JPH0623368A - Method of suppressing contamination of living organism - Google Patents

Method of suppressing contamination of living organism

Info

Publication number
JPH0623368A
JPH0623368A JP4148023A JP14802392A JPH0623368A JP H0623368 A JPH0623368 A JP H0623368A JP 4148023 A JP4148023 A JP 4148023A JP 14802392 A JP14802392 A JP 14802392A JP H0623368 A JPH0623368 A JP H0623368A
Authority
JP
Japan
Prior art keywords
microorganisms
growth
aqueous system
phthalaldehyde
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4148023A
Other languages
Japanese (ja)
Inventor
Alan B Theis
アラン、ベル、ティース
Jonathan Leder
ジョナサン、レーダー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Chemicals and Plastics Technology LLC
Original Assignee
Union Carbide Chemicals and Plastics Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Chemicals and Plastics Technology LLC filed Critical Union Carbide Chemicals and Plastics Technology LLC
Publication of JPH0623368A publication Critical patent/JPH0623368A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/605Compositions for stimulating production by acting on the underground formation containing biocides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/04Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aldehyde or keto groups, or thio analogues thereof, directly attached to an aromatic ring system, e.g. acetophenone; Derivatives thereof, e.g. acetals
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/02Agents for preventing deposition on the paper mill equipment, e.g. pitch or slime control
    • D21H21/04Slime-control agents

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paper (AREA)
  • Saccharide Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Steroid Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Display Devices Of Pinball Game Machines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

A method for controlling biofouling in aqueous environments which comprises providing ortho-phthalaldehyde to aqueous systems susceptible to biofouling.. The method of the invention is particularly well suited for use in industrial cooling water systems, paper manufacture and in secondary oil recovery processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の分野】本発明は水処理、パルプ及び紙の製造な
らびに油田水攻法を包含する種々の応用における生物汚
れ(biofouling)の抑制方法に関する。更に詳しくは本発
明はオルト−フタルアルデヒドによる生物汚れの抑制方
法に関する。
FIELD OF THE INVENTION The present invention relates to a method for controlling biofouling in a variety of applications including water treatment, pulp and paper manufacturing and oilfield flooding. More specifically, the present invention relates to a method for controlling biofouling by ortho-phthalaldehyde.

【0002】[0002]

【発明の背景】生物汚れとは水性環境中に沈められた実
質的に任意の表面上における微生物析出物又は生物膜(b
iofilm) の形成をいう。産業系統の広い分野において生
物膜は望ましくなく、かつ重大な損害をもたらすことが
ある。冷却水系において生物膜は熱伝達率を減少させ、
配管及び熱交換器の管を汚し、液のポンプ輸送に対し有
意に増大された摩擦抵抗及び高度のエネルギー必要量を
もたらす。含油累層の水攻法を包含する二次石油採取(s
econdary oil recovery)において生物膜は石油担持累層
(oil−bearing formation)を詰まらせることがある。或
種の細菌生物膜の成長に関連する酸の生成から強度の腐
食が生ずることもまた知られている。これらの細菌生物
膜は水中において、屡々には石油及び天然ガスの存在下
に嫌気的に成長する硫酸塩還元菌より成る。
BACKGROUND OF THE INVENTION Biological soils are microbial deposits or biofilms (b) on virtually any surface submerged in an aqueous environment.
iofilm) formation. Biofilms are undesired and can cause serious damage in a wide range of industrial systems. In cooling water systems, biofilms reduce the heat transfer coefficient,
Contamination of the tubing and heat exchanger tubing results in significantly increased frictional resistance to liquid pumping and high energy requirements. Secondary oil extraction including waterflooding of oil-bearing formation (s
biofilm is an oil-bearing formation in econdary oil recovery)
(Oil-bearing formation) may be blocked. It is also known that severe corrosion results from the formation of acids associated with the growth of certain bacterial biofilms. These bacterial biofilms consist of sulfate-reducing bacteria that grow anaerobically in water, often in the presence of oil and natural gas.

【0003】生物膜は藻類、キノコならびに好気性菌及
び嫌気性菌の両方を包含する任意の形態の微生物を含有
することができる。生物膜は通常にはこれらの微生物以
外に該生物膜を捕食(predation) 及び毒素から保護する
細胞外高分子物質を含有する。これらの高分子物質は透
過性を制限するので生物膜に含有され、又は付着される
微生物〔固着微生物(sessile microorganisms)〕は屡々
には水層中に懸濁又は浮遊している微生物(プランクト
ン性微生物)よりも化学殺生物剤により殺すことが有意
に、より一層困難である。
Biofilms can contain any form of microorganisms, including algae, mushrooms and both aerobic and anaerobic fungi. In addition to these microorganisms, biofilms usually contain extracellular polymeric substances that protect the biofilm from predation and toxins. These macromolecular substances limit the permeability and therefore the microorganisms (sessile microorganisms) contained in or attached to the biofilm are often microorganisms suspended or suspended in the aqueous layer (planktonic properties). It is significantly more difficult to kill with chemical biocides than microorganisms).

【0004】プランクトン性微生物を殺すことのできる
広範囲の殺生物剤が文献に引用されている。例えば米国
特許第4,297,224 号明細書を参照すべきである。それら
殺生物剤は塩素、臭素、二酸化塩素、クロロイソシアヌ
レート及びハロゲン含有ヒダントインのような酸化殺生
物剤を包含する。それら殺生物剤はまた第四級アンモニ
ア化合物、イソチアゾロン、アルデヒド、パラベン及び
有機硫黄化合物のような非酸化殺生物剤をも包含する。
A wide range of biocides capable of killing planktonic microorganisms are cited in the literature. See, eg, US Pat. No. 4,297,224. The biocides include oxidative biocides such as chlorine, bromine, chlorine dioxide, chloroisocyanurate and halogen containing hydantoins. The biocides also include non-oxidizing biocides such as quaternary ammonia compounds, isothiazolones, aldehydes, parabens and organic sulfur compounds.

【0005】慣例的には上記殺生物剤は例えば冷却水塔
及び低温殺菌器のような循環水系におけるプランクトン
性微生物を殺すのに使用されて来た。最近まで固着微生
物に対する殺生物効果の通常的監視は殆んど行われなか
った。最近の研究は広く使用されている多種の殺生物剤
は固着微生物に対しては比較的に無効であることを報告
している。例えば Materials Performace、第49〜53頁
(1988年)のCosterton らのBacterial Biofilms in Re
lation to Internal Corrosion Monitoring and Biocid
e Strategiesを参照すべきである。
Traditionally, the above biocides have been used to kill planktonic microorganisms in circulating water systems such as cooling water towers and pasteurizers. Until recently, little routine monitoring of biocidal efficacy against sessile microorganisms has been done. Recent studies have reported that various widely used biocides are relatively ineffective against sessile microorganisms. Bacterial Biofilms in Re by Costerton et al., Materials Performace, pp. 49-53 (1988).
lation to Internal Corrosion Monitoring and Biocid
You should refer to e Strategies.

