JPH06234084A - Titanium clad stainless steel composite material - Google Patents

Titanium clad stainless steel composite material

Info

Publication number
JPH06234084A
JPH06234084A JP2140593A JP2140593A JPH06234084A JP H06234084 A JPH06234084 A JP H06234084A JP 2140593 A JP2140593 A JP 2140593A JP 2140593 A JP2140593 A JP 2140593A JP H06234084 A JPH06234084 A JP H06234084A
Authority
JP
Japan
Prior art keywords
titanium
stainless steel
composite material
clad stainless
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2140593A
Other languages
Japanese (ja)
Inventor
Hideaki Yamagishi
英明 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAKI KOGYO KK
Original Assignee
YAMAKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAKI KOGYO KK filed Critical YAMAKI KOGYO KK
Priority to JP2140593A priority Critical patent/JPH06234084A/en
Publication of JPH06234084A publication Critical patent/JPH06234084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To produce the titanium clad stainless steel composite material having high joint strength of a cladding metal and a base metal and excellent hot rollability by joining titanium which is the cladding metal and a stainless steel which is a base metal by an explosive welding method and joining an excess metal to the titanium layer side. CONSTITUTION:The titanium (pure titanium, corrosion resistant alloy titanium, etc., having a thickness of about 1/5 to 1/20 the thickness of the base metal) which is the clean cladding metal having smooth surfaces and the stainless steel (austenitic steel of about <=0.08wt.% carbon content) which is the base metal are joined by the explosive welding method. The excess metal (ordinary steel, etc., having about 10mu remaining thickness at the end of the rolling) is joined to the titanium layer side of the stainless steel slab. The titanium clad stainless steel composite material having the excellent hot rollability is thus obtd. and the production of a steel plate having excellent corrosion resistance and heat resistance is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延性に優れたチ
タンクラッドステンレス複合材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium clad stainless composite material having excellent hot rolling property.

【0002】[0002]

【従来の技術】チタンは耐候性、耐食性に非常に優れた
金属である。日本は、海に囲まれており、従って、湿度
も高く、環境変化に伴なう金属の腐食は、資源の減少、
又、腐食による外観の見苦しさなど社会資源の大きな損
失にも繋がるものである。
2. Description of the Related Art Titanium is a metal having excellent weather resistance and corrosion resistance. Japan is surrounded by the sea, so the humidity is high, and the corrosion of metals associated with environmental changes reduces resource consumption.
It also leads to a great loss of social resources such as unsightly appearance due to corrosion.

【0003】このため耐食性が良く、軽量で強度にも優
れ、塗装などの表面処理など行わなくてよい、いわゆる
メンテナンスフリーの金属材料であるチタンが屋根材、
外壁材をはじめとして各種の外装材として使用されつつ
あるが、高価格で汎用材料としては採用されていないの
が現状である。一方、ステンレス鋼はコスト的には有利
であるが、チタンに比して耐食性、耐久性が不充分で、
特に長期寿命の求められる外装材としては不適である。
Therefore, titanium, which is a so-called maintenance-free metal material having good corrosion resistance, light weight and excellent strength and requiring no surface treatment such as painting, is used as a roof material,
Although it is being used as various exterior materials including outer wall materials, it is currently not used as a general-purpose material because of its high price. On the other hand, although stainless steel is advantageous in terms of cost, it has insufficient corrosion resistance and durability compared to titanium,
In particular, it is not suitable as an exterior material that requires a long life.

【0004】このような問題を解決するために、チタン
を合わせ材として、母材であるステンレス鋼に接合した
複合鋼板が提案されている。例えば、合わせ材のチタン
をポリエステル系接着剤により母材のステンレス鋼に接
合した複合鋼板が提供されている。しかしながら、この
複合鋼板にあっては、合わせ材と母材の熱膨張率が異な
るために経年変化によりずれが生じたり、又、経時変化
により接着力の劣化が生じたり、更には合わせ材、母材
の曲げ応力が異なることにより、曲げ加工が難しく、溶
接加工が不可能であるという問題があった。
In order to solve such a problem, a composite steel sheet has been proposed in which titanium is used as a joining material and joined to stainless steel as a base material. For example, there is provided a composite steel sheet in which titanium, which is a laminated material, is joined to stainless steel, which is a base material, by a polyester adhesive. However, in this composite steel sheet, the coefficient of thermal expansion of the base material and the base material are different from each other, which causes a shift due to aging, or deterioration of the adhesive force due to aging. Due to the different bending stress of the material, there is a problem that bending is difficult and welding is impossible.

【0005】このため、爆着法によりチタンクラッド鋼
材を製造する方法が考えられ、この方法によれば、合わ
せ材と母材の接合界面が冷間で瞬時に形成されるので、
炭化物や窒化物あるいは層状のTi−Fe系金属化合物
が形成されず、清浄な境界を有し、接合強度が大きい複
合材が提供される。この爆着スラブは界面近傍部の硬度
分布がなだらかなので、以降の熱延、冷延作業条件が幅
広く設定可能で製造条件の範囲が広くなり、用途に応じ
た材質確保のための熱延及び冷延条件の設定の自由度が
大きく、品質的に優れた特性を確保できる。
Therefore, a method of producing a titanium clad steel material by the explosive deposition method is conceivable. According to this method, the joint interface between the laminated material and the base material is instantly formed in a cold state.
It is possible to provide a composite material in which a carbide, a nitride, or a layered Ti—Fe-based metal compound is not formed, has clean boundaries, and has a high bonding strength. Since this explosive slab has a gentle hardness distribution in the vicinity of the interface, the subsequent hot rolling and cold rolling working conditions can be set broadly and the range of manufacturing conditions is widened. The degree of freedom in setting the spreading conditions is great, and excellent quality characteristics can be secured.

【0006】更に、合せ材と母材との界面に生成する金
属間化合物や脆化層による接合強度の低下を回避する方
法として、母材、金属中間層、合わせ材のサンドイッチ
構成により脆化層の形成を抑制し、圧延する方法(特開
昭60−170586号)とか、チタンと母材との間に
接合中間材を介在させ、且つ接合中間材とチタンとの間
隔を規定することにより接合中間材によりチタンと母材
との金属間化合物の生成を回避して圧延する方法(特開
昭63−56370号)、又、チタンにFe系薄金属を
爆着し、このものと母材でコンポジットスラブを組立て
熱間圧延する方法(特開平2−295682号)が提案
されている。
Further, as a method of avoiding a decrease in bonding strength due to an intermetallic compound or an embrittlement layer formed at the interface between the base material and the base material, a brittle layer is formed by sandwiching the base material, the metal intermediate layer and the base material. Of forming a joint by interposing a joining intermediate material between titanium and a base material and defining a gap between the joining intermediate material and titanium. A method of rolling by avoiding the formation of an intermetallic compound of titanium and a base metal by an intermediate material (Japanese Patent Laid-Open No. 63-56370), or an explosive Fe-based thin metal deposited on titanium, and this material and the base material. A method of assembling a composite slab and hot rolling (Japanese Patent Laid-Open No. 2-295682) has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
ようなサンドイッチ構成であれば、材料費が嵩むだけな
く、生産性が低く、しかも真空中や減圧下で圧延するこ
とになり、装置的、経済的にも負担が大となるものであ
った。又、ステンレス鋼の中でも耐食性の良好なオース
テナイト系ステンレス鋼板の熱間圧延時の温度は、溶体
化温度以上でないと変形抵抗が高すぎて熱延が非常に困
難になるため、約1100℃以上で行われるのが好まし
い。又、チタンにあっても熱間圧延温度は変態点(約8
80℃)以上が好ましいが、酸化雰囲気下では厚くて硬
い酸化膜が生成してしまう。この酸化膜は下部の酸素含
有硬化層まで含めると、厚さは数100μmにも達して
高価なチタンの損失になるだけでなく、この酸化膜は次
の冷間圧延時に破砕されて微小な粉末となり、この粉末
によりチタン表面に無数の細かい疵を形成してしまうと
いう問題があった。
However, with the conventional sandwich construction, not only the material cost is high, but the productivity is low, and moreover, the rolling is carried out in a vacuum or under reduced pressure, which is economical and economical. It was a heavy burden. Further, among the stainless steels, the temperature during hot rolling of austenitic stainless steel sheets having good corrosion resistance is not higher than the solution temperature, the deformation resistance is too high, and hot rolling becomes very difficult. It is preferably carried out. Even with titanium, the hot rolling temperature is
80 ° C.) or higher is preferable, but a thick and hard oxide film is formed in an oxidizing atmosphere. When this oxide film is included in the lower oxygen-containing hardened layer, the thickness reaches several hundreds of μm, resulting in loss of expensive titanium, and this oxide film is crushed during the next cold rolling, resulting in a fine powder. Therefore, this powder has a problem that countless fine flaws are formed on the surface of titanium.

