JPH0623270A - Catalyst for catalystic reduction of nitrogen oxides - Google Patents

Catalyst for catalystic reduction of nitrogen oxides

Info

Publication number
JPH0623270A
JPH0623270A JP4166166A JP16616692A JPH0623270A JP H0623270 A JPH0623270 A JP H0623270A JP 4166166 A JP4166166 A JP 4166166A JP 16616692 A JP16616692 A JP 16616692A JP H0623270 A JPH0623270 A JP H0623270A
Authority
JP
Japan
Prior art keywords
catalyst
ion
nitrogen oxides
oxide
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4166166A
Other languages
Japanese (ja)
Other versions
JP2609974B2 (en
Inventor
Tadao Nakatsuji
忠夫 仲辻
Hiromasu Shimizu
宏益 清水
Ritsu Yasukawa
律 安川
Akihiro Kitatsume
章博 北爪
Hiroshi Tsuchida
裕志 土田
Masaaki Kawatsuki
正明 川付
Tatsuhiko Ito
建彦 伊藤
Hideaki Hamada
秀昭 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Agency of Industrial Science and Technology
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Cosmo Oil Co Ltd, Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4166166A priority Critical patent/JP2609974B2/en
Publication of JPH0623270A publication Critical patent/JPH0623270A/en
Application granted granted Critical
Publication of JP2609974B2 publication Critical patent/JP2609974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalystic reduction catalyst for nitrogen oxides which can efficiently reduce nitrogen oxides in exhaust gas discharged from plants, automobiles, etc., without using large quantities of reducing agents and also is supeior in durability, even in the presence of moisture. CONSTITUTION:The catalystic reduction catalyst for nitrogen oxides is formed by ion-exchanging a transition metal ion to at least one kind metallic oxide selected from the group consisting of aluminum oxide, silicone dioxide, titanium oxide zirconium oxide, niobium pentaoxide and stannic oxide and depositing it, and hydrocarbon and/or an oxygen-containing compound are used as the reducing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物接触還元用触
媒に関し、詳しくは、工場、自動車等から排出される排
ガスの中に含まれる有害な窒素酸化物を還元除去する際
に用いて好適な炭化水素及び/又は含酸素化合物を還元
剤として使用する窒素酸化物接触還元用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for catalytic reduction of nitrogen oxides. More specifically, it is suitable for use in reducing and removing harmful nitrogen oxides contained in exhaust gas discharged from factories, automobiles and the like. The present invention relates to a catalyst for catalytic reduction of nitrogen oxides, which uses various hydrocarbons and / or oxygen-containing compounds as a reducing agent.

【0002】[0002]

【従来の技術】従来、排ガス中に含まれる窒素酸化物
は、窒素酸化物を酸化した後、アルカリに吸収させる方
法や、アンモニア、水素、一酸化炭素、炭化水素等の還
元剤を用いて、窒素に変換する方法等によつて除去され
ている。しかしながら、前者の方法によれば、生成する
アルカリ廃液を処理して、公害の発生を防止する方策が
必要である。他方、後者の方法によれば、還元剤として
アンモニアを用いるときは、これが排ガス中のイオウ酸
化物と反応して塩類を生成し、その結果、触媒の還元活
性が低下する問題がある。また、水素、一酸化炭素、炭
化水素等を還元剤として用いる場合でも、これらが低濃
度に存在する窒素酸化物よりも高濃度に存在する酸素と
反応するため、窒素酸化物を低減するためには多量の還
元剤を必要とするという問題がある。
2. Description of the Related Art Conventionally, nitrogen oxides contained in exhaust gas have been produced by oxidizing nitrogen oxides and then absorbing it in an alkali, or by using a reducing agent such as ammonia, hydrogen, carbon monoxide, or hydrocarbon. It is removed by a method such as conversion to nitrogen. However, according to the former method, it is necessary to treat the generated alkaline waste liquid to prevent pollution. On the other hand, according to the latter method, when ammonia is used as the reducing agent, it reacts with the sulfur oxide in the exhaust gas to form salts, and as a result, the reducing activity of the catalyst is lowered. Even when hydrogen, carbon monoxide, hydrocarbon, etc. are used as a reducing agent, they react with oxygen present in a higher concentration than nitrogen oxide present in a low concentration, and therefore, in order to reduce nitrogen oxides. Has a problem that it requires a large amount of reducing agent.