【0006】わずかに2〜3種の非酸化殺生物剤が、設
定された生物膜における固着微生物を殺すのに有効であ
るとして記述されている。文献は上記のような固着微生
物に対して有効であるとしてイソチアゾロン、ホルムア
ルデヒド及びグルタルアルデヒドを挙げている。Rusesk
a らは生物膜を抑制するのにイソチアゾロンが有効であ
ったことを報告している。Oil and Gas Journal 、第25
3 〜264 頁(1982年)におけるBiocide Testing Agains
t Corrosion Causing Oil-Field Bacteria Helps Cont
rol Plugging 参照。Popeらはホルムアルデヒドが一つ
の試験においては良好に作用したけれど別の試験におい
ては良好に作用しなかったことを報告している。NAC
E論文第89〜192 号、National Association of Corros
ion Engineers,Corrosion 1989における Mitigation St
rategies for MicrobiologicallyInfluenced Corrosion
in Gas Industry Facilities 参照。グルタルアルデ
ヒドが水攻法配管条件をシミュレートする動力学的実験
室反応器における生物膜析出物の除去及び成長性微生物
の数の調節に有効であることが見出された。Materials
Performance 、第1巻、第40〜45頁(1988年)における
The Use of Gultaraldehyde for Microbial Control
in Waterflood System 参照。現在実施されている技術
についての問題点は固着微生物を殺すために長期接触時
間にわたって比較的に高濃度の殺生物剤を使用する必要
性を包含する。
Only a few non-oxidizing biocides have been described as effective in killing sessile microorganisms in established biofilms. The literature lists isothiazolones, formaldehyde and glutaraldehyde as being effective against such sessile microorganisms. Rusesk
et al. reported that isothiazolone was effective in inhibiting biofilm. Oil and Gas Journal, No. 25
Biocide Testing Agains, pages 3-264 (1982)
t Corrosion Causing Oil-Field Bacteria Helps Cont
See rol Plugging. Pope et al. Report that formaldehyde worked well in one test but not another. NAC
E Papers 89-192, National Association of Corros
ion Engineers, Corrosion 1989 Mitigation St
rategies for MicrobiologicallyInfluenced Corrosion
See in Gas Industry Facilities. It has been found that glutaraldehyde is effective in removing biofilm deposits and controlling the number of vegetative microorganisms in a kinetic laboratory reactor simulating water flooding piping conditions. Materials
Performance, Volume 1, pp. 40-45 (1988)
The Use of Gultaraldehyde for Microbial Control
See in Waterflood System. Problems with the current practice include the need to use relatively high concentrations of biocides over extended contact times to kill sessile microorganisms.

【0007】したがって固着微生物に対して効果的であ
り、かつ現在の殺生物剤が使用されている水準以下にお
いて使用することのできる殺生物剤を提供する必要があ
る。
Accordingly, there is a need to provide a biocide that is effective against sessile microorganisms and that can be used below the levels at which current biocides are used.

【0008】[0008]

【発明の要約】本発明は少なくとも水性系中に含有され
る固着微生物を殺すのに十分な量において水性系にオル
ト−フタルアルデヒドを供給することを包含して成る水
性系における生物汚れを抑制する方法に関する。オルト
−フタルアルデヒドは生物汚れを生じ易い種々の水性環
境中に存在する固着微生物を殺すのに特に効果的であ
り、かつこの点に関し文献に報告された他の殺生物剤よ
りもより一層効果的であることがわかった。
SUMMARY OF THE INVENTION The present invention comprises controlling biofouling in an aqueous system comprising providing ortho-phthalaldehyde to the aqueous system in an amount sufficient to kill at least sessile microorganisms contained in the aqueous system. Regarding the method. Ortho-phthalaldehyde is particularly effective in killing sessile microorganisms present in various aqueous environments susceptible to biofouling, and in this regard is much more effective than other biocides reported in the literature. I found out.

【0009】[0009]

【発明の詳述】オルト−フタルアルデヒドは式:DETAILED DESCRIPTION OF THE INVENTION Ortho-phthalaldehyde has the formula:

【0010】[0010]

【化1】 [Chemical 1]

【0011】を有し、或る場合には本明細書においてO
PAと略称される。
And in some cases O herein.
Abbreviated as PA.

【0012】実際においてOPAは「抗菌的有効量」に
おいて水性系中に供給される。本明細書において使用さ
れる、この用語は少なくとも系の壁面及び他の構造表面
に固着する微生物を実質的に殺し、又はその成長を抑制
するのに必要なOPAの最小量を意味する。また本発明
方法においては上記微生物の再成長又は成長を抑制する
のに少なくとも十分な量においてOPAを水性系に供給
することも意図される。OPAの個々の必要量は、固着
微生物の種類、OPAと微生物との接触時間及びOPA
が使用される水性系を包含する多数のファクターに関係
して変動する。
In practice OPA is provided in an aqueous system in an "antibacterial effective amount". As used herein, this term refers to the minimum amount of OPA required to substantially kill or inhibit the growth of microorganisms that adhere to at least the walls of the system and other structural surfaces. It is also contemplated in the method of the present invention that OPA is provided to the aqueous system in an amount at least sufficient to inhibit regrowth or growth of the above microorganisms. The specific amount of OPA required depends on the type of adherent microorganism, the contact time between OPA and the microorganism, and the OPA.
Varies with respect to a number of factors, including the aqueous system used.