【0008】本発明は上記問題点を解決するためになさ
れたものであり、その目的とするところは、合わせ材と
母材の接合強度が大きく、しかも熱間圧延性に優れたチ
タンクラッドステンレス複合材を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a titanium-clad stainless steel composite having a large joining strength between a laminated material and a base material and excellent hot rolling property. Is to provide wood.

【0009】[0009]

【課題を解決するための手段】本発明の複合材は、合わ
せ材であるチタンと母材であるステンレス鋼とを爆着法
により接合したチタンクラッドステンレススラブのチタ
ン層側に捨て材を接合させて成ることを特徴とするもの
である。
In the composite material of the present invention, a discarded material is joined to the titanium layer side of a titanium clad stainless slab obtained by joining titanium as a joining material and stainless steel as a base material by an explosive deposition method. It is characterized by consisting of.

【0010】[0010]

【作用】爆着法によりスラブを製造するので、接合界面
が冷間で瞬時に形成され、炭化物や窒化物あるいはTi
−Fe系金属間化合物が形成されず、清浄な境界を有
し、接合強度が大きい。又、爆着スラブは界面近傍部の
硬度分布がなだらかなので、圧延時の界面剥離や形状不
良に心配がなく、品質的に優れた特性を確保できる。更
に、爆着スラブ界面には金属間化合物がなく、冶金的に
密着した組織であり、しかもスラブのチタン層側に捨て
材を接合させているので、熱間圧延に際してチタンが捨
て材により保護され、真空中や減圧下で圧延する必要が
なく、大気中で熱間圧延が可能で、装置的、経済的に負
担が小さくてすむだけでなく、熱間圧延の温度条件を変
形抵抗の小さい高温に設定でき、高圧下率を採用でき、
電力費、ロール寿命及びエネルギーの損失がなく、しか
も、酸化や酸素による硬化に伴うチタンの損失がなくコ
スト面で極めて有利となる。
[Operation] Since the slab is manufactured by the explosive deposition method, the joint interface is instantly formed in the cold state, and the carbide, nitride or Ti
-Fe-based intermetallic compounds are not formed, have clean boundaries, and have high bonding strength. Further, since the explosive-bonded slab has a gentle hardness distribution in the vicinity of the interface, there is no concern about interfacial peeling or defective shape during rolling, and excellent quality characteristics can be secured. Furthermore, since there is no intermetallic compound at the interface of the explosive slab and the structure is metallurgically intimately adhered, and the waste material is bonded to the titanium layer side of the slab, titanium is protected by the waste material during hot rolling. Since it does not need to be rolled in vacuum or under reduced pressure, it can be hot-rolled in the atmosphere, and it not only requires a small load economically and economically, but also the temperature condition of hot-rolling is high at low deformation resistance. Can be set to, and high pressure rate can be adopted,
There is no loss of power cost, roll life and energy, and there is no loss of titanium due to oxidation or curing by oxygen, which is extremely advantageous in terms of cost.

【0011】以下、本発明を詳細に説明する。本発明に
あっては、母材はステンレス鋼であり、オーステナイト
鋼、フェライト鋼のいずれでも適用可能であるが、耐食
性に優れるオーステナイト鋼が好ましい。又、ステンレ
ス鋼の炭素含有量は0.08重量%以下であるのが好ま
しい。。0.08重量%を超えるとチタンとの接合界面
に脆化層となる炭化物が形成される傾向にある。
The present invention will be described in detail below. In the present invention, the base material is stainless steel, and any of austenitic steel and ferritic steel can be applied, but austenitic steel having excellent corrosion resistance is preferable. The carbon content of the stainless steel is preferably 0.08% by weight or less. . If it exceeds 0.08% by weight, a carbide that becomes an embrittlement layer tends to be formed at the joint interface with titanium.

【0012】又、合わせ材のチタンは表面が平滑で清浄
なものが採用され、母材よりも縦幅及び横幅が、例えば
50mm程度大きいものが好適である。又、チタンの厚
さは、母材に対して1/5〜1/20が好ましい。1/
5よりも大きいと、高価なチタンの占める割合が大きす
ぎて、クラッド鋼板にしようとする経済的効果がなく、
又、チタンとステンレス鋼の材質特性の差が緩和され
ず、各種の形状の製品に成形加工しがたくなるものであ
る。逆に、1/20よりも小さいと、熱延時とか成形加
工時に、チタンが局部的に破断し、母材のステンレス鋼
が露出する恐れがあり、又、目的とする耐食性、耐久性
の確保が困難になる傾向にある。尚、本発明にあっては
合わせ材のチタンは純チタンだけでなく、耐食合金チタ
ン、α合金チタン、ニアα合金チタン、α−β合金チタ
ン、β合金チタン等のチタン合金も採用できるものであ
る。
Further, the titanium used as the laminating material has a smooth surface and is clean, and it is preferable that the longitudinal width and the lateral width of the base material are larger than those of the base material by, for example, about 50 mm. The thickness of titanium is preferably 1/5 to 1/20 of the base material. 1 /
If it is larger than 5, the ratio of expensive titanium occupies too large, and there is no economic effect to make a clad steel plate.
Further, the difference in material characteristics between titanium and stainless steel is not alleviated, which makes it difficult to form products of various shapes. On the other hand, if it is less than 1/20, titanium may be locally broken during hot rolling or forming, and the base material, stainless steel, may be exposed, and the desired corrosion resistance and durability can be secured. It tends to be difficult. Incidentally, in the present invention, the titanium of the joining material is not limited to pure titanium, and titanium alloys such as corrosion resistant alloy titanium, α alloy titanium, near α alloy titanium, α-β alloy titanium, and β alloy titanium can be adopted. is there.

