料固有の透磁率に対応した係数補正
より磁界強度を演算する工程と、帯状物支持装置の中心
からの幅方向変位量及び該磁界強度に応じた通電量を演
算する工程からなり、搬送垂直方向変位及び搬送幅方向
変位を制御する事を特徴とする搬送方法。
(3) In the method of transporting two or more continuous magnetic material strips, the magnetic field strength is calculated from the vertical displacement from the transport path line and the coefficient correction corresponding to the magnetic permeability peculiar to the different materials. And a step of calculating a widthwise displacement amount from the center of the belt-shaped object supporting device and an energization amount according to the magnetic field strength, and the conveyance vertical direction displacement and the conveyance widthwise displacement are controlled. Method.

【0012】[0012]

【作用】上記構成とした時の各装置の作用及び制御フロ
ーについて、本発明を一態様で実施する搬送ラインの概
要を示す図1,図1に示す電磁石3a,3bと磁性を有
する金属帯状物1の横断面を示す図2、及び、電磁石3
a,3bの通電電流および支持ロ−ル2a/2b間の金
属帯状物1の通電電流を制御する電流制御装置10の概
要を示す図3に基づいて説明する。
With regard to the operation and control flow of each device in the above-mentioned configuration, the outline of the carrying line for carrying out the present invention in one mode is shown, and the electromagnets 3a and 3b shown in FIGS. 2 showing a cross section of FIG. 1 and the electromagnet 3
An explanation will be given based on FIG. 3 showing an outline of a current control device 10 for controlling the energization currents of a and 3b and the energization current of the metal strip 1 between the support rolls 2a / 2b.

【0013】図1において、1は磁性材帯状物、2a,
2bは帯状物支持装置兼通電装置である支持ロ−ル、3
a,3bは電磁石であり、帯状物1を挟んだ構造とし、
図2の様に搬送パスラインからの距離が互い違いとなる
ように配置されている。ここで、図2中のオフセット量
aであるが、帯状物1の垂直方向の許容ずれ量<a/2
<電磁石のギャップ量/2の範囲内とする。また、この
設置位置であるが、通電用支持ロ−ル2aと2bの間で
あればよい。5は搬送垂直方向変位計、4a,4bは幅
方向変位計であり、設置位置は通電用支持ロ−ル2aと
2bの間で且つ電磁石3a,3bの近傍であればよい。
In FIG. 1, reference numeral 1 is a magnetic material strip, 2a,
2b is a support roll which is also a belt-shaped object supporting device and a current-carrying device.
a and 3b are electromagnets having a structure in which the strip 1 is sandwiched,
As shown in FIG. 2, they are arranged so that the distances from the transport path lines are staggered. Here, the offset amount a in FIG. 2 is the allowable deviation amount of the strip 1 in the vertical direction <a / 2.
<The range of the electromagnet gap amount / 2 is set. Although it is at this installation position, it may be between the energizing support rolls 2a and 2b. Reference numeral 5 is a vertical displacement gauge for conveyance, and 4a and 4b are widthwise displacement gauges, and the installation position may be between the energization support rolls 2a and 2b and in the vicinity of the electromagnets 3a and 3b.

【0014】図1には、竪型搬送ラインを示すが、磁性
材帯状物を取り扱うラインであれば横型搬送ラインでも
適用可能であり、搬送ライン条件に制限はない。
FIG. 1 shows a vertical transfer line, but a horizontal transfer line can be applied as long as it is a line for handling magnetic material strips, and the transfer line conditions are not limited.

【0015】尚、ずれ量を検知する変位計は、例えば幅
方向については投受光器方式、垂直方向についてはレー
ザー式といった既存方式で適用可能である。
A displacement meter for detecting the amount of deviation can be applied by an existing method such as a light emitting and receiving method in the width direction and a laser method in the vertical direction.

【0016】次に動作についてであるが、例えば図2の
様に搬送中の磁性材帯状物1が搬送パスラインVLから
上方に、且つ帯状物支持装置中心ラインHLから右にず
れて走行した場合の制御方法について、図2および図3
に基づき以下に述べる。
Next, regarding the operation, for example, when the magnetic material strip 1 which is being transported travels upward from the transport path line VL and rightward from the strip support device center line HL as shown in FIG. 2 and FIG.
Based on the following.