【0003】このため、最近では、還元剤の不存在下に
窒素酸化物を触媒にて直接分解する方法も提案されてい
るが、しかし、従来知られているそのような触媒は、窒
素酸化物分解活性が低いために実用に供し得ないという
問題がある。また、炭化水素や含酸素化合物を還元剤と
して用いる新たな窒素酸化物接触還元用触媒として、H
型ゼオライトやCuイオン交換ZSM−5等が提案され
ている。特に、H型ZSM−5(SiO2 /Al2 3
モル比=30〜40)が最適であるとされている。しか
しながら、このようなH型ZSM−5でも、未だ十分な
還元活性を有するものとはいい難く、特に、ガス中に水
分が含まれるとき、ゼオライト構造体中のアルミニウム
が脱アルミニウムして、性能が急激に低下するので、一
層高い還元活性を有し、更に、ガスが水分を含有する場
合にも、すぐれた耐久性とを有する窒素酸化物接触還元
用触媒が望まれている。
For this reason, recently, a method of directly decomposing a nitrogen oxide with a catalyst in the absence of a reducing agent has been proposed. However, such a conventionally known catalyst has been proposed as a nitrogen oxide. There is a problem that it cannot be put to practical use because of its low decomposition activity. In addition, as a new catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon or an oxygen-containing compound as a reducing agent, H 2
Type zeolite and Cu ion exchange ZSM-5 have been proposed. In particular, H type ZSM-5 (SiO 2 / Al 2 O 3
The molar ratio = 30-40) is said to be optimal. However, it is difficult to say that even such H-type ZSM-5 has sufficient reducing activity, and in particular, when water is contained in the gas, aluminum in the zeolite structure is dealuminated, resulting in poor performance. A catalyst for catalytic reduction of nitrogen oxides, which has a much higher reducing activity and has excellent durability even when the gas contains water, is desired because of its rapid decrease.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述したよ
うな事情に鑑みてなされたものであつて、その目的とす
るところは、炭化水素や含酸素化合物を還元剤として用
いる場合に、酸素の共存下においても、そして、特に、
酸素及び水分の共存下においても、窒素酸化物が炭化水
素や含酸素化合物と選択的に反応するため、多量の還元
剤を用いることなく、排ガス中の窒素酸化物を効率よく
還元することができ、しかも、水分の存在下において
も、耐久性にすぐれる窒素酸化物接触還元用触媒を提供
するにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to use oxygen when a hydrocarbon or an oxygen-containing compound is used as a reducing agent. In the coexistence of
Even in the presence of oxygen and water, nitrogen oxides selectively react with hydrocarbons and oxygen-containing compounds, so nitrogen oxides in exhaust gas can be efficiently reduced without using a large amount of reducing agent. Moreover, it is to provide a catalyst for catalytic reduction of nitrogen oxides, which has excellent durability even in the presence of water.

【0005】[0005]

【課題を解決するための手段】本発明による第一の炭化
水素及び/又は含酸素化合物を還元剤として用いる窒素
酸化物接触還元用触媒は、酸化アルミニウム、二酸化ケ
イ素、二酸化チタン、酸化ジルコニウム、五酸化ニオブ
及び酸化第二スズよりなる群から選ばれる少なくとも1
種の金属酸化物に遷移金属をイオン交換担持させたこと
を特徴とする。
A catalyst for catalytic reduction of nitrogen oxides using the first hydrocarbon and / or oxygen-containing compound according to the present invention as a reducing agent is aluminum oxide, silicon dioxide, titanium dioxide, zirconium oxide, pentaoxide. At least one selected from the group consisting of niobium oxide and stannic oxide
It is characterized in that a transition metal is ion-exchanged and supported on one kind of metal oxide.

【0006】本発明において担体又は基体として用いる
上記金属酸化物、即ち、酸化アルミニウム、二酸化ケイ
素、二酸化チタン、酸化ジルコニウム、五酸化ニオブ及
び酸化第二スズは、表面に水酸基を有し、その水酸基の
有する水素イオンを遷移金属陽イオン又は遷移金属を構
成成分とする錯体陽イオンとイオン交換することができ
る。そのイオン交換容量は、金属酸化物の種類とその調
製条件にもよるが、通常、0.5mmol当量/gである。
The above-mentioned metal oxides used as a carrier or substrate in the present invention, namely, aluminum oxide, silicon dioxide, titanium dioxide, zirconium oxide, niobium pentoxide and stannic oxide have a hydroxyl group on the surface thereof. The hydrogen ion contained therein can be ion-exchanged with a transition metal cation or a complex cation having a transition metal as a constituent component. The ion exchange capacity is usually 0.5 mmol equivalent / g, though it depends on the kind of metal oxide and the preparation conditions.

【0007】本発明において、上記金属酸化物は、種々
の市販品を用いることができるが、必要に応じて、その
金属の水溶性塩の水溶液に中和剤を加えて加水分解させ
るか、又は加熱条件下に加水分解させて、沈澱を生成さ
せ、その沈澱を分離し、十分に水洗した後、焼成するこ
とによつて得ることができる。本発明において用いる遷
移金属は、長周期律型の周期律表におけるIIIA、IVA、
VA、VIIA、VIII及びIB属に属する元素をいい、具体
的には、例えば、第4周期のSc、Ti、V、Cr、M
n、Fe、Co、Ni及びCu、第5周期のY、Zr、
Nb、Mo、Tc、Ru、Rh、Pd及びAg、第6周
期のLa族、Hf、Ta、W、Re、Os、Ir、Pt
及びAu等ををげることができる。これらのなかで、水
溶性陽イオンを得ることができない金属については、例
えば、白金のように、金属を4価アンミン錯体や2価ア
ンミン錯体のように、錯陽イオン化して、イオン交換に
供すればよい。
In the present invention, various commercially available products can be used as the above-mentioned metal oxide. If necessary, a neutralizing agent is added to an aqueous solution of a water-soluble salt of the metal to cause hydrolysis, or It can be obtained by hydrolyzing under heating conditions to form a precipitate, separating the precipitate, washing thoroughly with water, and then calcining. The transition metal used in the present invention, IIIA in the periodic table of the long periodic type, IVA,
An element belonging to the VA, VIIA, VIII and IB group, specifically, for example, Sc, Ti, V, Cr, M of the 4th period.
n, Fe, Co, Ni and Cu, the fifth period Y, Zr,
Nb, Mo, Tc, Ru, Rh, Pd and Ag, La group of the sixth period, Hf, Ta, W, Re, Os, Ir, Pt
And Au can be removed. Among these, for the metal that cannot obtain a water-soluble cation, for example, platinum is used for complex ionization such as a tetravalent ammine complex or a divalent ammine complex and then subjected to ion exchange. do it.