【0013】次に、本発明にあっては、母材のステンレ
ス鋼と合わせ材のチタンを爆着法により接合するのであ
るが、まず、ステンレス鋼スラブをスカーフィング等で
平滑に仕上げ、且つスケールを除去して母材とする。強
固な界面接合強度を得るためにステンレス鋼スラブと合
わせ材のチタンとは一定の間隙を有するように配置す
る。例えば、1mmである。これを適当な爆速、例えば
2000m/sec以下の爆速を有する爆薬により爆着
する。次いで、爆薬の配置場所にもよるが、合わせ材た
るチタンの周縁部がステンレス鋼スラブ端部よりはみ出
た形状になるので、機械的に切断除去して端面形状の優
れたチタンクラッドステンレススラブを製造する。この
場合、スラブのステンレス鋼とチタン層との間に純鉄
(炭素含有量0.003%以下)又はNiを中間材とし
て挿入してスラブ加熱および熱間圧延時のチタン炭化物
の生成を抑制するようにしてもよい。この中間材の厚み
は1mm以下が好ましく、例えば、スラブを製造する際
に母材たるステンレスと合わせ材たるチタンの間に挟ん
で同時に爆着圧着させればよい。この中間材により、炭
化物が生成しなくなり、金属間化合物はTi−Fe系の
みとなり、接合強度及び耐変形性が著しく向上する。
Next, in the present invention, the base material stainless steel and the joining material titanium are joined by the explosive welding method. First, the stainless steel slab is finished smooth by scarfing and the scale is obtained. Is removed and used as the base material. In order to obtain a strong interfacial bond strength, the stainless steel slab and the titanium of the laminated material are arranged so as to have a constant gap. For example, it is 1 mm. This is detonated by an explosive having an appropriate detonation speed, for example, 2000 m / sec or less. Next, depending on the location of the explosive, the peripheral edge of titanium, which is the composite material, has a shape protruding from the end of the stainless steel slab, so it is mechanically cut and removed to produce a titanium clad stainless slab with excellent end face shape. To do. In this case, pure iron (carbon content 0.003% or less) or Ni is inserted as an intermediate material between the stainless steel and the titanium layer of the slab to suppress the formation of titanium carbide during slab heating and hot rolling. You may do it. The thickness of this intermediate material is preferably 1 mm or less. For example, when manufacturing a slab, it may be sandwiched between stainless steel as a base material and titanium as a combined material and simultaneously subjected to explosive pressure bonding. With this intermediate material, no carbide is generated, and the intermetallic compound is only Ti-Fe system, and the joint strength and the deformation resistance are remarkably improved.

【0014】このチタンクラッドステンレススラブのチ
タン層側に捨て材が接合されて本発明のチタンクラッド
ステンレス複合材が形成されている。本発明の複合材
は、圧延されてチタンクラッドステンレス鋼板が製造さ
れるのであるが、捨て材により、熱間圧延前及び熱間圧
延時のチタンへの酸素侵入による酸化膜及び硬化層の生
成が確実に阻止でき、大気中で熱間圧延できるだけでな
く、チタンの損失がなくなる。従って、ステンレス鋼及
びチタンのいずれも熱間圧延時の変形抵抗が低く、容易
に圧延できる温度、例えばオーステナイト系ステンレス
鋼板にあってはその溶体温度である1100℃以上の圧
延温度を採用できる。捨て材としては、普通鋼とか5%
Cr鋼やSi含有低合金鋼、Mn含有低合金鋼等、ある
いはアルミナ系酸化物、水ガラスのようなシリカ系酸化
物等の酸化物を採用できるが、コスト、除去性及び作業
性の点で普通鋼が好ましい。この捨て材は、例えば、普
通鋼の場合、普通鋼とチタンを爆着法により接合してお
き、この複合材とステンレス鋼を爆着法により接合する
ことにより設けてもよく、又、ステンレス鋼、チタン、
普通鋼を同時に爆着させて設けるようにしてもよく、更
にはチタンの片面に普通鋼をシーム溶接等により接合し
ておき、この複合材とステンレス鋼とを爆着法により接
合するようにして設けてもよい。又、アルミナ系酸化物
の場合は、チタンクラッドステンレススラブのチタン層
側にロール等で塗布し、乾燥して設ければよい。又、捨
て材の厚みは、熱間圧延後に除去を考慮すれば、圧延終
了時に数10μm残存する程度が好ましい。薄すぎると
熱間圧延時下層のチタンが露出して酸化してしまうおそ
れがある。尚、熱間圧延性をさらに向上させるためにス
ラブのチタン層側だけでなく、ステンレス鋼側にも捨て
材を接合させてバランスのよい圧延特性を確保するよう
にしてもよい。
A discarded material is joined to the titanium layer side of this titanium clad stainless slab to form the titanium clad stainless composite material of the present invention. The composite material of the present invention is rolled to produce a titanium clad stainless steel sheet.However, the waste material causes the formation of an oxide film and a hardened layer due to oxygen invasion into titanium before and during hot rolling. Not only can it be reliably prevented and hot rolling can be performed in the atmosphere, but the loss of titanium will be eliminated. Therefore, both stainless steel and titanium have low deformation resistance during hot rolling and can be easily rolled, for example, a rolling temperature of 1100 ° C. or higher, which is the solution temperature of austenitic stainless steel sheets. As discard material, ordinary steel or 5%
Cr steel, Si-containing low alloy steel, Mn-containing low alloy steel, etc., or oxides such as alumina-based oxides and silica-based oxides such as water glass can be adopted, but in terms of cost, removability and workability. Plain steel is preferred. For example, in the case of ordinary steel, this discarded material may be provided by joining ordinary steel and titanium by the explosive deposition method and then joining the composite material and stainless steel by the explosive deposition method. ,Titanium,
Ordinary steel may be provided by explosion-depositing at the same time. Further, ordinary steel is joined to one side of titanium by seam welding or the like, and the composite material and stainless steel are joined by an explosion-deposition method. It may be provided. In the case of an alumina-based oxide, the titanium clad stainless slab may be applied on the titanium layer side with a roll or the like and dried. Further, the thickness of the discarded material is preferably such that several tens of μm remains at the end of rolling in consideration of removal after hot rolling. If it is too thin, the titanium in the lower layer may be exposed and oxidized during hot rolling. In addition, in order to further improve the hot rolling property, not only the titanium layer side of the slab but also the stainless steel side of the slab may be joined with a discard material to ensure a well-balanced rolling property.

【0015】本発明の複合材は、好ましくは1100℃
〜1300℃で1〜5時間加熱し、リバースまたはタン
デム式で数段、例えば5スタンドを使用するパススケジ
ュールで熱間圧延される。この場合、製品板厚を本発明
の複合材の1/20以下(全圧延率95%以上)とする
場合には、熱間圧延だけで所望の板厚を得るのが困難で
あるので、引き続いて冷間圧延が必要となる。
The composite material of the present invention is preferably 1100 ° C.
It is heated at ˜1300 ° C. for 1 to 5 hours and hot-rolled in a reverse or tandem type with several stages, for example, a pass schedule using 5 stands. In this case, when the product sheet thickness is set to 1/20 or less of the composite material of the present invention (total rolling rate 95% or more), it is difficult to obtain a desired sheet thickness only by hot rolling, and therefore it is continued. Cold rolling is required.