【0017】まず、垂直方向の変位量ΔCを変位計5に
て測定し、電圧信号として補償回路11に送る。補償回
路11内では(1)式及び(2)式で表現される関数に
基づいた補償演算をシリアルに行い、その結果を更に電
圧信号として演算回路13に送る。
First, the displacement amount ΔC in the vertical direction is measured by the displacement meter 5 and sent to the compensation circuit 11 as a voltage signal. In the compensation circuit 11, compensation calculation based on the functions expressed by the equations (1) and (2) is serially performed, and the result is further sent to the arithmetic circuit 13 as a voltage signal.

【0018】[0018]

【数1】 [Equation 1]

【0019】次に演算回路13内において、位相補償回
路からの出力信号e0 及び初期設定ギャップ量Cに変位
量ΔCを加算した信号とから(3)式により電磁石3a
への通電量を求める。
Next, in the arithmetic circuit 13, from the output signal e 0 from the phase compensation circuit and the signal obtained by adding the displacement amount ΔC to the initial setting gap amount C, the electromagnet 3a is calculated by the equation (3).
Calculate the amount of electricity supplied to.

【0020】[0020]

【数2】 [Equation 2]

【0021】(3)式での演算にて決定した電流値iを
電磁石3aに通電し、磁界による吸引力を発生させて帯
状物の変位を抑制する。その際、発生する磁束密度と通
電量との関係を(5)式にて、また磁束密度と吸引力と
の関係を(6)式にて表現する。また、発生した吸引力
による帯状物の変位応答は(7)式にて近似表現でき
る。
The current value i determined by the calculation of the equation (3) is applied to the electromagnet 3a to generate an attractive force by the magnetic field to suppress the displacement of the belt-like material. At that time, the relationship between the generated magnetic flux density and the energization amount is expressed by the expression (5), and the relationship between the magnetic flux density and the attractive force is expressed by the expression (6). Further, the displacement response of the band-shaped object due to the generated suction force can be approximately expressed by the equation (7).

【0022】[0022]

【数3】 [Equation 3]

【0023】ここで、垂直方向減衰係数cは空気の粘性
抵抗であり、ほぼゼロと見なす。バネ定数k1 は帯状物
の搬送張力により作用する変位抵抗係数である。以上が
垂直方向の帯状物変位抑制フローである。
Here, the vertical damping coefficient c is the viscous resistance of air and is assumed to be substantially zero. The spring constant k 1 is a displacement resistance coefficient that acts by the transport tension of the strip. The above is the flow for suppressing the displacement of the strip in the vertical direction.

【0024】次に搬送幅方向については、まず垂直方向
同様に変位計4a,4bにて検出したずれ量ΔLを電圧
信号として補償回路12に送る。補償回路12内では
(2)式と同様の関数に基づいた補償演算を行い、その
結果を更に電圧信号e3 として演算回路14に送る。
Next, in the conveyance width direction, first, similarly to the vertical direction, the deviation amount ΔL detected by the displacement gauges 4a and 4b is sent to the compensation circuit 12 as a voltage signal. Compensation calculation is performed in the compensation circuit 12 based on the function similar to the equation (2), and the result is further sent to the calculation circuit 14 as the voltage signal e 3 .

【0025】演算回路14内では幅方向変位量の電圧信
号e3 と(5)式で演算した磁束密度とから(8)式に
基づき幅方向発生電磁力を演算し、変位と反対方向の電
磁力を発生させて帯状物の変位を抑制する。また、発生
した電磁力による帯状物1の変位応答は(9)式にて近
似表現できる。
In the arithmetic circuit 14, the electromagnetic force generated in the width direction is calculated based on the equation (8) from the voltage signal e 3 of the displacement amount in the width direction and the magnetic flux density calculated by the equation (5), and the electromagnetic force in the direction opposite to the displacement is calculated. A force is generated to suppress the displacement of the strip. Further, the displacement response of the strip 1 due to the generated electromagnetic force can be approximately expressed by the equation (9).

【0026】[0026]

【数4】 [Equation 4]

【0027】ここで、水平方向減衰係数c2 は通電用支
持ロ−ル2a,2b間の距離が短い場合にはロ−ル2
a,2bと帯状物1との摩擦係数であり、通電用支持ロ
−ル2a,2b間の距離が長い場合には空気の粘性抵抗
でありほぼゼロと見なす。バネ定数k2 は帯状物1の搬
送張力及び水平方向剛性により決まる変位抵抗係数であ
る。以上が幅方向の帯状物変位抑制フローであり、垂直
方向変位抑制フローとパラレルに実行する事で帯状物1
の垂直および幅方向の変位を同時に抑制する。
Here, the horizontal damping coefficient c 2 is the roll 2 when the distance between the energizing support rolls 2a and 2b is short.
a, 2b and the band-shaped material 1, and when the distance between the energizing support rolls 2a, 2b is long, it is the viscous resistance of air and is considered to be almost zero. The spring constant k 2 is a displacement resistance coefficient determined by the conveyance tension of the strip 1 and the rigidity in the horizontal direction. The above is the band-shaped material displacement suppression flow in the width direction.
The vertical and widthwise displacement of is suppressed simultaneously.