【0013】本発明方法において一般的にOPAは、処
理すべき水性系における水の重量を基準にして約5重量
%までの濃度において使用することができる。しかしな
がら固着微生物に対する殺生物剤としての効力の見地か
らOPAは通常には水の約0.5 ないし約1000重量ppm 、
なおも通常的には約5ないし約500 重量ppm のように少
量で使用される。普通には約10ないし約250ppm以下が必
要である。所望により、水混和性のグリコール、アルコ
ール、フラン及びエーテルのような水混和性共溶媒を使
用することによって、25℃の水中におけるOPAの溶解
度の限界である約5重量%(50,000ppm )を超えるOP
Aの濃度を達成することができる。本発明方法において
使用される適当な共溶媒の例はエチレングリコール、メ
タノール、エタノール及びテトラヒドロフランである。
一般的に共溶媒が使用される場合には、特にエチレング
リコールのような高沸点共溶媒が好ましい。
In general, OPA can be used in the process according to the invention in concentrations of up to about 5% by weight, based on the weight of water in the aqueous system to be treated. However, from the standpoint of efficacy as a biocide against sessile microorganisms, OPA usually contains about 0.5 to about 1000 ppm by weight of water,
Still usually used in small amounts, such as about 5 to about 500 ppm by weight. Usually about 10 to about 250 ppm or less is required. If desired, by using water-miscible cosolvents such as water-miscible glycols, alcohols, furans and ethers, the solubility limit of OPA in water at 25 ° C is exceeded, above about 5% by weight (50,000 ppm). OP
A concentration of A can be achieved. Examples of suitable cosolvents used in the method of the invention are ethylene glycol, methanol, ethanol and tetrahydrofuran.
When a cosolvent is generally used, a high boiling cosolvent such as ethylene glycol is particularly preferred.

【0014】グルタルアルデヒド及びホルムアルデヒド
は先行技術において以前に開示された、固着微生物を殺
し、又はその成長を抑制するための好ましい化合物では
あるけれど固着微生物を殺し、又はその成長を抑制する
に当って、OPAは上記その他の殺生物剤のいずれか1
種よりも、より一層効果的であることがわかった。しか
しながら本発明方法においてOPAはグルタルアルデヒ
ド、ホルムアルデヒド又はその他の殺生物剤の1種もし
くはそれ以上との組合せにおいて使用することができる
ことを理解すべきである。上記の他の殺生物剤の例は、
塩素、臭素、二酸化塩素、クロロイソシアヌレート、ハ
ロゲン含有ヒダントイン、第四級アンモニウム化合物、
イソチアゾロン、パラベン及び有機硫黄化合物である。
Although glutaraldehyde and formaldehyde are the preferred compounds previously disclosed in the prior art for killing or inhibiting the growth of sessile microorganisms, in killing or inhibiting the growth of sessile microorganisms, OPA is one of the above other biocides
It turned out to be much more effective than the seed. However, it should be understood that OPA can be used in the method of the present invention in combination with one or more of glutaraldehyde, formaldehyde or other biocides. Examples of other biocides above are:
Chlorine, bromine, chlorine dioxide, chloroisocyanurate, halogen-containing hydantoin, quaternary ammonium compounds,
Isothiazolones, parabens and organic sulfur compounds.

【0015】本発明方法によって処理される水性系は固
着微生物が成長することのできる系である。このような
系は細菌、酵母、キノコ類、カビ及び藻類を包含する広
範囲の固着微生物を含有することがある。本発明方法に
よって処理される固着微生物含有系はプランクトン性微
生物をも含有することがあり、かつまさに屡々含有する
ことを理解すべきである。
The aqueous system treated by the method of the present invention is a system in which sessile microorganisms can grow. Such systems may contain a wide range of sessile microorganisms including bacteria, yeasts, mushrooms, molds and algae. It should be understood that the sessile microbial-containing system treated by the method of the present invention may, and often does, also contain planktonic microorganisms.

【0016】微生物を迅速に殺すことは殺生物剤と微生
物との接触が比較的に短時間である工業的方法において
特に重要である。このような方法の例としては下記を包
含する:(1) 水の一部が定期的に喪失又は除去されて新
鮮な水と入れ替えられ、それにより殺生物剤がその添加
の数時間以内に喪失する冷却水及び製紙ミルスラリーの
処理;(2) 「貫流(once−through)」方式において殺生
物剤が使用される油田水攻法;及び(3) コンベア潤滑
剤。このような系は4時間よりも少ない接触時間を有す
る。
Rapid killing of microorganisms is particularly important in industrial processes where the contact between the biocide and the microorganisms is relatively short. Examples of such methods include: (1) A portion of the water is periodically lost or removed and replaced with fresh water, which results in the biocide being lost within hours of its addition. (2) Oilfield flooding where biocides are used in "once-through"mode; and (3) Conveyor lubricant. Such systems have contact times of less than 4 hours.

【0017】殺生物の速度のほかに長期接触状態下にお
ける殺生物の程度もまた多くの方法において重要であ
る。その例として(1)金属作業流体又は熱伝達流体の
ような再循環する工業用水性流体における生物汚れの抑
制;及び(2)空気調節、空気洗浄装置又は急冷水系の
ような閉ループ水性系において微生物を殺すこと;を包
含する。
In addition to the rate of biocidal activity, the extent of biocidal activity under prolonged contact is also important in many methods. Examples include (1) control of biofouling in recirculating industrial aqueous fluids such as metal working fluids or heat transfer fluids; and (2) microorganisms in closed loop aqueous systems such as air conditioning, air scrubbers or quench water systems. Killing;

【0018】本発明を例証するために下記に実施例を示
すが本発明を不当に限定するものではない。特に指定し
ない限り、すべての部及び100 分率は重量による。
The following examples are provided to illustrate the invention but are not intended to unduly limit the invention. Unless otherwise specified, all parts and percentages are by weight.

【0019】本明細書の実施例及びその他の場所におい
て使用される下記の記号は下記の意味を有する。 ml−ミリリットル mm−ミリメートル mMole −ミリモル I. D. −内径 O. D. −外径 g−グラム oz−オンス ppm −水の100 万重量部当りの部 GA−グルタルアルデヒド FA−ホルムアルデヒド TGE−トリプトングルコース抽出物 SRB−硫酸塩還元菌
The following symbols used in the examples and elsewhere in the specification have the following meanings. ml-ml mm-millimeter mMole-mmol ID-inner diameter OD-outer diameter g-gram oz-ounce ppm-parts per million parts of water GA-glutaraldehyde FA-formaldehyde TGE-tryptone glucose extract SRB-sulfuric acid Salt-reducing bacteria

【0020】実施例において使用される種々の種類の微
生物を培養するのに下記の手順を使用した。
The following procedure was used to culture the various types of microorganisms used in the examples.