【0016】製品板厚が本発明の複合材の1/20以
上、圧延率90〜95%の場合は、冷間圧延は必ずしも
必要でなく、熱間圧延機の能力、製品たる鋼板表面に求
められる平滑さ、鋼板自身の形状によって決められる。
冷間圧延で仕上げた方が、これら特性は良好となるが、
製造コストが上昇するので、適宜選択をすればよい。い
ずれにしても、熱間圧延後、酸化膜を含む捨て材及びス
テンレス鋼上の酸化膜を除去する。この除去は、酸洗法
等の化学的手段あるいは、研削法等の機械的手段を採用
できる。例えば、捨て材として普通鋼を採用した場合
は、硝酸−フッ酸系の酸洗液に浸漬してスケールと共に
除去する。
When the product sheet thickness is 1/20 or more of the composite material of the present invention and the rolling ratio is 90 to 95%, cold rolling is not always necessary, and the ability of the hot rolling mill and the surface of the steel sheet as a product are required. It depends on the smoothness and the shape of the steel plate itself.
These properties are better when finished by cold rolling,
Since the manufacturing cost increases, it may be selected appropriately. In any case, after hot rolling, the waste material containing the oxide film and the oxide film on the stainless steel are removed. For this removal, chemical means such as pickling method or mechanical means such as grinding method can be adopted. For example, when ordinary steel is used as the discard material, it is removed together with the scale by immersing it in a nitric acid-hydrofluoric acid-based pickling solution.

【0017】捨て材をスケールと共に除去した後冷間圧
延を行う。冷間圧延率は製造する製品の板厚によって当
然異なり、パス回数も異なってくるが、変形抵抗差が製
品の反りを生む程大きな冷間圧延率をとる必要がある場
合には、異周速圧延その他上下面でロールと材料間の摩
擦抵抗を変える必要がある。
After removing the discarded material together with the scale, cold rolling is performed. The cold rolling rate naturally varies depending on the plate thickness of the product to be manufactured, and the number of passes also varies, but if it is necessary to take a large cold rolling rate such that the deformation resistance difference causes product warpage, different peripheral speeds are used. It is necessary to change the frictional resistance between the roll and the material between rolling and other upper and lower surfaces.

【0018】この場合、ワークロール自身はできるだけ
小径のロールの方が、圧延率の確保、形状向上、エネル
ギー低減の点で有利である。冷間圧延により鋼板の表面
の平滑さが得られるが、冷間圧延後の鋼板は、用途によ
り焼き鈍し、調質圧延を施してもよい。このようにして
本発明の複合材から製造したチタンクラッドステンレス
鋼板は、耐酸、耐海水、耐腐食性ガス等の耐食性及び耐
熱性に優れる工業材料として、種々の分野に好適に採用
できるものである。
In this case, it is advantageous that the work roll itself has a diameter as small as possible in terms of securing the rolling ratio, improving the shape and reducing energy. Although the smoothness of the surface of the steel sheet is obtained by cold rolling, the steel sheet after cold rolling may be annealed and temper-rolled depending on the application. Thus, the titanium clad stainless steel sheet produced from the composite material of the present invention can be suitably adopted in various fields as an industrial material having excellent corrosion resistance and heat resistance such as acid resistance, seawater resistance, and corrosion resistant gas. .

【0019】次に、本発明を実施例に基づいて具体的に
説明する。以下において成分の割合を示す%は重量%で
ある。 (実施例1)成分がC:0.06%、Si:0.80
%、Mn:1.50%、P:0.03%、S:0.02
%、Ni:8.50%、Cr:18.80%、Fe:B
al.で、厚さ30mm、縦2000mm、横900m
mのオーステナイト系ステンレス鋼スラブをスカーフィ
ングにより平滑に仕上げ、且つスケールを除去して母材
とした。
Next, the present invention will be specifically described based on examples. In the following,% indicating the ratio of components is% by weight. (Example 1) C: 0.06%, Si: 0.80
%, Mn: 1.50%, P: 0.03%, S: 0.02
%, Ni: 8.50%, Cr: 18.80%, Fe: B
al. And, thickness 30mm, length 2000mm, width 900m
The austenitic stainless steel slab of m was finished by smoothing with scarfing, and the scale was removed to obtain a base material.

【0020】次に、合わせ材である厚さ3.0mm、縦
2100mm、横1000mmのJIS第1種の工業用
純チタン板の片面に同じ大きさで厚さ0.5mmの普通
鋼板をシーム溶接で接合し、このものを普通鋼板を上面
にしてステンレス鋼スラブ上に間隔が1mmとなるよう
に配置して、1500m/sec以下の爆速を有する爆
薬により爆着した。
Next, a plain steel plate having the same size and a thickness of 0.5 mm is seam welded to one surface of a JIS type 1 industrial pure titanium plate having a thickness of 3.0 mm, a length of 2100 mm, and a width of 1000 mm, which is a laminated material. These were joined together on a stainless steel slab with the ordinary steel plate as the upper surface so that the interval was 1 mm, and the materials were blasted with an explosive having an explosive velocity of 1500 m / sec or less.

【0021】次いで、合わせ材たるチタン板のステンレ
ス鋼スラブ端部よりはみ出た周縁部を機械的に切断除去
してチタンクラッドステンレス複合材を製造した。 (実施例2)成分がC:0.06%、Si:0.62
%、Mn:0.63%、P:0.03%、S:0.02
%、Cr:17.20%、Fe:Bal.で、厚さ30
mm、縦2000mm、横900mmのフェライト系ス
テンレス鋼スラブを使用した以外は実施例1と同様にし
てチタンクラッドステンレス複合材を製造した。 (実施例3)チタンクラッドステンレススラブをステン
レス鋼スラブとチタン板との間に中間材として0.1m
m厚さの純鉄板を配置して爆着させて製造した以外は、
実施例1と同様にしてチタンクラッドステンレス複合材
を製造した。 (実施例4)チタンクラッドステンレススラブをステン
レス鋼スラブとチタン板との間に中間材として0.1m
m厚さの純度99.9%のNi板を配置して爆着させて
製造した以外は、実施例2と同様にしてチタンクラッド
ステンレス複合材を製造した。 (実施例5)ステンレス鋼スラブの下面に予め同じ大き
さで厚さ0.5mmの普通鋼板をシーム溶接で接合し、
チタン板の上面及びスレンレス鋼スラブの下面に普通鋼
板が溶接した以外は実施例2と同様にしてチタンクラッ
ドステンレス複合材を製造した。 (実施例6)普通鋼の代わりに、フレーク状の200メ
ッシュ以下のアトマイズ粉100重量部とキシレン60
%、フタル酸アルキド樹脂40%に懸濁させたブロンズ
粉80重量部とトルエン100重量部とを混合させてス
ラリー状のアルミナ系酸化物を調製し、このものをチタ
ン板の片面に塗布し、乾燥させて重量20g/m2 の捨
て材を設けた以外は実施例1と同様にしてチタンクラッ
ドステンレス複合材を製造した。 (比較例1)チタン板の片面に普通鋼板を接合しなかっ
た以外は実施例1と同様にしてチタンクラッドステンレ
ス複合材を製造した。 (比較例2)チタン板の片面に普通鋼板を接合しなかっ
た以外は実施例2と同様にしてチタンクラッドステンレ
ス複合材を製造した。次に、このようにして製造したチ
タンクラッドステンレス複合材の熱間圧延性を評価する
ために、以下の如き条件でチタンクラッドステンレス鋼
板を製造した。 (製造例1)実施例1のチタンクラッドステンレス複合
材を1200℃で5時間加熱し、リバース式で1スタン
ドを使用して熱間圧延して、チタンクラッドステンレス
熱延鋼板を得た。圧延率は80%であった。この場合、
普通鋼板及びステンレス鋼板にはスケールの生成が認め
られた。
Then, the titanium clad stainless composite material was manufactured by mechanically cutting and removing the peripheral edge portion of the titanium plate, which was a laminated material, protruding from the end portion of the stainless steel slab. (Example 2) Component C: 0.06%, Si: 0.62
%, Mn: 0.63%, P: 0.03%, S: 0.02
%, Cr: 17.20%, Fe: Bal. And the thickness is 30
A titanium clad stainless composite material was produced in the same manner as in Example 1 except that a ferritic stainless steel slab having a size of 2,000 mm, a length of 2000 mm, and a width of 900 mm was used. (Example 3) A titanium clad stainless slab was used as an intermediate material between a stainless steel slab and a titanium plate in an amount of 0.1 m.
Except that it was manufactured by placing a pure iron plate of m thickness and bombarding it.
A titanium clad stainless composite material was manufactured in the same manner as in Example 1. (Example 4) A titanium clad stainless slab is used as an intermediate material between a stainless steel slab and a titanium plate in an amount of 0.1 m.
A titanium clad stainless composite material was produced in the same manner as in Example 2 except that a Ni plate having a thickness of 99.9% and a purity of 99.9% was placed and bombarded. (Example 5) An ordinary steel plate having the same size and a thickness of 0.5 mm was previously joined to the lower surface of the stainless steel slab by seam welding,
A titanium clad stainless composite material was produced in the same manner as in Example 2 except that the ordinary steel plate was welded to the upper surface of the titanium plate and the lower surface of the stainless steel slab. Example 6 Instead of plain steel, 100 parts by weight of flake-shaped atomized powder of 200 mesh or less and xylene 60
%, 80 parts by weight of bronze powder suspended in 40% of alkyd phthalate resin and 100 parts by weight of toluene are mixed to prepare a slurry-like alumina-based oxide, which is applied to one side of a titanium plate. A titanium-clad stainless composite material was produced in the same manner as in Example 1 except that a waste material having a weight of 20 g / m 2 was provided by drying. (Comparative Example 1) A titanium clad stainless composite material was produced in the same manner as in Example 1 except that the ordinary steel plate was not joined to one surface of the titanium plate. (Comparative Example 2) A titanium clad stainless composite material was produced in the same manner as in Example 2 except that the ordinary steel plate was not joined to one surface of the titanium plate. Next, in order to evaluate the hot rolling property of the titanium-clad stainless steel composite material produced in this way, a titanium-clad stainless steel sheet was produced under the following conditions. (Manufacturing Example 1) The titanium-clad stainless steel composite material of Example 1 was heated at 1200 ° C for 5 hours and hot-rolled by a reverse type using one stand to obtain a titanium-clad stainless steel hot-rolled steel sheet. The rolling rate was 80%. in this case,
The formation of scale was observed on the ordinary steel plate and the stainless steel plate.