【0028】ここで図2において垂直方向で下方(図
2;図1では右方)にずれた場合には電磁石3bにより
磁界を発生し、幅方向左(図2)にずれた場合には帯状
物1への通電方向を逆向きにすればよい。すなわち帯状
物1への通電方向は、ずれ方向に対応して該ずれを矯正
する方向とする。
Here, in FIG. 2, a magnetic field is generated by the electromagnet 3b when it is displaced vertically downward (FIG. 2; right in FIG. 1), and when it is displaced leftward in the width direction (FIG. 2), it is strip-shaped. It suffices to reverse the energization direction to the object 1. That is, the energization direction to the strip 1 is a direction that corrects the deviation corresponding to the deviation direction.

【0029】更に、連続した2種以上の磁性材帯状物を
連続処理する場合には、円算回路13内において(6)
式中の透磁率μ1 、(7)及び(9)式中のm,c2
1,k2 及び(8)式中のbに応じた係数補正を行
い、必要電磁力を発生する事で材料によらず挙動制御が
可能となる。
Furthermore, in the case of continuously treating two or more kinds of continuous magnetic material strips, in the circle calculation circuit 13, (6)
Permeability μ 1 in the formula, m, c 2 in the formulas (7) and (9),
By performing coefficient correction according to k 1 , k 2 and b in the equation (8) and generating the required electromagnetic force, the behavior control can be performed regardless of the material.

【0030】[0030]

【実施例】本発明の実施例を以下に示す。図1に示した
配列の装置を使用して、幅370mm,厚み0.1mmのSUS430薄
板を走行させて制御を行った。尚、張力は0.1kg/mm2
で走行速度は10mpmとし、電磁石として、ギャップ300m
m,鉄芯径120mm,コイルの巻数400ターンおよび電気抵
抗2Ωの電磁石3a,3bを用い、双方の電磁石のオフ
セット量aは60mmとした。
EXAMPLES Examples of the present invention are shown below. Using the arrangement shown in FIG. 1, a SUS430 thin plate having a width of 370 mm and a thickness of 0.1 mm was run for control. The tension is 0.1 kg / mm 2
The running speed is 10 mpm, and the electromagnet has a gap of 300 m.
m, an iron core diameter of 120 mm, a coil winding number of 400 turns, and electromagnets 3a and 3b having an electric resistance of 2Ω were used, and the offset amount a of both electromagnets was set to 60 mm.

【0031】また、薄板への通電装置(2a,2b)と
して、カーボン材質のロールを使用し、ロール間の距離
は5mとした。幅方向の変位計4a,4bは投受光器
式、垂直方向の変位計5はレーザー式のものを使用し
た。
Rolls made of carbon material were used as the current-carrying devices (2a, 2b) for the thin plates, and the distance between the rolls was 5 m. The displacement gauges 4a and 4b in the width direction are of a light emitting and receiving type, and the displacement gauge 5 in the vertical direction is of a laser type.

【0032】演算回路内で使用する各係数について帯状
物1の質量mは0.148kgであり、バネ定数k1 ,k2
及びc2 は事前に測定した結果それぞれ2.7,2.9,0.2
であった。
For each coefficient used in the arithmetic circuit, the mass m of the strip 1 is 0.148 kg, and the spring constants k 1 , k 2 ,
And c 2 are 2.7, 2.9 and 0.2, respectively, as a result of measurement in advance.
Met.

【0033】また、補償回路11,12内の各係数につ
いては(1)〜(9)式を伝達関数表現し、ステップ状
の外乱変動を与えた場合の応答性を事前に数値計算した
上で変動抑制可能な範囲に選定した。以上の方式により
帯状物1を実際に搬送させた時の制御結果例を図5およ
び6に示す。
For each coefficient in the compensation circuits 11 and 12, equations (1) to (9) are expressed as a transfer function, and the responsiveness when a step-like disturbance fluctuation is given is numerically calculated in advance. The range was selected so that fluctuation could be suppressed. 5 and 6 show examples of control results when the strip 1 is actually conveyed by the above method.