【0021】ステンレス鋼製ペニシリン柱(penicylinde
r)上における好気性生物膜の成長−手順A 無菌ペトリ皿(15×100mm)中に、約20mlの無菌バクト(B
acto) TGEブイヨン(Difco Labs)を入れた。この媒体
に、試験すべき好気性有機体の24時間培養物10mlを添加
した。次いで無菌のステンレス鋼製ペニシリン柱(外径
10mm、内径7mm、長さ10mm)を該接種された媒体に入れ
た。該シリンダー柱はオンエンド(on-end)又はオンサイ
ド(on-side) のいずれかにおいて皿中に入れた。次いで
該ペニシリン柱の入っているペトリ皿を37℃において48
時間にわたり培養した。その時点において鉗子を使用し
てシリンダーを個々に無菌的に取り出し、無菌の濾紙に
吸い取られ、無菌の塩溶液中に浸漬することにより3回
洗浄した。この手順を使用して生物膜中に堅固に付着し
た微生物のみが試験されることを確実にした。
[0021] Stainless steel penicylinde
Growth of aerobic biofilm on r) -Procedure A In a sterile Petri dish (15 x 100 mm), add about 20 ml of sterile Bacto (B).
acto) TGE broth (Difco Labs) was added. To this medium was added 10 ml of a 24-hour culture of the aerobic organism to be tested. Then sterile stainless steel penicillin pillars (outer diameter
10 mm, inner diameter 7 mm, length 10 mm) were placed in the inoculated medium. The cylinder column was placed in the dish either on-end or on-side. The Petri dish containing the penicillin column was then placed at 37 ° C for 48 hours.
Cultivated over time. At that point, the cylinders were individually aseptically removed using forceps, blotted onto sterile filter paper and washed 3 times by immersion in sterile salt solution. This procedure was used to ensure that only microorganisms that were firmly attached in the biofilm were tested.

【0022】次いで2本の生物膜被覆されたペニシリン
柱を、種々の濃度の殺生物剤溶液を入れた別個の10ml試
験管中に注意深く落下させた。1時間及び4時間の接触
後、ペニシリン柱をTEGブイヨンの新しい試験管に無
菌的に移し、30秒間渦に巻いてすべての固着有機体を除
去した。得られたブイヨン懸濁液を次いで連続的に希釈
し、次いで算出(enumeration) のためにTGE寒天を使
用してめっきした。めっき物を算出前に37℃において48
時間培養した。
The two biofilm-coated penicillin pillars were then carefully dropped into separate 10 ml tubes containing various concentrations of biocide solution. After 1 and 4 hours of contact, the penicillin column was aseptically transferred to a new tube of TEG broth and vortexed for 30 seconds to remove all adhering organisms. The resulting broth suspension was then serially diluted and then plated using TGE agar for enumeration. 48 at 37 ℃ before plating
Incubated for hours.

【0023】軟鋼製ペニシリン柱上における硫酸塩還元
菌生物膜の成長−手順B 下記のようにしてSRB含有媒体を調製した:バクト(B
acto) 硫酸塩APIブイヨン(Difco Labs)14.5g及びバ
クト(Bacto)寒天(Difco Labs)2.0 gを1000mlの蒸留水
に添加した。該溶液を、すべての成分が溶解するまで加
熱し、かくはんした。ナトリウムチオグリコレートの1
%蒸留水溶液をも調製した。次いで両方の溶液を121 ℃
のオートクレーブに30分間入れた。冷却後に該ナトリウ
ムチオグリコレート溶液5gを媒体混合物に添加した。
Sulfate Reduction on Mild Steel Penicillin Pillars
Growth of fungal biofilm-Procedure B A medium containing SRB was prepared as follows: Bact (B
acto) Sulfate API broth (Difco Labs) 14.5 g and Bacto agar (Difco Labs) 2.0 g were added to 1000 ml distilled water. The solution was heated and stirred until all ingredients were dissolved. 1 of sodium thioglycolate
A% distilled aqueous solution was also prepared. Then both solutions at 121 ° C
Placed in the autoclave for 30 minutes. After cooling, 5 g of the sodium thioglycollate solution were added to the medium mixture.

【0024】軟鋼製ペニシリン柱(外径10mm、内径7m
m、長さ10mm)を0.5 %塩酸中に10分間ソーキングする
ことにより清浄化した。次いでペニシリン柱を蒸留水で
3回洗浄し、次いで使用前に乾燥した。
Mild steel penicillin column (outer diameter 10 mm, inner diameter 7 m
m, length 10 mm) was cleaned by soaking in 0.5% hydrochloric acid for 10 minutes. The penicillin column was then washed 3 times with distilled water and then dried before use.

【0025】4オンスのねじぶた付びんをアルゴンでパ
ージして酸素を除去し、ふたをし、次いでオートクレー
ブに入れた。冷却後、このびんに無菌SRB媒体100ml
を添加した。次いで5日間SRB培養物10mlと共に、清
浄されたペニシリン柱を添加した。酸素水準を最小化す
るためにすべての操作をアルゴンの一定の流れのもとに
行った。次いでびんを37℃において7〜14日間(使用す
るSRBによる)培養した。その時点において、鉗子を
使用してペニシリン柱を無菌的に個々に取り出し、無菌
の濾紙で吸い取った。
A 4 ounce screw-capped bottle was purged with argon to remove oxygen, capped, and then placed in an autoclave. After cooling, add 100 ml of sterile SRB medium to this bottle.
Was added. The cleaned penicillin columns were then added with 10 ml of SRB culture for 5 days. All operations were carried out under a constant flow of argon to minimize oxygen levels. The bottles were then incubated at 37 ° C for 7-14 days (depending on the SRB used). At that point, the penicillin pillars were aseptically removed individually using forceps and blotted with sterile filter paper.

【0026】次いで2個の生物膜被覆されたペニシリン
柱を、種々の濃度の脱空気された殺生物剤溶液の10ml試
験管に滴下した。すべての殺生物剤溶液及び対照溶液は
非イオン性ノニルフェノールエトキシレート界面活性剤
〔TERGITOL(商標)NP−4、ユニオン カーバイド ケ
ミカルス アンド プラスチックス社、ダンバリー、O
K)を含有した。1時間及び4時間の接触時間後にペニ
シリン柱を取り出し、無菌のろ紙で吸い取り、市販のS
RBガラスびん(C&S、ラボラトリーズ、Tulsa,O
K)中に入れた。次いで該ガラスびんを30秒間超音波処
理(Bransonic Model 12 )して固着有機体を除去した。
得られた溶液を算出のために、追加のSRBガラスびん
中に無菌的に希釈した。読取り前に該ガラスびんを37℃
において28日間成長させた。成長の指示としてガラスび
んの黒化(blackning) を使用した。
Two biofilm-coated penicillin columns were then added dropwise to 10 ml test tubes of various concentrations of deaerated biocide solution. All biocide and control solutions were nonionic nonylphenol ethoxylate surfactants [TERGITOL ™ NP-4, Union Carbide Chemicals and Plastics, Danbury, O.
K). After the contact time of 1 hour and 4 hours, the penicillin column was taken out and blotted with a sterile filter paper.
RB glass bottle (C & S, Laboratories, Tulsa, O
K) inside. The glass bottle was then sonicated (Bransonic Model 12) for 30 seconds to remove adhered organisms.
The resulting solution was aseptically diluted in additional SRB vials for calculation. Prior to reading, place the vial at 37 ° C
Grown for 28 days. Vial blackning was used as a growth indicator.