【0008】本発明において、イオン交換の方法は、特
に限定されるものではなく、従来より知られている通常
の方法によつて行なうことができる。例えば、前記金属
酸化物を水に分散させ、十分な攪拌下に、イオン交換す
る遷移金属の陽イオン又は錯陽イオンが沈澱を生じず、
且つ、できるだけ高いpHに保ちつつ、陽イオン又は錯陽
イオンを加えればよい。このように、イオン交換におい
て、イオン交換する遷移金属の陽イオン又は錯陽イオン
が沈澱を生じず、且つ、できるだけ高いpHに保つことに
よつて、水酸基の有する水素イオンとイオン交換するイ
オンの交換容量を増加させることができる。
In the present invention, the ion exchange method is not particularly limited and can be carried out by a conventionally known ordinary method. For example, the metal oxide is dispersed in water, and the cation or complex cation of the transition metal to be ion-exchanged does not cause precipitation under sufficient stirring,
In addition, cations or complex cations may be added while keeping the pH as high as possible. Thus, in the ion exchange, the cation or complex cation of the transition metal to be ion-exchanged does not cause precipitation, and the ion exchange with the hydrogen ion of the hydroxyl group is carried out by keeping the pH as high as possible. The capacity can be increased.

【0009】かかるイオン交換の進行に伴つて、交換さ
れた水素イオンによつて液のpHが低下するので、アンモ
ニア等の中和剤を加え、pHを前述したように高く維持し
ながら、イオン交換するのがよい。また、交換する金属
イオンが銅、ニッケル等の場合のように、加熱によつて
加水分解しないときは、イオン交換速度を速めるため
に、温度を上昇させた条件下にイオン交換を行なつても
よい。また、イオン交換するイオン種は単一のものでも
よいが、二種以上の混合物であつてもよい。
As the ion exchange proceeds, the pH of the liquid is lowered by the exchanged hydrogen ions. Therefore, a neutralizing agent such as ammonia is added to maintain the pH high as described above, and the ion exchange is performed. Good to do. When the metal ion to be exchanged is not hydrolyzed by heating as in the case of copper, nickel, etc., the ion exchange may be performed under the condition of increasing the temperature in order to increase the ion exchange rate. Good. The ion species to be ion-exchanged may be a single species or a mixture of two or more species.

【0010】かかるイオン交換の後、基体である金属酸
化物を濾過水洗し、乾燥し、必要に応じて、200〜8
00℃に焼成すれば、本発明に従つて、金属酸化物に遷
移金属をイオン交換させて担持させてなる窒素酸化物接
触還元用触媒を得ることができる。また、貴金属系は、
水素等によつて、更に還元することが好ましい。本発明
において、前記金属酸化物にイオン交換によつて担持さ
せる遷移金属イオンの量は、その金属イオンの種類によ
つて異なるが、通常、卑金属は0.1〜2.0重量%、貴金
属は0.01〜5重量%の範囲が好ましい。かかる担持量
を越えて過多に遷移金属イオンを基体に担持させても、
得られる触媒において、そのような担持量の増大に応じ
た効果を得ることができないのみならず、酸素が共存す
る反応系においては、酸素による炭化水素や含酸素化合
物の消耗が多くなるので好ましくない。一方、担持量が
上記よりも少ないときは、触媒の還元活性を十分に向上
させることができない。
After the ion exchange, the substrate metal oxide is filtered, washed with water and dried, and if necessary, 200 to 8
When calcined at 00 ° C., a catalyst for catalytic reduction of nitrogen oxides, which is obtained by carrying out ion exchange of a transition metal on a metal oxide and supporting it, can be obtained according to the present invention. In addition, precious metals are
Further reduction with hydrogen or the like is preferable. In the present invention, the amount of the transition metal ion to be carried on the metal oxide by ion exchange varies depending on the kind of the metal ion, but usually the base metal is 0.1 to 2.0% by weight, and the noble metal is The range of 0.01 to 5% by weight is preferable. Even if the transition metal ions are excessively supported on the substrate in excess of the supported amount,
In the obtained catalyst, not only the effect corresponding to the increase of the supported amount cannot be obtained, but also in the reaction system in which oxygen coexists, the consumption of hydrocarbons and oxygen-containing compounds by oxygen increases, which is not preferable. . On the other hand, when the supported amount is less than the above, the reducing activity of the catalyst cannot be sufficiently improved.

【0011】イオン交換担持させた触媒が通常の含浸法
によつて調製したものに比較して高活性である理由は必
ずしも詳らかではないが、分散度が極めて高いこと、酸
化物に比べて酸化能が低く、本反応において選択性を高
めることができること等が考えられる。また、貴金属系
については、貴金属粒子径が含浸法に比べて小さく、そ
れが選択性を高めていると考えられる。
It is not always clear why the ion-exchange-supported catalyst has a higher activity than that prepared by a conventional impregnation method, but it has a very high dispersity and an oxidizing ability higher than that of an oxide. Is low, and it is considered that the selectivity can be increased in this reaction. Further, regarding the noble metal system, the noble metal particle size is smaller than that of the impregnation method, which is considered to enhance the selectivity.

【0012】本発明による触媒は、従来、知られている
成形方法によつて、ハニカム状、球状等の種々の形状に
成形することができる。この成形の際に、成形助剤、成
形体補強体、無機繊維、有機バインダー等を適宜配合し
てもよい。また、予め成形された基材上にウオツシユコ
ート法等によつて被覆担持させることもできる。更に、
従来、知られているその他の触媒の調製法によることも
できる。
The catalyst according to the present invention can be formed into various shapes such as a honeycomb shape and a spherical shape by a conventionally known forming method. At the time of this molding, a molding aid, a molded body reinforcing material, an inorganic fiber, an organic binder and the like may be appropriately mixed. It is also possible to carry the coating on a preformed substrate by a washcoat method or the like. Furthermore,
It is also possible to use other conventionally known catalyst preparation methods.