【0034】図5は垂直方向の変位量チャートであり、
図6は幅方向の変位量チャートである。垂直および幅方
向共に、制御スタートとほぼ同時に変位を抑制すること
ができた。
FIG. 5 is a vertical displacement chart.
FIG. 6 is a displacement amount chart in the width direction. In both the vertical and width directions, the displacement could be suppressed almost at the same time as the control start.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、磁
性材状搬送物に磁界をかけて搬送垂直方向の変動を制御
し、更にその状態で帯状物に通電し、該磁界との相互作
用で発生する電磁力により搬送幅方向変動も同時に制御
することができる。
As described above, according to the present invention, a magnetic field is applied to a magnetic material-like conveyed product to control fluctuations in the conveying vertical direction, and in that state, the belt-like material is energized to generate a magnetic field. The electromagnetic force generated by the interaction can simultaneously control the fluctuation in the conveyance width direction.

【0036】従って、磁性材帯状物を安定搬送すること
ができ、搬送許容域からのはみ出しによるライン休止,
復旧のロス減少が図られ、高速搬送が実現できる等の効
果があり、磁性材帯状物の搬送方法、搬送ラインとして
好適である。
Therefore, it is possible to stably convey the magnetic material strip, and the line is stopped due to the protrusion from the permissible conveyance area.
It has effects such as reduction of restoration loss, high-speed transportation, and the like, and is suitable as a transportation method and transportation line for magnetic material strips.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を一態様で実施する帯状物搬送ライン
の外観を示す斜視図である。
FIG. 1 is a perspective view showing an appearance of a belt-like material conveying line for carrying out the present invention in one aspect.

【図2】 図1に示す電磁石3a,3bと帯状物1の横
断面を示す拡大断面図である。
FIG. 2 is an enlarged sectional view showing a cross section of the electromagnets 3a and 3b and the strip 1 shown in FIG.

【図3】 図1に示す電磁石3a,3b等に接続された
電流制御装置10の構成を示すブロック図である。
3 is a block diagram showing a configuration of a current control device 10 connected to the electromagnets 3a and 3b shown in FIG.

【図4】 従来の1つの帯状物位置制御装置の概要を示
す縦断面図である。
FIG. 4 is a longitudinal sectional view showing an outline of one conventional belt position control device.

【図5】 本発明による帯状物搬送制御を実施している
とき、垂直方向位置設定値(目標位置)をステップ状に
変化させたときの、帯状物の垂直方向位置変化を示すグ
ラフである。
FIG. 5 is a graph showing a vertical position change of the belt-shaped object when the vertical position setting value (target position) is changed stepwise while the belt-shaped object transfer control according to the present invention is performed.

【図6】 本発明による帯状物搬送制御を実施している
とき、幅方向位置設定値(目標位置)をステップ状に変
化させたときの、帯状物の幅方向位置変化を示すグラフ
である。
FIG. 6 is a graph showing a change in the width direction position of the band when the width direction position set value (target position) is changed stepwise when the band transfer control according to the present invention is performed.

【符号の説明】[Explanation of symbols]

1:磁性材帯状物 2a,2b:通
状物通電用支持ロ−ル 3a,3b:電磁石 4:幅方向変位
計 5a,5b:垂直方向変位計 6a,6b:ノ
ズル 7:ジェット気流
1: Magnetic material band-shaped material 2a, 2b: Support roller for energizing a through-hole material 3a, 3b: Electromagnet 4: Width direction displacement meter 5a, 5b: Vertical direction displacement meter 6a, 6b: Nozzle 7: Jet air flow