【0022】この後、40℃の硝酸、フッ酸の混酸中に
浸漬して、熱間圧延時に生成したスケールと残存してい
る普通鋼層を完全に除去して厚さ6.6mmのチタンク
ラッドステンレス鋼板を製造した。 (製造例2)実施例1のチタンクラッドステンレス複合
材を1250℃で5時間加熱し、熱間圧延率を92%と
した以外は製造例1と同様にして厚さ2.5mmのチタ
ンクラッドステンレス鋼板を製造した。 (製造例3)実施例1のチタンクラッドステンレス複合
材を1250℃で5時間加熱し、リバース式で1スタン
ドを使用して熱間圧延して、チタンクラッドステンレス
熱延鋼板を得た。圧延率は80%であった。この場合、
普通鋼板及びステンレス鋼板にはスケールの生成が認め
られた。
After that, it is dipped in a mixed acid of nitric acid and hydrofluoric acid at 40 ° C. to completely remove the scale produced during hot rolling and the remaining ordinary steel layer to form a titanium clad having a thickness of 6.6 mm. A stainless steel plate was manufactured. (Production Example 2) Titanium-clad stainless steel having a thickness of 2.5 mm was produced in the same manner as in Production Example 1 except that the titanium-clad stainless steel composite material of Example 1 was heated at 1250 ° C. for 5 hours to change the hot rolling rate to 92%. A steel plate was manufactured. (Production Example 3) The titanium-clad stainless steel composite material of Example 1 was heated at 1250 ° C. for 5 hours and hot-rolled in a reverse type using one stand to obtain a titanium-clad stainless steel hot-rolled steel sheet. The rolling rate was 80%. in this case,
The formation of scale was observed on the ordinary steel plate and the stainless steel plate.