【0013】本発明の実施において、還元剤として使用
する炭化水素の具体例としては、気体状のものとして、
メタン、エタン、ブチレン等の炭化水素ガスが、液体状
のものとして、ペンタン、ヘキサン、オクタン、ヘプタ
ン、ベンゼン、トルエン、キシレン等の単一成分系の炭
化水素や、ガソリン、灯油、軽油、重油等の鉱油系炭化
水素等が挙げられる。特に好適な炭化水素としては、ア
セチレン、メチルアセチレン、1−ブチン等の低級アル
キン、エチレン、プロピレン、イソブチレン、1−ブテ
ン、2−ブテン等の低級アルケン、ブタジエン、イソプ
レン等の低級ジエン、プロパン、ブタン等の低級アルカ
ン等が挙げられる。
In the practice of the present invention, specific examples of the hydrocarbon used as the reducing agent include those in a gaseous state,
Hydrocarbon gas such as methane, ethane, butylene, etc. in liquid form, such as pentane, hexane, octane, heptane, benzene, toluene, xylene, etc., single component hydrocarbons, gasoline, kerosene, light oil, heavy oil, etc. Mineral oil-based hydrocarbons and the like. Particularly preferred hydrocarbons include lower alkynes such as acetylene, methylacetylene and 1-butyne, lower alkenes such as ethylene, propylene, isobutylene, 1-butene and 2-butene, lower dienes such as butadiene and isoprene, propane and butane. And lower alkanes and the like.

【0014】炭化水素の好適な添加量は、その種類によ
つて異なるが、窒素酸化物に対するモル比にて0.1〜2
程度である。0.1未満であるときは、十分な還元活性を
得ることができず、他方、モル比が2を越えるときは、
未反応の炭化水素の排出量が多くなるために、これを回
収するための後処理が必要となる。また、本発明の実施
において還元剤として使用する含酸素化合物とは、酸素
元素を分子内に有する有機化合物のことである。その具
体例としては、メチルアルコール、エチルアルコール、
プロピルアルコール、オクチルアルコール等のアルコー
ル類、ジメチルエーテル、ジエチルエーテル、ジプロピ
ルエーテル等のエーテル類、酢酸メチル、酢酸エチル、
油脂類等のエステル類、アセトン、メチルエチルケトン
等のケトン類等が挙げられる。好適な含酸素化合物とし
ては、メチルアルコール、エチルアルコール等の低級ア
ルコールが挙げられる。
The suitable amount of hydrocarbon added varies depending on the kind, but is 0.1 to 2 in terms of molar ratio with respect to nitrogen oxides.
It is a degree. When it is less than 0.1, sufficient reducing activity cannot be obtained, while when the molar ratio exceeds 2,
Since the amount of unreacted hydrocarbons emitted is large, a post-treatment for recovering the unreacted hydrocarbons is required. The oxygen-containing compound used as a reducing agent in the practice of the present invention is an organic compound having an oxygen element in its molecule. Specific examples thereof include methyl alcohol, ethyl alcohol,
Alcohols such as propyl alcohol and octyl alcohol, ethers such as dimethyl ether, diethyl ether and dipropyl ether, methyl acetate, ethyl acetate,
Examples thereof include esters such as oils and fats and ketones such as acetone and methyl ethyl ketone. Suitable oxygen-containing compounds include lower alcohols such as methyl alcohol and ethyl alcohol.

【0015】上記炭化水素及び含酸素化合物は、それぞ
れ一種を単独で用いてもよく、必要に応じて二種以上併
用してもよい。また、炭化水素と含酸素化合物とを一種
又は二種以上併用するようにしてもよい。尚、排ガス中
に存在する燃料等の未燃焼物乃至不完全燃焼生成物、即
ち、炭化水素類やパテイキユレート類等も還元剤として
有効であり、これらも本発明における炭化水素に含まれ
る。このことから、見方を変えれば、本発明による触媒
は、排ガス中の炭化水素類やパテイキユレート類等の減
少或いは除去触媒としても有用であるということができ
る。
The above hydrocarbons and oxygen-containing compounds may be used alone or in combination of two or more if necessary. Further, the hydrocarbon and the oxygen-containing compound may be used alone or in combination of two or more. It should be noted that unburned substances such as fuel and incomplete combustion products existing in the exhaust gas, that is, hydrocarbons and patty chelates are also effective as reducing agents, and these are also included in the hydrocarbon of the present invention. From this point of view, it can be said that the catalyst according to the present invention is also useful as a catalyst for reducing or removing hydrocarbons, patty chelates and the like in exhaust gas.

【0016】上記還元剤が窒素酸化物に対して選択的還
元反応を示す温度は、含酸素化合物<アルキン<アルケ
ン<芳香族系炭化水素<アルカンの順に高くなる。ま
た、同系の炭化水素においては、炭素数が大きくなるに
従つて、その温度は低くなる。本発明による触媒が窒素
酸化物に対して還元活性を示す最適な温度は、使用する
還元剤や触媒種により異なるが、通常、100〜800
℃である。この温度領域においては、空間速度(SV)
500〜100000程度で排ガスを流通させることが
好ましい。本発明において特に好適な温度領域は200
〜600℃である。
The temperature at which the reducing agent shows a selective reduction reaction with respect to nitrogen oxides increases in the order of oxygen-containing compound <alkyne <alkene <aromatic hydrocarbon <alkane. Further, in the hydrocarbons of the same system, the temperature becomes lower as the carbon number becomes larger. The optimum temperature at which the catalyst according to the present invention exhibits reduction activity for nitrogen oxides varies depending on the reducing agent and the catalyst species used, but is usually 100 to 800.
℃. In this temperature range, space velocity (SV)
It is preferable to circulate the exhaust gas at about 500 to 100,000. In the present invention, a particularly suitable temperature range is 200
~ 600 ° C.