【0027】プランクトン性硫酸塩還元菌の成長−手順C 試験されるべきSRBのストック培養物(stock cultur
e) を市販のSRBガラスびん中において4日間成長さ
せた。次いで該ガラスびんをアルゴンで約30秒間パージ
して過剰の硫化水素を除去した。その時点において、一
連のSRBガラスびんに、このストック培養物0.1 mlを
それぞれ接種した。次いでこれらのガラスびんを37℃に
おいて4日間培養した。次いでこれらのガラスびんのそ
れぞれをアルゴンでパージした。0.1 〜1.0 mlの添加に
より各SRBガラスびん中における殺生物剤の所望濃度
が得られるように殺生物剤の適当な原液を調製した。1
時間及び4時間の接触時間後に各ガラスびんから1mlの
アリコートを取り出し、新しいSRBガラスびんに注入
した。次いでこれらのガラスびんを算出のために無菌的
に希釈した。
Growth of Plankton Sulfate-Reducing Bacteria-Procedure C Stock culture of SRB to be tested.
e) was grown in a commercial SRB vial for 4 days. The vial was then purged with argon for about 30 seconds to remove excess hydrogen sulfide. At that time, a series of SRB vials were each inoculated with 0.1 ml of this stock culture. These vials were then incubated at 37 ° C for 4 days. Each of these vials was then purged with argon. Appropriate stock solutions of biocide were prepared so that the desired concentration of biocide in each SRB vial was obtained by the addition of 0.1-1.0 ml. 1
After 1 hour and a contact time of 4 hours, a 1 ml aliquot was removed from each vial and poured into a new SRB vial. These vials were then aseptically diluted for calculation.

【0028】誤差を最小化するために、下記に示すすべ
ての殺生物剤濃度/接触時間の点は二重に試験し、結果
を平均した。結果は殺生物剤を使用しなかった点を除い
て同様に処理した対照ペニシリン柱と比較した微生物の
ログ減少(log reduction) として示す。
To minimize error, all biocide concentration / contact time points given below were tested in duplicate and the results averaged. The results are presented as the log reduction of the microorganism compared to a control penicillin column treated similarly, except that no biocide was used.

【0029】[0029]

【実施例1】好気性菌生物膜に対する成績 すべての好気性生物膜実験において好気性菌の油田の分
離物を使用した。この培養物は米国、テキサス州におけ
る水攻した油井から得られ、主としてプソイドモナス種
を含有するものとして不十分に確認された。上記手順A
にしたがって生物膜を成長させた。それぞれの試料を種
々の濃度の下記に示す殺生物剤で処理し、次いで1時間
及び4時間の接触時間後に細菌の数を数えた。結果を下
記に示す。
Example 1 Performance on Aerobic Biofilms Aerobic oilfield isolates were used in all aerobic biofilm experiments. This culture was obtained from a flooded oil well in Texas, USA and was poorly identified as containing predominantly Pseudomonas species. Procedure A above
Biofilms were grown according to. Each sample was treated with various concentrations of the biocides shown below and then counted for bacteria after a contact time of 1 and 4 hours. The results are shown below.

【0030】[0030]

【表1】 [Table 1]

【0031】以前にはグルタルアルデヒド及びホルムア
ルデヒドが生物膜に対して効果的な非酸化性殺生物剤で
あるとして示されていたけれどOPAがグルタルアルデ
ヒド及びホルムアルデヒドの両方よりも優れていること
を、この実施例は示す。
Although glutaraldehyde and formaldehyde were previously shown to be effective non-oxidizing biocides against biofilms, OPA is superior to both glutaraldehyde and formaldehyde. Examples are given.

【0032】[0032]

【実施例2】好気性菌生物膜に対する成績 4種の芳香族アルデヒドを、生物膜に埋められた有機体
を殺す、それらの効果を測定するためにOPAと比較し
た。選ばれた化合物はサリシルアルデヒド(SA);オ
ルトバニリン(OVA);2,3 −ジヒドロキシベンズア
ルデヒド(DHB);及び2−カルボキシベンズアルデ
ヒド(CB)であった。これらの4種の化合物は5種の
異なるプランクトン性微生物に対してOPAに類似する
生物学的性質を有するものとしてZbl.Bact.Hyg.I.Abt.O
rig.B172 ,第508 〜519 頁(1981年)におけるRehn.D
らの The Antimicrobial Activity of Substituted Aro
matic Aldehydes と題する文献に報告されている。該論
文に引用され、下記表2に示される最小抑制剤濃度(M
IC)に基づきSA,OVA及びDHBがOPAに実質
的に等価であり、CBがより少なく有効であることが期
待される。
Example 2 Performance on Aerobic Biofilms Four aromatic aldehydes were compared to OPA to determine their effect on killing organisms buried in biofilms. The compounds selected were salicylaldehyde (SA); orthovanillin (OVA); 2,3-dihydroxybenzaldehyde (DHB); and 2-carboxybenzaldehyde (CB). These four compounds have been shown to have similar biological properties to OPA against five different planktonic microorganisms by Zbl.Bact.Hyg.I.Abt.O.
Rig.B172, pp. 508-519 (1981).
Rano's The Antimicrobial Activity of Substituted Aro
It is reported in the literature entitled matic Aldehydes. The minimum inhibitor concentration (M
It is expected that SA, OVA and DHB are substantially equivalent to OPA based on IC) and CB is less effective.

【0033】[0033]

【表2】 [Table 2]

【0034】5種の化合物のそれぞれの試料を生物膜中
に埋められた固着微生物に対して試験した。生物膜は種
々の微生物により構成されていたけれど、手順Aを使用
して培養されたプソイトモナス種を主として含有した。
1時間及び4時間の接触後に有機体の数を数えた。結果
を下記に示す:
Samples of each of the five compounds were tested against sessile microorganisms embedded in the biofilm. Although the biofilm was composed of various microorganisms, it contained primarily Pseudomonas spp. Cultivated using Procedure A.
The number of organisms was counted after 1 and 4 hours of contact. The results are shown below:

【0035】[0035]

【表3】 [Table 3]

【0036】本実施例は他種のアルデヒドをOPAの濃
度の4倍の水準において使用した場合でさえも、生物膜
中における固着微生物に対するOPAの驚くべき効果を
実証する。この結果は、試験される4種の他の関係芳香
族アルデヒドが、プランクトン性好気性有機体を殺すに
当ってOPAに匹敵する活性を有することを示す本実施
例2に記載のRehnらの論文の見地から特に驚くべきであ
る。
This example demonstrates the surprising effect of OPA on sessile microorganisms in biofilms, even when other aldehydes are used at levels four times the concentration of OPA. The results show that the four other related aromatic aldehydes tested have activity comparable to OPA in killing planktonic aerobic organisms. Rehn et al. Especially surprising from the point of view.