【0023】この後、40℃の硝酸、フッ酸の混酸中に
浸漬して、熱間圧延時に生成したスケールと残存してい
る普通鋼層を完全に除去した。この後、6ハイの冷間圧
延機(ワークロール径200mm)2スタンドを使用し
て冷間圧延を行った。圧延油は鉱物油を使用した。圧延
率は80%であった。このようにして全圧延率が96%
で製品厚みが1.3mmのチタンクラッドステンレス鋼
板を製造した。 (製造例4)熱間圧延率を60%とし、冷間圧延率を8
0%とした以外は製造例3と同様にして全圧延率が92
%で製品厚みが2.5mmのチタンクラッドステンレス
鋼板を製造した。 (製造例5)実施例2のチタンクラッドステンレス複合
材を850℃で3時間加熱した以外は製造例4と同様に
して全圧延率が92%で製品厚みが2.5mmのチタン
クラッドステンレス鋼板を製造した。 (製造例6)実施例3のチタンクラッド複合材から製造
例4と同様にして全圧延率が92%で製品厚さが2.6
mmのチタンクラッドステンレス鋼板を製造した。 (製造例7)実施例4のチタンクラッドステンレス複合
材から、製造例5と同様にして全圧延率が92%で製品
厚さが2.6mmのチタンクラッドステンレス鋼板を製
造した。 (製造例8)実施例1のチタンクラッドステンレス複合
材を1120℃で5時間加熱した以外は製造例4と同様
にして全圧延率が92%で製品厚みが2.5mmのチタ
ンクラッドステンレス鋼板を製造した。 (製造例9)実施例1のチタンクラッドステンレス複合
材を980℃で5時間加熱し、熱間圧延率を60%と
し、冷間圧延率を80%とした以外は製造例3と同様に
して全圧延率が92%で製品厚みが2.5mmのチタン
クラッドステンレス鋼板を製造した。 (製造例10)実施例5のチタンクラッドステンレス複
合材から製造例4と同様にして全圧延率が92%で製品
厚みが2.5mmのチタンクラッドステンレス鋼板を製
造した。 (製造例11)実施例6のチタンクラッドステンレス鋼
板から、製造例4と同様にして全圧延率が92%で製品
厚みが2.5mmのチタンクラッドステンレス鋼板を製
造した。 (製造例12)比較例1のチタンクラッドステンス複合
材から、熱間圧延後チタンクラッドステンレス熱延鋼板
の酸洗時間を4倍として両面のスケールを完全に除去し
た以外は、製造例1と同様にして全圧延率が80%で製
品厚さが6.6mmのチタンクラッドステンレス鋼板を
製造した。 (製造例13)比較例2のチタンクラッドステンレス複
合材から、熱間圧延後チタンクラッドステンレス熱延鋼
板の酸洗時間を4倍として両面のスケールを完全に除去
した以外は、製造例2と同様にして全圧延率が92%で
製品厚さが2.5mmのチタンクラッドステンレス鋼板
を製造した。 (製造例14)比較例1のチタンクラッドステンレス複
合材から、熱間圧延後チタンクラッドステンレス熱延鋼
板の酸洗時間を4倍として両面のスケールを完全に除去
した後冷間圧延を行った以外は、製造例4と同様にして
全圧延率が92%で製品厚さが2.3mmのチタンクラ
ッドステンレス鋼板を製造した。 (製造例15)比較例2のチタンクラッドステンレス複
合材から、熱間圧延後チタンクラッドステンレス熱延鋼
板の酸洗時間を4倍として両面のスケールを完全に除去
した後冷間圧延を行った以外は、製造例4と同様にして
全圧延率が92%で製品厚さが2.3mmのチタンクラ
ッドステンレス鋼板を製造した。このようにして製造し
たチタンクラッドステンレス鋼板について以下の品質を
評価した。結果を第2表に示す。 A.外観 外観を目視観察して異常の有無を観察した。
After that, it was immersed in a mixed acid of nitric acid and hydrofluoric acid at 40 ° C. to completely remove the scale produced during hot rolling and the remaining ordinary steel layer. Thereafter, cold rolling was performed using a 6-high cold rolling mill (work roll diameter 200 mm) 2 stands. Mineral oil was used as the rolling oil. The rolling rate was 80%. In this way, the total rolling rate is 96%
A titanium clad stainless steel plate having a product thickness of 1.3 mm was manufactured. (Production Example 4) The hot rolling rate was 60% and the cold rolling rate was 8%.
The total rolling rate was 92 in the same manner as in Production Example 3 except that the content was 0%.
%, A titanium clad stainless steel plate having a product thickness of 2.5 mm was manufactured. (Production Example 5) A titanium-clad stainless steel sheet having a total rolling rate of 92% and a product thickness of 2.5 mm was prepared in the same manner as in Production Example 4 except that the titanium-clad stainless steel composite material of Example 2 was heated at 850 ° C for 3 hours. Manufactured. (Production Example 6) From the titanium-clad composite material of Example 3, as in Production Example 4, the total rolling rate was 92% and the product thickness was 2.6.
mm titanium clad stainless steel plate was produced. (Production Example 7) From the titanium-clad stainless steel composite material of Example 4, a titanium-clad stainless steel sheet having a total rolling ratio of 92% and a product thickness of 2.6 mm was produced in the same manner as in Production Example 5. (Production Example 8) A titanium-clad stainless steel sheet having a total rolling rate of 92% and a product thickness of 2.5 mm was prepared in the same manner as in Production Example 4 except that the titanium-clad stainless steel composite material of Example 1 was heated at 1120 ° C for 5 hours. Manufactured. (Production Example 9) The same procedure as in Production Example 3 was repeated except that the titanium-clad stainless steel composite material of Example 1 was heated at 980 ° C for 5 hours so that the hot rolling rate was 60% and the cold rolling rate was 80%. A titanium clad stainless steel sheet having a total rolling rate of 92% and a product thickness of 2.5 mm was manufactured. (Production Example 10) A titanium-clad stainless steel sheet having a total rolling rate of 92% and a product thickness of 2.5 mm was produced from the titanium-clad stainless steel composite material of Example 5 in the same manner as in Production Example 4. (Production Example 11) A titanium clad stainless steel sheet having a total rolling rate of 92% and a product thickness of 2.5 mm was produced from the titanium clad stainless steel sheet of Example 6 in the same manner as in Production Example 4. (Manufacturing Example 12) Manufacturing Example 1 except that the titanium clad stainless steel composite material of Comparative Example 1 was subjected to pickling time of the hot rolled titanium clad stainless steel 4 times to completely remove the scales on both sides. Similarly, a titanium clad stainless steel sheet having a total rolling rate of 80% and a product thickness of 6.6 mm was manufactured. (Production Example 13) Similar to Production Example 2 except that the pickling time of the hot rolled titanium-clad stainless steel sheet after hot rolling was set to 4 times and the scales on both sides were completely removed from the titanium-clad stainless steel composite material of Comparative Example 2. Then, a titanium clad stainless steel plate having a total rolling rate of 92% and a product thickness of 2.5 mm was manufactured. (Production Example 14) From the titanium-clad stainless composite material of Comparative Example 1, except that the pickling time of the hot-rolled titanium-clad stainless steel sheet after hot rolling was set to 4 times to completely remove the scales on both sides and then cold rolling was performed. In the same manner as in Production Example 4, a titanium clad stainless steel sheet having a total rolling rate of 92% and a product thickness of 2.3 mm was produced. (Production Example 15) From the titanium-clad stainless composite material of Comparative Example 2, except that the pickling time of the hot-rolled titanium-clad stainless steel hot rolled steel sheet was set to 4 times to completely remove the scales on both sides and then cold rolling was performed. In the same manner as in Production Example 4, a titanium clad stainless steel sheet having a total rolling rate of 92% and a product thickness of 2.3 mm was produced. The following qualities were evaluated for the titanium clad stainless steel sheet produced in this manner. The results are shown in Table 2. A. Appearance The appearance was visually observed to see if there were any abnormalities.

【0024】◎:均一な外観 ○:略均一な外観 ×:表面欠陥(荒れ、チタン層のめくれ、ステンレス層
の露出等)が有る場合 B.非接合部の有無 JISG3603に準拠して超音波探傷により非接合部
の有無を調べた。
⊚: Uniform appearance ○: Substantially uniform appearance x: When there are surface defects (roughness, turning of titanium layer, exposure of stainless steel layer, etc.) B. Presence / absence of non-bonded portion The presence / absence of a non-bonded portion was examined by ultrasonic flaw detection according to JIS G3603.

【0025】○:非接合部が認められなかった △:僅かな非接合部が認められた ×:かなりの非接合部が認められた C.接合部における炭化物の有無 JISG3603に準拠して接合部断面を顕微鏡観察
し、炭化物の析出状況を調べた。
◯: No non-bonded part was observed Δ: A slight non-bonded part was recognized ×: Significant non-bonded part was recognized C. Existence of Carbide in Joined Part A cross section of the joined part was observed with a microscope in accordance with JIS G3603 to examine the state of precipitation of carbide.

【0026】◎:全く炭化物の析出が認められなかった ○:極わずかな炭化物の析出が認められた ×:かなりの炭化物の析出が認められた D.剪断強度(kgf/mm2 ) E.曲げ、曲げ戻し試験 合わせ材を上面にしてポンチ(厚さ10×幅30mm)
で押し込んで試料90°の曲げを加え、次いで母材を上
面にしてポンチで押し込み試料を真っ直ぐに戻す。この
過程で母材と合わせ材の接合面に大きな剪断力が作用す
る。剥離状況を目視観察した。
⊚: No precipitation of carbides was observed ◯: Very slight precipitation of carbides was observed ×: Significant precipitation of carbides was observed D. Shear strength (kgf / mm 2 ) E. Bending and bending back test Punch (thickness 10 x width 30 mm) with the laminated material on top
The sample is bent by 90 ° to bend it, and then the base material is placed on the upper surface, and the sample is pushed back with a punch to return the sample straight. In this process, a large shearing force acts on the joint surface between the base material and the laminated material. The peeling condition was visually observed.