【0017】[0017]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
The present invention will be described below with reference to examples.
The present invention is not limited to these examples.

【0018】(1)触媒の調製 実施例1 γ−アルミナ粉末(住友化学社製A−11)50gをイ
オン交換水250ml中に投入し、これに(1+5)塩酸
を加えて、pHを5.0とした。これに十分な攪拌下に、硝
酸銅(Cu(NO3)2 ・3H2 O)0.95gをイオン交
換水50mlに溶解させてなるCuイオン水溶液を加え、
Cuイオン交換を行なつた。この間、pHの低下に伴つ
て、2重量%アンモニア水を加えて、pHを5.0に維持し
た。このようにして、所定のCuイオン水溶液を加えた
後、2時間攪拌した。
(1) Preparation of catalyst Example 1 50 g of γ-alumina powder (A-11 manufactured by Sumitomo Chemical Co., Ltd.) was put into 250 ml of ion-exchanged water, and (1 + 5) hydrochloric acid was added thereto to adjust the pH to 5. It was set to 0. Under sufficient agitation to, copper nitrate (Cu (NO 3) 2 · 3H 2 O) 0.95g was dissolved in ion-exchanged water 50 ml Cu ion aqueous solution was added comprising,
Cu ion exchange was performed. During this period, the pH was maintained at 5.0 by adding 2% by weight aqueous ammonia as the pH decreased. In this way, a predetermined Cu ion aqueous solution was added and then stirred for 2 hours.

【0019】次いで、このようにしてイオン交換させた
γ−アルミナ粉末を濾過し、pH5.0の硝酸水溶液にて水
洗し、120℃で18時間乾燥させた後、500℃で4
時間焼成して、Cuイオン担持アルミナ触媒粉末(Cu
イオン担持量0.5重量%)を得た。この粉末50gにシ
リカゾル(日産化学社製スノーテツクスN)25gを加
え、水にて粘度を調整し、ウオツシユ・コート用スラリ
ーを得た。このスラリーを1.25mmピツチのコージユラ
イト社製のハニカム(以下、このハニカムを単にハニカ
ムと称する。)に塗布して、触媒を担持させ、試作サン
プル(A−1)を得た。ハニカムへの触媒の担持量は、
ハニカム1cc当たり0.103gであつた。
Then, the γ-alumina powder thus ion-exchanged is filtered, washed with an aqueous nitric acid solution having a pH of 5.0, dried at 120 ° C. for 18 hours, and then at 500 ° C. for 4 hours.
After being calcined for a time, Cu ion-supported alumina catalyst powder (Cu
The amount of supported ions was 0.5% by weight). To 50 g of this powder, 25 g of silica sol (Snowtex N made by Nissan Chemical Co., Ltd.) was added, and the viscosity was adjusted with water to obtain a slurry for wash coat. This slurry was applied on a 1.25 mm pitch honeycomb manufactured by Kojilulite Co., Ltd. (hereinafter, this honeycomb is simply referred to as a honeycomb) to support a catalyst to obtain a trial sample (A-1). The amount of catalyst loaded on the honeycomb is
It was 0.103 g per 1 cc of honeycomb.

【0020】実施例2 γ−アルミナ粉末(住友化学社製A−11)50gをイ
オン交換水100ml中に投入し、これに更に塩化第二ス
ズ(SnCl4 ・xH2 O、SnCl4 として7.6%)
4.55gを加え、加熱沸騰させて、加水分解させた。固
形分をイオン交換水にて洗浄した後、500℃で4時間
焼成して、SnO2 /Al2 3 重量比2/98の金属
酸化物混合物粉末を得た。
Example 2 50 g of γ-alumina powder (A-11 manufactured by Sumitomo Chemical Co., Ltd.) was put into 100 ml of ion-exchanged water, and stannic chloride (SnCl 4 .xH 2 O, SnCl 4 ) was further added thereto. 6%)
4.55 g was added and heated to boiling for hydrolysis. The solid content was washed with ion-exchanged water and then calcined at 500 ° C. for 4 hours to obtain a metal oxide mixture powder having a SnO 2 / Al 2 O 3 weight ratio of 2/98.

【0021】この金属酸化物粉末50gをイオン交換水
250ml中に投入し、これに10重量%アンモニア水を
加えて、pHを6.0とした。これに十分な攪拌下に、硝酸
コバルト(Co(NO3)2 ・6H2 O)1.24gをイオ
ン交換水50mlに溶解させてなるCoイオン水溶液を加
え、Coイオン交換を行なつた。この間、2重量%アン
モニア水を加えて、pHを所定値に維持した。このように
して、所定のCoイオン水溶液を加えた後、更に、2時
間攪拌を続けた。これより以下、実施例1と同様にし
て、Coイオン担持SnO2 −Al2 3触媒粉末(C
oイオン担持量0.5重量%)を得、これを用いて、試作
サンプル(A−2)を得た。ハニカムへの触媒の担持量
は、ハニカム1cc当たり0.133gであつた。
50 g of this metal oxide powder was put into 250 ml of ion-exchanged water, and 10 wt% ammonia water was added thereto to adjust the pH to 6.0. Under sufficient stirring, a Co ion aqueous solution prepared by dissolving 1.24 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) in 50 ml of deionized water was added to carry out Co ion exchange. During this period, 2% by weight aqueous ammonia was added to maintain the pH at a predetermined value. In this way, after the predetermined Co ion aqueous solution was added, stirring was continued for 2 hours. Thereafter, in the same manner as in Example 1, Co ion-supported SnO 2 —Al 2 O 3 catalyst powder (C
The amount of o-ion supported was 0.5% by weight), and a trial sample (A-2) was obtained using this. The amount of catalyst loaded on the honeycomb was 0.133 g per 1 cc of the honeycomb.