【0037】[0037]

【実施例3】固着嫌気性菌生物膜に対する成績 アラスカにおける水攻油井からSRB培養物を得た。上
記手順Bを使用して鋼製ペニシリン柱の壁面上において
該菌を培養した。次いでそれぞれの試料を1時間及び4
時間にわたってグルタルアルデヒド、ホルムアルデヒド
又はOPAと接觸させ、下記の結果を得た:
Example 3 Performance on sessile anaerobic biofilms SRB cultures were obtained from a water flood well in Alaska. The procedure was used to culture the fungus on the walls of steel penicillin posts. Then each sample for 1 hour and 4
Incubation with glutaraldehyde, formaldehyde or OPA over time gave the following results:

【0038】[0038]

【表4】 [Table 4]

【0039】好気性生物膜実験におけるように、これら
のデータは予想外の低濃度(10ppm)のOPAが、生物
膜中に含有される固着嫌気性有機体のすべてを完全に殺
すことができるということを示す。同一水準の効果を達
成するためには有意に高濃度のグルタルアルデヒド又は
ホルムアルデヒドを必要とした。
As in aerobic biofilm experiments, these data indicate that unexpectedly low concentrations (10 ppm) of OPA are able to completely kill all of the anchored anaerobic organisms contained in the biofilm. Indicates that. A significantly higher concentration of glutaraldehyde or formaldehyde was required to achieve the same level of effect.

【0040】[0040]

【実施例4】プランクトン性嫌気性菌に対する成績 前記実施例3において使用したものと同一のプランクト
ン性SRB試料を上記手順Cにしたがって培養した。菌
のそれぞれの試料を種々の濃度のOPAで処理し、菌の
数におけるログ減少を各場合について記録した。
Example 4 Performance against Plankton Anaerobic Bacteria The same plankton SRB samples used in Example 3 above were cultured according to Procedure C above. Each sample of fungus was treated with various concentrations of OPA and the log reduction in fungus number was recorded in each case.

【0041】[0041]

【表5】 [Table 5]

【0042】実施例3の結果と実施例4の結果とを比較
した場合固着微生物を殺すことに対するOPAの増進さ
れた効力が明らかである。表5(実施例4)の結果は50
0ppmのように高いOPA濃度においてプランクトン性S
RBは完全には殺されなかったことを示す。他方、実施
例3におけるように固着微生物を処理するために使用し
た場合には10〜500ppmのように低い濃度において完全な
殺菌が行われたのである。プランクトン性細胞は生物膜
中に含有される微生物よりも殺すのが容易であると一般
的に思われているので実施例3の結果は驚くべきであ
る。
When comparing the results of Example 3 with those of Example 4, the enhanced efficacy of OPA in killing adherent microorganisms is apparent. The result of Table 5 (Example 4) is 50.
Plankton S at high OPA concentrations such as 0 ppm
RB indicates that it was not completely killed. On the other hand, when used to treat sessile microorganisms as in Example 3, complete sterilization was performed at concentrations as low as 10-500 ppm. The results of Example 3 are surprising because it is generally believed that planktonic cells are easier to kill than the microorganisms contained in the biofilm.

フロントページの続き (72)発明者 アラン、ベル、ティース アメリカ合衆国、ニュージャージー州、 08807、ブリッジウオーター、ローリン グ・ノールズ・ウェイ300番 (72)発明者 ジョナサン、レーダー アメリカ合衆国、ニュージャージー州、 08822、フレミントン、オールド・クロト ン・ロード195番Front Page Continuation (72) Inventor Alan, Bell, Teeth 08807, NJ, USA, Bridgewater, Rolling Knowles Way No. 300 (72) Inventor Jonathan, Radar USA, NJ 08822, Flemington, Old・ Croton Road 195

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 水性系において、系の壁面及びその他の
構造表面に固着する微生物の成長を抑制する方法におい
て、少なくとも前記微生物を実質的に殺すのに十分な量
のオルト−フタルアルデヒドを前記水性系に供給するこ
とを包含して成る前記方法。
1. A method for inhibiting the growth of microorganisms that adhere to the walls and other structural surfaces of the system in an aqueous system, wherein at least a sufficient amount of ortho-phthalaldehyde to substantially kill said microorganisms is used in said aqueous system. The above method comprising feeding the system.
【請求項2】 オルト−フタルアルデヒドを約0.5 ない
し約1000ppm の量において水性系に供給する請求項1の
方法。
2. The method of claim 1 wherein ortho-phthalaldehyde is provided to the aqueous system in an amount of about 0.5 to about 1000 ppm.
【請求項3】 十分な量のオルト−フタルアルデヒドを
水性系において維持して微生物の再成長を抑制する請求
項1の方法。
3. The method of claim 1 wherein a sufficient amount of ortho-phthalaldehyde is maintained in the aqueous system to inhibit microbial regrowth.
【請求項4】 水性系がプランクトン性微生物を更に含
有する請求項1の方法。
4. The method of claim 1, wherein the aqueous system further comprises planktonic microorganisms.
【請求項5】 水性系において、系の壁面及びその他の
構造表面に固着する微生物の成長を抑制する方法におい
て、少なくとも前記微生物を実質的に殺すのに十分な量
のオルト−フタルアルデヒド及び別の殺生物剤を前記系
に供給することを包含して成る前記方法。
5. In a method of inhibiting the growth of microorganisms that adhere to the walls and other structural surfaces of the system in an aqueous system, at least an amount of ortho-phthalaldehyde and another amount sufficient to substantially kill said microorganisms. The method comprising providing a biocide to the system.
【請求項6】 別の殺生物剤をグルタルアルデヒド及び
ホルムアルデヒドより成る群から選択する請求項5の方
法。
6. The method of claim 5 wherein the another biocide is selected from the group consisting of glutaraldehyde and formaldehyde.
【請求項7】 水性系において、系の壁面及びその他の
構造表面に固着する微生物の成長を抑制する方法におい
て、少なくとも固着微生物の成長を抑制するのに十分な
量のオルト−フタルアルデヒドを前記水性系に供給する
ことを包含して成る前記方法。
7. In a method for suppressing the growth of microorganisms that adhere to the wall surface of a system and other structural surfaces in an aqueous system, at least a sufficient amount of ortho-phthalaldehyde to suppress the growth of adherent microorganisms is used in the aqueous solution. The above method comprising feeding the system.
【請求項8】 水性系が再循環冷却塔又は油田水攻系で
ある請求項7の方法。
8. The method of claim 7, wherein the aqueous system is a recirculation cooling tower or an oilfield waterflood system.
【請求項9】 水性系において、系の壁面及びその他の
構造表面に固着する微生物の成長を抑制する方法におい
て、少なくとも固着微生物の成長を抑制するのに十分な
量のオルト−フタルアルデヒド及び別の殺生物剤を前記
水性系に供給することを包含して成る前記方法。
9. A method for inhibiting the growth of microorganisms that adhere to the wall and other structural surfaces of the system in an aqueous system, the method comprising at least an amount of ortho-phthalaldehyde and another amount sufficient to inhibit the growth of adherent microorganisms. The above method comprising providing a biocide to said aqueous system.
【請求項10】 別の殺生物剤をホルムアルデヒド及び
グルタルアルデヒドより成る群から選択する請求項9の
方法。
10. The method of claim 9 wherein the another biocide is selected from the group consisting of formaldehyde and glutaraldehyde.
JP4148023A 1991-09-30 1992-05-15 Method of suppressing contamination of living organism Pending JPH0623368A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/767,810 US5128051A (en) 1991-09-30 1991-09-30 Method for the control of biofouling
US07/767.810 1991-09-30