【0027】○:剥離なし ×:剥離発生 F.耐食性及び耐久性試験 評価Eで実施した曲げ試験後のサンプルを30日間、7
0℃、5%の塩水へ浸漬して界面部への塩水の浸透及び
それにともなう剥離の進行の有無を観察した。
◯: No peeling ×: Peeling occurred F. Corrosion resistance and durability test The sample after the bending test carried out in Evaluation E was used for 7 days for 7 days.
It was immersed in 5% salt water at 0 ° C., and the presence or absence of permeation of the salt water into the interface and the accompanying peeling was observed.

【0028】○:剥離が認められなかったもの ×:剥離は認められたもの 又、この場合、切断端面等における母材の錆の発生を観
察した。 ○:錆の発生が認められなかった ×:錆の発生が認められた 第1表 製造条件 母材 合せ材 中間材 捨て材 製品 圧延率( %) 種 厚(mm) 厚(mm) 種 厚(mm) 厚(mm) HR CR TR 製造例1 O 30 3 無 Fe 0.5 6.6 80 - 80 2 O 30 3 無 Fe 0.5 2.5 92 - 92 3 O 30 3 無 Fe 0.5 1.3 80 80 96 4 O 30 3 無 Fe 0.5 2.5 60 80 92 5 F 30 3 無 Fe 0.5 2.5 60 80 92 6 O 30 3 有(Fe) Fe 0.5 2.6 60 80 92 7 F 30 3 有(Ni) Fe 0.5 2.6 60 80 92 8 O 30 3 無 Fe 0.5 2.5 60 80 92 9 O 30 3 無 Fe 0.5 2.5 60 80 92 10 O 30 3 無 Fe 0.5 2.5 60 80 92 11 O 30 3 無 Al2o3 0.5 2.5 60 80 92 12 O 30 3 無 無 6.4 80 - 80 13 O 30 3 無 無 2.3 92 - 92 14 O 30 3 無 無 1.1 80 80 96 15 F 30 3 無 無 2.3 60 80 92 第2表 品質評価試験 外観 非接合部 炭化物 剪断強度 曲げ試験 浸漬試験 剥離 錆 製造例1 ○ ○ ○ 30 ○ ○ ○ 2 ○ ○ ○ 33 ○ ○ ○ 3 ◎ ○ ○ 42 ○ ○ ○ 4 ◎ ○ ○ 39 ○ ○ ○ 5 ◎ ○ ○ 37 ○ ○ × 6 ◎ ○ ○ 48 ○ ○ ○ 7 ◎ ○ ○ 43 ○ ○ × 8 ◎ ○ ○ 43 ○ ○ ○ 9 ◎ ○ ○ 36 ○ ○ ○ 10 ◎ ○ ○ 43 ○ ○ ○ 11 ○ ○ ○ 43 ○ ○ ○ 12 × × ○ 20 × × ○ 13 × × ○ 22 × × ○ 14 × △ ○ 25 × × ○ 15 × △ ○ 25 × × × 第2表の結果より、実施例の複合材から製造したチタン
クラッドステンレス鋼板は、高温での熱間圧延にも拘わ
らず、捨て材によりチタンの酸化が防止されて均一で美
麗な外観を有していた。特に、製造例10にあっては、
複合材のステンレス鋼スラブの下面にも捨て材を設けて
いたので、チタン表面だけでなく、ステンレス鋼表面の
外観も極めて美麗であった。又、炭化物の生成もなく、
接合強度が大きく、特に、製造例6及び7にあっては、
非接合部が全く形成されなく、接合強度が非常に大きな
ものとなっている。又、製造例4、5並びに製造例6、
7から明らかなように熱間圧延温度が高い程接合強度が
大きくなる傾向にある。このように本発明の実施例の複
合材から製造したチタンクラッドステンレス鋼板にあっ
ては、全ての品質に優れ、屋根材、壁材等の外装材とし
て好適に採用できることが判る。
◯: No peeling was observed ×: Peeling was observed Also, in this case, the occurrence of rust on the base material on the cut end face was observed.
I guessed. ◯: No rust was found ×: Rust was found Table 1 Manufacturing conditions  Base material Laminated material Intermediate material Discarded material Product Rolling rate (%) Seed Thickness (mm) Thickness (mm) Seed Thickness (mm) Thickness (mm) HR CR TR Production Example 1 O 30 3 None Fe 0.5 6.6 80-80 2 O 30 3 None Fe 0.5 2.5 92-92 3 O 30 3 None Fe 0.5 1.3 80 80 96 4 O 30 3 None Fe 0.5 2.5 60 80 92 5 F 30 3 No Fe 0.5 2.5 60 80 92 6 O 30 3 Yes (Fe) Fe 0.5 2.6 60 80 92 7 F 30 3 Yes (Ni) Fe 0.5 2.6 60 80 92 8 O 30 3 No Fe 0.5 2.5 60 80 92 9 O 30 3 No Fe 0.5 2.5 60 80 92 10 O 30 3 No Fe 0.5 2.5 60 80 92 11 O 30 3 None Al 2 o 3 0.5 2.5 60 80 92 12 O 30 3 No No 6.4 80-80 13 O 30 3 No No 2.3 92-92 14 O 30 3 No No 1.1 80 80 96 15 F 30 3 None None 2.3 60 80 92 Table 2 Quality evaluation test  Appearance Non-bonded part Carbide Shear strength Bending test Immersion testPeeling rust Production example 1 ○ ○ ○ 30 ○ ○ ○ 2 ○ ○ ○ 33 ○ ○ ○ 3 ◎ ○ ○ 42 ○ ○ ○ 4 ◎ ○ ○ 39 ○ ○ ○ 5 5 ◎ ○ ○ 37 ○ ○ × 6 ◎ ○ ○ 48 ○ ○ ○ 7 ◎ ○ ○ 43 ○ ○ × 8 ◎ ○ ○ 43 ○ ○ ○ 9 ◎ ○ ○ 36 ○ ○ ○ 10 ◎ ○ ○ 43 ○ ○ ○11 ○ ○ ○ 43 ○ ○ ○ 12 × × ○ 20 × × ○ 13 × × ○ 22 × × ○ 14 × △ ○ 25 × × ○15 × △ ○ 25 × × × From the results of Table 2, titanium produced from the composite material of the example
Clad stainless steel sheet is also concerned with hot rolling at high temperature.
Instead, the discarded material prevents the titanium from oxidizing and is uniform and beautiful.
It had a beautiful appearance. Especially in Production Example 10,
Put a scrap material on the bottom of the composite stainless steel slab
Therefore, not only the titanium surface but also the stainless steel surface
The appearance was also very beautiful. Also, there is no formation of carbides,
The bonding strength is large, and particularly in Production Examples 6 and 7,
Non-bonded part is not formed at all, and the bonding strength is very high.
It has become a thing. In addition, Production Examples 4 and 5 and Production Example 6,
As is clear from Fig. 7, the higher the hot rolling temperature, the stronger the bonding strength.
Tends to grow. As described above, according to the embodiment of the present invention,
There is a titanium clad stainless steel plate manufactured from
Is excellent in all qualities and can be used as exterior materials such as roofing materials and wall materials.
It can be seen that it can be suitably adopted.