【0022】実施例3 γ−アルミナ粉末(住友化学社製A−11)50gをイ
オン交換水100ml中に投入し、これに更に五塩化ニオ
ブの塩酸水溶液(NbCl5 として4.1g)50mlを加
え、加熱沸騰させて、加水分解させた。固形分をイオン
交換水にて洗浄した後、500℃で4時間焼成して、N
2 5 /Al2 3 重量比2/98の金属酸化物混合
物粉末を得た。
Example 3 50 g of γ-alumina powder (A-11 manufactured by Sumitomo Chemical Co., Ltd.) was put into 100 ml of ion-exchanged water, and 50 ml of a hydrochloric acid aqueous solution of niobium pentachloride (4.1 g as NbCl 5 ) was further added thereto. , Heated to boiling and hydrolyzed. After washing the solid content with ion-exchanged water, the solid content is baked at 500 ° C. for 4 hours to obtain N
A metal oxide mixture powder having a b 2 O 5 / Al 2 O 3 weight ratio of 2/98 was obtained.

【0023】この金属酸化物粉末50gをイオン交換水
250ml中に投入し、これに10重量%アンモニア水を
加えて、pHを6.0とした。これに十分な攪拌下に、硝酸
ニツケル(Ni(NO3)2 ・6H2 O)1.24gをイオ
ン交換水50mlに溶解させてなるNiイオン水溶液を加
え、Niイオン交換を行なつた。この間、2重量%アン
モニア水を加えて、pHを所定値に維持した。このように
して、所定のNiイオン水溶液を加えた後、更に、2時
間攪拌を続けた。これより以下、実施例1と同様にし
て、Niイオン担持Nb2 5 −Al2 3 触媒粉末
(Niイオン担持量0.5重量%)を得、これを用いて、
試作サンプル(A−3)を得た。ハニカムへの触媒の担
持量は、ハニカム1cc当たり0.126gであつた。
50 g of this metal oxide powder was added to ion-exchanged water.
Pour into 250 ml and add 10 wt% ammonia water to it.
In addition, the pH was 6.0. With sufficient stirring for this, nitric acid
Nickel (Ni (NO3)2・ 6H2O) 1.24 g
Solution of Ni ion dissolved in 50 ml of water
Well, Ni ion exchange was performed. During this period, 2% by weight
Monia water was added to maintain the pH at the specified value. in this way
Then, after adding a predetermined Ni ion aqueous solution, at 2:00
The stirring was continued for a while. Hereafter, in the same manner as in Example 1,
Ni Ni-supported Nb2OFive-Al2O 3Catalyst powder
(Amount of Ni ion supported: 0.5% by weight) was obtained, and using this,
A prototype sample (A-3) was obtained. Supporting catalyst to honeycomb
The holding amount was 0.126 g per 1 cc of honeycomb.

【0024】実施例4 シリカ粉末(富士デビソン社製サイロイド800)50
gをイオン交換水250ml中に投入し、これに十分な攪
拌下に、四価白金アンミン錯体水溶液(Ptとして5×
10-4g/l)50gを加えて、白金アンミン錯イオン
交換を行なつた。この間、2重量%アンモニア水を加え
て、pHを7.0に維持した。以下、実施例1と同様にし
て、Ptを担持させたSiO2 触媒粉末(Pt担持量0.
05重量%)を得、これを用いて、試作サンプル(A−
4)を得た。ハニカムへの触媒の担持量は、ハニカム1
cc当たり0.097gであつた。
Example 4 Silica powder (Cyroid 800 manufactured by Fuji Devison Co., Ltd.) 50
Into 250 ml of ion-exchanged water, the tetravalent platinum ammine complex aqueous solution (5 × as Pt) was added under sufficient stirring.
10 −4 g / l) 50 g was added for platinum ammine complex ion exchange. During this period, 2 wt% aqueous ammonia was added to maintain the pH at 7.0. Thereafter, in the same manner as in Example 1, Pt-supported SiO 2 catalyst powder (Pt supported amount:
05% by weight), and using this, a prototype sample (A-
4) was obtained. The loading amount of the catalyst on the honeycomb is 1
It was 0.097 g per cc.

【0025】実施例5 メタチタン酸(TiO2 ・H2 O)150g(酸化チタ
ンとして60g)を500℃で3時間焼成して、比表面
積117m2/gのアナターセ型酸化チタンを得た。これ
を水300mlに加え、攪拌しながら、これに2重量%ア
ンモニア水を加え、pHを2.0とし、濾過後、十分にイオ
ン交換水にて洗浄し、120℃で18時間乾燥させた。
Example 5 150 g of metatitanic acid (TiO 2 .H 2 O) (60 g of titanium oxide) was calcined at 500 ° C. for 3 hours to obtain anatase type titanium oxide having a specific surface area of 117 m 2 / g. This was added to 300 ml of water, 2% by weight aqueous ammonia was added to this with stirring to adjust the pH to 2.0, and after filtration, it was thoroughly washed with ion-exchanged water and dried at 120 ° C. for 18 hours.