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁性を有する金属帯状物を搬送する方法に
おいて、搬送パスラインからの垂直方向変位量に応じた
磁界強度を演算する工程と、帯状物支持装置の中心から
の幅方向変位量及び該磁界強度に応じた通電量を演算す
る工程からなり、搬送垂直方向変位及び搬送幅方向変位
を制御する事を特徴とする搬送方法。
1. A method of transporting a metal strip having magnetism, the step of calculating a magnetic field strength according to a vertical displacement amount from a transport path line, a widthwise displacement amount from a center of a strip supporting device, and A conveyance method comprising a step of calculating an energization amount according to the magnetic field strength, wherein the conveyance vertical direction displacement and the conveyance width direction displacement are controlled.
【請求項2】磁性を有する金属帯状物を搬送する装置に
おいて、搬送パスラインからの垂直方向変位量に応じた
磁界強度を付与する2つの電磁石を搬送パスラインから
の距離が互い違いとなるように配置し、且つ帯状物支持
装置の中心からの幅方向変位量と該磁界強度に応じた電
流を付与する通電装置、前後の通電装置間に搬送平面垂
直方向の変位計と搬送平面幅方向の変位計を有する事を
特徴とする搬送ライン。
2. In a device for transporting a magnetic metal strip, two electromagnets that impart magnetic field strength according to a vertical displacement amount from a transport path line are arranged such that the distances from the transport path line are staggered. An energizing device that is arranged and applies a current in accordance with the amount of displacement in the width direction from the center of the belt supporting device and the magnetic field strength. A transportation line characterized by having a meter.
【請求項3】連続した2種以上の磁性材帯状物を搬送す
る方法において、搬送パスラインからの垂直方向変位置
と、該異種材料固有の透磁率に対応した係数補正より磁
界強度を演算する工程と、帯状物支持装置の中心からの
幅方向変位量及び該磁界強度に応じた通電量を演算する
工程からなり、搬送垂直方向変位及び搬送幅方向変位を
制御する事を特徴とする搬送方法。
3. A method of transporting two or more continuous magnetic material strips, wherein the magnetic field strength is calculated from the vertical displacement from the transport path line and coefficient correction corresponding to the magnetic permeability peculiar to the different materials. And a step of calculating a widthwise displacement amount from the center of the belt supporting device and an energization amount according to the magnetic field strength, wherein the conveyance vertical direction displacement and the conveyance widthwise displacement are controlled. .
JP1996993A 1993-02-08 1993-02-08 Conveying method and conveying line for band-shaped object Withdrawn JPH06234445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1996993A JPH06234445A (en) 1993-02-08 1993-02-08 Conveying method and conveying line for band-shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1996993A JPH06234445A (en) 1993-02-08 1993-02-08 Conveying method and conveying line for band-shaped object

Publications (1)

Publication Number Publication Date
JPH06234445A true JPH06234445A (en) 1994-08-23

Family

ID=12014025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1996993A Withdrawn JPH06234445A (en) 1993-02-08 1993-02-08 Conveying method and conveying line for band-shaped object

Country Status (1)

Country Link
JP (1) JPH06234445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10738828B2 (en) 2015-06-09 2020-08-11 Novelis Inc. Non-contact magnetic steering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10738828B2 (en) 2015-06-09 2020-08-11 Novelis Inc. Non-contact magnetic steering
US11125271B2 (en) 2015-06-09 2021-09-21 Novelis Inc. Non-contact magnetic steering

Similar Documents

Publication Publication Date Title
JP2009500520A (en) Device and method for controlling thickness
KR101997790B1 (en) Metal strip stabilization apparatus and method for manufacturing hot-dipped metal strip using same
KR101774073B1 (en) Electromagnetic vibration suppression device and computer-readable storage medium having electromagnetic vibration suppression control program
US20130319326A1 (en) Electromagnetic device for stabilizing and reducing the deformation of a strip made of ferromagnetic material, and related process
KR20070102599A (en) Method and device for the hot dip coating of a metal strip
KR102490948B1 (en) Induction heating method for metal strip and induction heating system
US20110217481A1 (en) Electromagnetic strip stabilizer
JPH06234445A (en) Conveying method and conveying line for band-shaped object
RU2329332C2 (en) Method and device for application of coating on metal item by immersion in melt
JPH1053849A (en) Method for preventing meandering of hot dipped steel strip
JPH11100651A (en) Continuous hot dip metal coating device
JP2991922B2 (en) Metal strip support device
JP2004124191A (en) Device for damping vibration of metal strip, and method for manufacturing metal strip
JP3482024B2 (en) Steel plate shape control and vibration control device
TWI617701B (en) Stability device for metal belt and method for manufacturing hot dip metal strip
JP2849528B2 (en) Hot dip galvanizing equipment for steel strip
US3928657A (en) Strip shape correction on galvanising line
JP2011183438A (en) Device for vibration damping and position straightening of metallic strip and method of manufacturing hot-dipped metallic strip using the same device
JPS62168566A (en) Method and device for coating steel plate
JP2941569B2 (en) Non-contact vibration suppression device for steel plate
JPH05245523A (en) Damping device of steel sheet
JPH10273764A (en) Method for controlling coating weight of continuous hot dip metal coating line and device therefor
JP2528503Y2 (en) Continuous magnetometer
JPH0664806A (en) Vibration damping device for steel strip
JPH10183319A (en) Method and device for non-contact support of belt like magnetic body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509