Publications (1)

Publication Number Publication Date
JPH0623368A true JPH0623368A (en) 1994-02-01

Family

ID=25080661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148023A Pending JPH0623368A (en) 1991-09-30 1992-05-15 Method of suppressing contamination of living organism

Country Status (20)

Country Link
US (1) US5128051A (en)
EP (1) EP0535301B1 (en)
JP (1) JPH0623368A (en)
KR (1) KR100188794B1 (en)
CN (1) CN1046685C (en)
AT (1) ATE135333T1 (en)
AU (1) AU647352B2 (en)
BR (1) BR9201828A (en)
CA (1) CA2068765C (en)
CZ (1) CZ147092A3 (en)
DE (1) DE69208993T2 (en)
EC (1) ECSP920834A (en)
ES (1) ES2084211T3 (en)
FI (1) FI104532B (en)
MX (1) MX9202317A (en)
NO (1) NO300794B1 (en)
PL (1) PL294567A1 (en)
RU (1) RU2036849C1 (en)
SK (1) SK147092A3 (en)
TW (1) TW201264B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115141A (en) * 2006-11-08 2008-05-22 K I Chemical Industry Co Ltd Amoeba killing agent
JP2009215271A (en) * 2008-03-13 2009-09-24 Aquas Corp Biofilm releasant, and method for releasing biofilm
JP2018168096A (en) * 2017-03-30 2018-11-01 花王株式会社 Biofilm formation inhibitory composition
JP2018168095A (en) * 2017-03-30 2018-11-01 花王株式会社 Biofilm formation inhibitory composition

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687659B1 (en) * 1992-02-24 1994-08-26 Texel PROCESS FOR THE TREATMENT OF FLORA CONTAMINATING PAPER CIRCUITS USING BACTERIA.
US5368749A (en) * 1994-05-16 1994-11-29 Nalco Chemical Company Synergistic activity of glutaraldehyde in the presence of oxidants
FR2718923B1 (en) * 1994-04-25 1996-05-31 Sogeval Disinfecting composition in aqueous solution containing orthophthalaldehyde.
AT404592B (en) * 1996-11-26 1998-12-28 Chemie Linz Gmbh METHOD FOR PRODUCING AQUEOUS O-PHTHALALDEHYDE-GLUTARALDEHYDE SOLUTIONS
US5936001A (en) * 1998-01-21 1999-08-10 Ethicon, Inc. Disinfecting and sterilizing concentrate containing an aromatic dialdehyde and a neutral pH buffering system
GB9805550D0 (en) * 1998-03-16 1998-05-13 Univ London Antifouling agent
DE19937300A1 (en) * 1999-08-06 2001-02-22 Henkel Ecolab Gmbh & Co Ohg Biofilm avoidance
EP1235046B1 (en) 1999-11-26 2011-10-05 JFE Engineering Corporation Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
US6810957B2 (en) * 2001-11-14 2004-11-02 Bechtel Bwxt Idaho, Llc Well constructions with inhibited microbial growth and methods of antimicrobial treatment in wells
US7541009B2 (en) * 2002-05-31 2009-06-02 Jfe Engineering Corporation Apparatus for producing hydrate slurry
US20040071592A1 (en) * 2002-10-10 2004-04-15 Ioana Annis Fast dissolving solid ortho-phthalic aldehyde formulations
US20050238732A1 (en) * 2003-12-19 2005-10-27 Kaitao Lu Carbonated germicide with pressure control
US20050136118A1 (en) * 2003-12-19 2005-06-23 Wu Su-Syin S. Distribution and preparation of germicidal compositions
US20050136086A1 (en) * 2003-12-19 2005-06-23 Rafael Herruzo Efficacy enhancers for germicides
US7476767B2 (en) * 2004-01-30 2009-01-13 Ethicon, Inc. Alpha-hydroxy sulfonate aldehydes, germicidal compositions containing the alpha-hydroxy sulfonate aldehydes, or mixtures of alpha-hydroxy sulfonate aldehydes and phthalaldehydes, and methods of using the compounds or compositions for disinfection or sterilization
US20050171215A1 (en) * 2004-01-30 2005-08-04 Ethicon, Inc. Germicidal compositions containing halogenated phthalaldehyes, and methods of using such compositions for disinfection or sterilization
US7390837B2 (en) * 2004-01-30 2008-06-24 Ethicon, Inc. Germicidal compositions containing phenylmalonaldehyde-type compounds, or mixtures of phenylmalonaldehyde-type compounds and phthalaldehydes, and methods of using such compositions for disinfection or sterilization
US20050171216A1 (en) * 2004-01-30 2005-08-04 Zhu Peter C. Germicidal compositions containing phthalaldehyde mixtures and methods of using such compositions for disinfection or sterilization
US6891069B1 (en) 2004-01-30 2005-05-10 Ethicon, Inc. Synthesis of 4-substituted phthalaldehyde
US8999315B2 (en) * 2004-07-15 2015-04-07 Nalco Company Bis-quaternary ammonium salt corrosion inhibitors
US7291649B2 (en) * 2005-06-29 2007-11-06 Ethicon, Inc. Forming germicidal aromatic dialdehydes with acetals
DE102007041991A1 (en) * 2007-09-05 2009-03-12 Fülling, Rainer, Dr. Process for the purification of substrates by oxidants and reducing agents and the use of oxidizing agents for the oxidation of extracellular polymeric substances
US20090184062A1 (en) * 2008-01-21 2009-07-23 Ppg Industries Ohio, Inc. Method for inhibiting biofilm growth
US20090203645A1 (en) * 2008-02-12 2009-08-13 Larry Kent Hall Broad Spectrum Disinfecting and Sterilizing Composition
US8162048B2 (en) 2008-09-09 2012-04-24 Tetra Technologies, Inc. Method of delivering frac fluid and additives
US9006216B2 (en) * 2009-09-09 2015-04-14 Howard Martin Biocidal aldehyde composition for oil and gas extraction
US20150157024A1 (en) * 2009-09-09 2015-06-11 Howard Martin Biocidal aldehyde composition for water management
US8242176B2 (en) * 2009-09-09 2012-08-14 Howard Martin Biocidal aldehyde composition for oil and gas extraction
CN104936448A (en) * 2013-01-25 2015-09-23 凯米罗总公司 Biocide composition and method for treating water
US10213757B1 (en) 2015-10-23 2019-02-26 Tetra Technologies, Inc. In situ treatment analysis mixing system
EP3450623B1 (en) 2017-08-29 2023-06-28 Kemira Oyj Method for controlling growth of microorganisms and/or biofilms in an industrial process
ES2799526T3 (en) 2017-08-29 2020-12-18 Kemira Oyj Method to control the growth of microorganisms and / or biofilms in an industrial process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313705A (en) * 1987-05-21 1988-12-21 サーギコス・インコーポレイテッド Odorless aromatic dialdehyde disinfectant and fungicidal composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297224A (en) * 1980-06-04 1981-10-27 Great Lakes Chemical Corporation Method for the control of biofouling in recirculating water systems
EP0185612A1 (en) * 1984-12-10 1986-06-25 Sanitized Verwertungs A.-G. Disinfection of crude oil and petroleum products and its application to the production of crude oil
US4847304A (en) * 1987-05-21 1989-07-11 Surgikos, Inc. Disinfecting and sterilizing composition
US4971999A (en) * 1987-05-21 1990-11-20 Johnson & Johnson Medical, Inc. Odorless aromatic dialdehyde disinfecting and sterilizing composition and method of using the same
GB8904844D0 (en) * 1989-03-03 1989-04-12 Albright & Wilson Biocidal compositions and treatments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313705A (en) * 1987-05-21 1988-12-21 サーギコス・インコーポレイテッド Odorless aromatic dialdehyde disinfectant and fungicidal composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115141A (en) * 2006-11-08 2008-05-22 K I Chemical Industry Co Ltd Amoeba killing agent
JP2009215271A (en) * 2008-03-13 2009-09-24 Aquas Corp Biofilm releasant, and method for releasing biofilm
JP2018168096A (en) * 2017-03-30 2018-11-01 花王株式会社 Biofilm formation inhibitory composition
JP2018168095A (en) * 2017-03-30 2018-11-01 花王株式会社 Biofilm formation inhibitory composition