【0026】得られた粉末50gをイオン交換水250
ml中に投入し、これに十分な攪拌下に、硝酸第二鉄(F
e(NO3)2 ・6H2 O)1.57gをイオン交換水50
mlに溶解させてなるFeイオン水溶液を加え、Feイオ
ン交換を行なつた。この間、pHを所定値に維持した。こ
のようにして、所定のFeイオン水溶液を加えた後、更
に、2時間攪拌した。
50 g of the obtained powder was added to ion-exchanged water 250
It is poured into ml, and with sufficient stirring, ferric nitrate (F
e (NO 3) 2 · 6H 2 O) 1.57g of deionized water 50
Fe ion aqueous solution dissolved in ml was added to carry out Fe ion exchange. During this time, the pH was maintained at a predetermined value. In this way, after the predetermined Fe ion aqueous solution was added, the mixture was further stirred for 2 hours.

【0027】この後、固形分を濾過し、pH2.0の硝酸水
溶液にて洗浄し、120℃で12時間乾燥させた後、5
00℃で4時間焼成して、Fe(III)イオン交換TiO
2 触媒粉末(Feイオン担持量0.5重量%)を得た。実
施例1と同様にして、これを用いて、試作サンプル(A
−5)を得た。ハニカムへの触媒の担持量は、ハニカム
1cc当たり0.115gであつた。
Thereafter, the solid content was filtered, washed with an aqueous nitric acid solution having a pH of 2.0, and dried at 120 ° C. for 12 hours, and then 5
Fe (III) ion-exchanged TiO by firing at 00 ° C for 4 hours
Two catalyst powders (Fe ion supported amount: 0.5% by weight) were obtained. This is used in the same manner as in Example 1 to make a prototype sample (A
-5) was obtained. The amount of catalyst loaded on the honeycomb was 0.115 g per 1 cc of the honeycomb.

【0028】実施例6 γ−アルミナ粉末(住友化学社製A−11)50gをイ
オン交換水250ml中に投入し、これに(1+5)塩酸
を加えて、pHを6.0とした。これに十分な攪拌下に、硝
酸ランタン(La(NO3)3 ・6H2 O)0.78gをイ
オン交換水50mlに溶解させてなるLaイオン水溶液を
加え、Laイオン交換を行なつた。この間、pHの低下に
伴つて、2重量%アンモニア水を加えて、pHを6.0に維
持した。このようにして、所定のLaイオン水溶液を加
えた後、更に、2時間攪拌した。
Example 6 50 g of γ-alumina powder (A-11 manufactured by Sumitomo Chemical Co., Ltd.) was placed in 250 ml of ion-exchanged water, and (1 + 5) hydrochloric acid was added to adjust the pH to 6.0. With sufficient stirring, 0.78 g of lanthanum nitrate (La (NO 3 ) 3 .6H 2 O) was dissolved in 50 ml of deionized water to add a La ion aqueous solution to carry out La ion exchange. During this period, the pH was maintained at 6.0 by adding 2% by weight aqueous ammonia as the pH decreased. In this way, after adding a predetermined La ion aqueous solution, the mixture was further stirred for 2 hours.

【0029】次いで、固形分を濾過し、pH6.0の硝酸水
溶液にて水洗し、以下、実施例1と同様にして、La
(III)イオン交換アルミナ触媒粉末(Laイオン担持量
0.5重量%)を得、これを用いて、試作サンプル(A−
6)を得た。ハニカムへの触媒の担持量は、ハニカム1
cc当たり0.137gであつた。
Then, the solid content was filtered and washed with a nitric acid aqueous solution having a pH of 6.0, and then La was washed in the same manner as in Example 1.
(III) Ion-exchange alumina catalyst powder (La ion support amount
0.5% by weight), and using this, a prototype sample (A-
6) was obtained. The loading amount of the catalyst on the honeycomb is 1
It was 0.137 g per cc.

【0030】実施例7 γ−アルミナ粉末(住友化学社製AF−115)50g
をイオン交換水250ml中に投入し、スラリーを調製し
た。このスラリーのpHは4.2であつた。このスラリーに
2重量%のアンモニア水を加えて、pHを5.5とした。別
に、塩化テトラアンミン白金(II)0.09gをイオン交
換水50mlに溶解させてなる〔Pt(NH3)42+イオン交換
水溶液を調製し、これを上記γ−アルミナ粉末のスラリ
ーに、十分な攪拌下に加えて、〔Pt(NH3)42+とアルミ
ナにおける水素イオンとを交換させた。この間、pHの低
下に伴つて、2重量%のアンモニア水を加え、pHを5.5
に維持した。このようにして、所定の塩化テトラアンミ
ン白金(II)水溶液を加えた後、70℃にて2時間攪拌
した。
Example 7 50 g of γ-alumina powder (AF-115 manufactured by Sumitomo Chemical Co., Ltd.)
Was poured into 250 ml of ion-exchanged water to prepare a slurry. The pH of this slurry was 4.2. 2% by weight aqueous ammonia was added to this slurry to adjust the pH to 5.5. Separately, 0.09 g of tetraammineplatinum (II) chloride was dissolved in 50 ml of ion-exchanged water to prepare a [Pt (NH 3 ) 4 ] 2+ ion-exchange aqueous solution, which was sufficiently added to the slurry of γ-alumina powder. In addition to vigorous stirring, [Pt (NH 3 ) 4 ] 2+ was exchanged for hydrogen ions in alumina. During this period, as the pH decreased, 2% by weight of ammonia water was added to adjust the pH to 5.5.
Maintained at. In this way, after adding a predetermined tetraammineplatinum (II) chloride aqueous solution, the mixture was stirred at 70 ° C. for 2 hours.