【0029】これに対して、比較例の複合材から製造し
たチタンクラッドステンレス鋼板にあっては、チタン表
面に荒れが認められた。これは、高温での熱間圧延によ
り生成した酸化膜が原因であり、特に、製造例14及び
15にあっては、酸化膜が冷間圧延により破砕され、チ
タン表面に無数の疵を形成させていた。又、これら製造
例のものにあっては、非接合部が存在し、従って、剪断
強度が低く、曲げ試験及び浸漬試験において剥離がみら
れたのは、熱間圧延時に生成する酸化膜は硬いが不均一
なため圧延荷重が接合界面に伝達されにくいためである
と考えられる。又、この酸化膜の生成により、第1表か
ら明らかなように製品厚が実施例の複合材から製造した
ものよりも小さくなり、チタンが損失してしまっている
ことが判る。
On the other hand, in the titanium clad stainless steel sheet manufactured from the composite material of the comparative example, the titanium surface was found to be rough. This is due to the oxide film formed by hot rolling at a high temperature, and particularly in Production Examples 14 and 15, the oxide film was crushed by cold rolling to form innumerable flaws on the titanium surface. Was there. Further, in these production examples, there is a non-bonded portion, and therefore, the shear strength is low, and peeling was observed in the bending test and the dipping test, because the oxide film formed during hot rolling is hard. It is considered that this is because the rolling load is less likely to be transmitted to the bonding interface due to the non-uniformity. Further, it is found that due to the formation of this oxide film, the product thickness becomes smaller than that manufactured from the composite material of the example as shown in Table 1, and titanium is lost.

【0030】[0030]

【発明の効果】本発明にあっては、爆着法により合わせ
材と母材の接合界面が冷間で瞬時に形成されるので、炭
化物や窒化物あるいは層状のTi−Fe系金属化合物が
形成されず、清浄な境界を有し、接合強度が大きくな
る。又、爆着スラブは界面近傍部の硬度分布がなだらか
なので、圧延時の界面剥離や形状不良に心配がなく、品
質的に優れた特性を確保できる。又、爆着スラブ界面に
は金属間化合物がなく、冶金的に密着した組織であり、
しかもスラブのチタン層側に捨て材を接合させているの
で、熱間圧延するに際してチタンが捨て材により保護さ
れ、真空中や減圧下で圧延する必要がなく、大気中で熱
間圧延が可能で、装置的、経済的に負担が小さくてすむ
だけでなく、熱間圧延の温度条件を変形抵抗の小さい高
温に設定でき、高圧下率を採用でき、電力費、ロール寿
命及びエネルギーの損失がなく、しかも、酸化や酸素に
よる硬化に伴うチタンの損失がなくコスト面で極めて有
利となる。
According to the present invention, since the joining interface between the laminated material and the base material is instantly formed in a cold state by the explosive deposition method, a carbide or a nitride or a layered Ti-Fe based metal compound is formed. However, it has a clean boundary and the bonding strength is increased. Further, since the explosive-bonded slab has a gentle hardness distribution in the vicinity of the interface, there is no concern about interfacial peeling or defective shape during rolling, and excellent quality characteristics can be secured. In addition, there is no intermetallic compound at the interface of the blast slab, and the structure is metallurgically adhered.
Moreover, since the discarded material is joined to the titanium layer side of the slab, titanium is protected by the discarded material during hot rolling, and there is no need to roll in vacuum or under reduced pressure, and hot rolling can be performed in the atmosphere. In addition to being economically and economically burdensome, the hot rolling temperature condition can be set to a high temperature with low deformation resistance, a high pressure reduction ratio can be adopted, and there is no loss of power cost, roll life or energy. Moreover, there is no loss of titanium due to oxidation or curing by oxygen, which is extremely advantageous in terms of cost.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】合わせ材であるチタンと母材であるステン
レス鋼とを爆着法により接合したチタンクラッドステン
レススラブのチタン層側に捨て材を接合させて成ること
を特徴とするチタンクラッドステンレス複合材。
1. A titanium-clad stainless steel composite comprising a titanium-clad stainless slab, which is formed by joining explosive-bonding titanium as a joining material and stainless steel as a base material, and a waste material is joined to the titanium layer side. Material.
【請求項2】ステンレス鋼とチタン層の間に中間材層を
介在させて成ることを特徴とする請求項1記載のチタン
クラッドステンレス複合材。
2. The titanium clad stainless composite material according to claim 1, wherein an intermediate material layer is interposed between the stainless steel and the titanium layer.
【請求項3】捨て材をチタンクラッドステンレススラブ
のステンレス鋼側にも接合させて成ることを特徴とする
請求項1又は2記載のチタンクラッドステンレス複合
材。
3. The titanium-clad stainless composite material according to claim 1, wherein the discarded material is also joined to the stainless steel side of the titanium-clad stainless slab.
【請求項4】捨て材が普通鋼であることを特徴とする請
求項1、2又は3記載のチタンクラッドステンレス複合
材。
4. The titanium-clad stainless composite material according to claim 1, 2 or 3, wherein the discarded material is ordinary steel.
JP2140593A 1993-02-09 1993-02-09 Titanium clad stainless steel composite material Pending JPH06234084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140593A JPH06234084A (en) 1993-02-09 1993-02-09 Titanium clad stainless steel composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140593A JPH06234084A (en) 1993-02-09 1993-02-09 Titanium clad stainless steel composite material

Publications (1)

Publication Number Publication Date
JPH06234084A true JPH06234084A (en) 1994-08-23

Family

ID=12054141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140593A Pending JPH06234084A (en) 1993-02-09 1993-02-09 Titanium clad stainless steel composite material

Country Status (1)

Country Link
JP (1) JPH06234084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough
CN102602073A (en) * 2012-03-09 2012-07-25 王泽红 Explosive composite plate with metal foil and steel plate and method for manufacturing explosive composite plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough
CN102602073A (en) * 2012-03-09 2012-07-25 王泽红 Explosive composite plate with metal foil and steel plate and method for manufacturing explosive composite plate

Similar Documents

Publication Publication Date Title
JPH06234083A (en) Titanium clad stainless steel plate and its production
EP0813907A2 (en) Metal foil material and a method of making it
AU2005322594A2 (en) Clad alloy substrates and method for making same
KR20030062340A (en) Composite aluminium sheet and method of manufacture
AU761334B2 (en) Steel band with good forming properties and method for producing same
WO2019097729A1 (en) Al-PLATED WELDED PIPE FOR HARDENING, Al-PLATED HOLLOW MEMBER, AND PRODUCTION METHOD THEREFOR
EP1365910B1 (en) Method of manufacturing metallic composite material
JPH06269961A (en) Production of composite material
EP0926751A3 (en) Method of making clad materials using lead alloys and composite strips made by such method
JP2022535056A (en) Method for manufacturing sheet metal components from flat steel products with corrosion protection coating
JPH06234084A (en) Titanium clad stainless steel composite material
JPH0716604A (en) Titanium-clad steel sheet and its manufacture
JP7425372B2 (en) steel plate
US3489618A (en) Hot rolling explosion-bonded stainless steel/carbon steel clads
JP3168930B2 (en) Method for producing copper-stainless steel clad plate
JPH0716766A (en) Ti clad steel
JP3256360B2 (en) Ni alloy clad stainless steel sheet
JP3079973B2 (en) Aluminum alloy and stainless steel clad plate and method for producing the same
JPH07224358A (en) Superstainless steel clad stainless steel sheet
US3326647A (en) Rolled carbon steel clad with stainless steel
JPH06226469A (en) Titanium clad stainless steel sheet
JPH08174239A (en) Production of ni alloy clad stainless steel sheet
JP3376842B2 (en) Steel plate excellent in laser cutting property and method for producing the same
JPS6350113B2 (en)
TWI626093B (en) Titanium composite and titanium for hot rolling

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010306