Also Published As

Publication number Publication date
BR9201828A (en) 1993-04-13
CN1046685C (en) 1999-11-24
CN1071146A (en) 1993-04-21
ATE135333T1 (en) 1996-03-15
AU1627192A (en) 1993-04-01
MX9202317A (en) 1993-12-01
CA2068765C (en) 1998-07-07
KR100188794B1 (en) 1999-06-01
FI922242A0 (en) 1992-05-15
FI104532B (en) 2000-02-29
RU2036849C1 (en) 1995-06-09
ES2084211T3 (en) 1996-05-01
KR930005535A (en) 1993-04-20
US5128051A (en) 1992-07-07
SK147092A3 (en) 1994-04-06
DE69208993T2 (en) 1996-07-25
NO921925L (en) 1993-03-31
EP0535301B1 (en) 1996-03-13
ECSP920834A (en) 1993-01-29
DE69208993D1 (en) 1996-04-18
AU647352B2 (en) 1994-03-17
NO921925D0 (en) 1992-05-15
CA2068765A1 (en) 1993-03-31
NO300794B1 (en) 1997-07-28
FI922242A (en) 1993-03-31
PL294567A1 (en) 1993-04-05
EP0535301A1 (en) 1993-04-07
CZ147092A3 (en) 1993-04-14
TW201264B (en) 1993-03-01

Similar Documents

Publication Publication Date Title
JPH0623368A (en) Method of suppressing contamination of living organism
JP4315242B2 (en) Microbial growth inhibitors and methods containing stabilized sodium hypobromite and isothiazolones
Gram et al. Interaction between fish spoilage bacteria Pseudomonas sp. and Shewanella putrefaciens in fish extracts and on fish tissue
JP2015061857A (en) Glutaraldehyde based biocidal compositions and methods of use
JP5635596B2 (en) Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
EP0364789B1 (en) Antimicrobial composition and method of use
US20210017567A1 (en) Assessment of biological contamination and biological contamination treatment
RU2597021C2 (en) Biocidal compositions based on polymer biguanide and methods of application thereof
CN106793779B (en) Improvements relating to water treatment, particularly inhibition of microbial growth
US4489098A (en) 2,2,3-Trihalopropionaldehydes as antimicrobial agents
RU2559892C2 (en) Biofilm control by means of halogenated amides as biocides
JP2001527560A (en) Stabilized solution of bromonitromethane and its use as biocide
US5466717A (en) Halogenated 4'-methoxyacetophenones as microbicides and preservatives
CN114431227B (en) Biological film sterilization synergist, sterilization composition and biological film removal method
CN111011398B (en) Biological bactericide for crude oil transportation pipeline and application thereof
NO171701B (en) USE OF N-DECYLTIOETYLAMINE AS MICROBIOCID
US3364140A (en) Method of inhibiting the growth of algae and bacteria with amidino-carbamates
KR100672088B1 (en) Nerium Genus Plant Extract for preventing growth of bacterium in cooling water and method for preventing growth of bacterium in cooling water using the same
RU2533924C2 (en) Brominated nitroalkanol composition and its application as biocides
TW201922627A (en) Compositions exhibiting synergy in biofilm control
JPH0210714B2 (en)
PL165295B1 (en) Agent for preventing biological growths in industrial waters
NO874171L (en) BACTERICIDE MIXTURES CONTAINING NITROIMIDAZOLE SALTS.