【0031】次いで、このようにしてイオン交換させた
γ−アルミナ粉末を濾過し、pH5.5の硝酸水溶液にて水
洗し、120℃で18時間乾燥させた後、500℃で4
時間焼成し、更に、窒素/水素(4/1)混合気流中、
600℃で4時間還元処理した。以下、実施例1と同様
にして、試作サンプル(A−7)を得た。ハニカムへの
触媒の担持量は、ハニカム1cc当たり0.122gであつ
た。
Then, the γ-alumina powder thus ion-exchanged is filtered, washed with an aqueous nitric acid solution having a pH of 5.5 and dried at 120 ° C. for 18 hours, and then at 500 ° C. for 4 hours.
Firing for an hour, and further in a nitrogen / hydrogen (4/1) mixed gas flow,
Reduction treatment was performed at 600 ° C. for 4 hours. Hereinafter, in the same manner as in Example 1, a trial sample (A-7) was obtained. The amount of catalyst loaded on the honeycomb was 0.122 g per 1 cc of the honeycomb.

【0032】実施例8 実施例7において、塩化テトラアンミン白金(II)0.4
5gを用いた以外は、同様にして、試作サンプル(A−
8)を得た。ハニカムへの触媒の担持量は、ハニカム1
cc当たり0.127gであつた。
Example 8 In Example 7, tetraammineplatinum chloride (II) 0.4
Prototype sample (A-
8) was obtained. The loading amount of the catalyst on the honeycomb is 1
It was 0.127 g per cc.

【0033】実施例9 実施例7において、塩化テトラアンミン白金(II)0.9
0gを用いた以外は、同様にして、試作サンプル(A−
9)を得た。ハニカムへの触媒の担持量は、ハニカム1
cc当たり0.130gであつた。
Example 9 In Example 7, tetraammineplatinum chloride (II) 0.9
Prototype sample (A-
9) was obtained. The loading amount of the catalyst on the honeycomb is 1
It was 0.130 g per cc.

【0034】実施例10 実施例7において、塩化テトラアンミン白金(II)1.8
0gを用いた以外は、同様にして、試作サンプル(A−
10)を得た。ハニカムへの触媒の担持量は、ハニカム
1cc当たり0.134gであつた。
Example 10 In Example 7, tetraammineplatinum (II) chloride 1.8
Prototype sample (A-
10) was obtained. The amount of catalyst loaded on the honeycomb was 0.134 g per 1 cc of the honeycomb.

【0035】実施例11 実施例7において、塩化テトラアンミン白金(II)4.5
gを用いた以外は、同様にして、試作サンプル(A−1
1)を得た。ハニカムへの触媒の担持量は、ハニカム1
cc当たり0.139gであつた。
Example 11 In Example 7, tetraammineplatinum (II) chloride 4.5
Prototype sample (A-1
1) was obtained. The loading amount of the catalyst on the honeycomb is 1
It was 0.139 g per cc.

【0036】実施例12 γ−アルミナ粉末(住友化学社製AF−115)50g
をイオン交換水250ml中に投入し、スラリーを調製し
た。このスラリーのpHは4.2であつた。このスラリーに
(1+10)塩酸を加えて、pHを3.0とした。別に、塩
化ルテニウム水和物(Ruとして41重量%)1.22g
をイオン交換水50mlに溶解させてなるRu3+イオン交
換水溶液を調製し、これを上記γ−アルミナ粉末のスラ
リーに、十分な攪拌下に加えて、Ru3+とアルミナにお
ける水素イオンとを交換させた。この間、2重量%のア
ンモニア水を加え、pHを3.0に維持した。このようにし
て、塩化ルテニウム水溶液を加えた後、70℃にて2時
間攪拌した。
Example 12 50 g of γ-alumina powder (AF-115 manufactured by Sumitomo Chemical Co., Ltd.)
Was poured into 250 ml of ion-exchanged water to prepare a slurry. The pH of this slurry was 4.2. (1 + 10) hydrochloric acid was added to this slurry to adjust the pH to 3.0. Separately, 1.22 g of ruthenium chloride hydrate (41% by weight as Ru)
Was dissolved in 50 ml of ion-exchanged water to prepare a Ru 3+ ion-exchanged aqueous solution, which was added to the slurry of γ-alumina powder under sufficient stirring to exchange Ru 3+ with hydrogen ions in alumina. Let During this time, 2% by weight aqueous ammonia was added to maintain the pH at 3.0. Thus, the ruthenium chloride aqueous solution was added, and then the mixture was stirred at 70 ° C. for 2 hours.

【0037】次いで、このようにしてイオン交換させた
γ−アルミナ粉末を濾過し、pH3.0の硝酸水溶液にて水
洗し、120℃で18時間乾燥させた後、500℃で4
時間焼成し、更に、窒素/水素(4/1)混合気流中、
600℃で4時間還元処理した。以下、実施例1と同様
にして、試作サンプル(A−12)を得た。ハニカムへ
の触媒の担持量は、ハニカム1cc当たり0.113gであ
つた。
Then, the γ-alumina powder thus ion-exchanged is filtered, washed with a nitric acid aqueous solution having a pH of 3.0, dried at 120 ° C. for 18 hours and then at 500 ° C. for 4 hours.
Firing for an hour, and further in a nitrogen / hydrogen (4/1) mixed gas flow,
Reduction treatment was performed at 600 ° C. for 4 hours. Thereafter, a trial sample (A-12) was obtained in the same manner as in Example 1. The amount of catalyst loaded on the honeycomb was 0.113 g per 1 cc of the honeycomb.

【0038】比較例1 日本モービル社製のナトリウム型ZSM−5(SiO2
/Al2 3 モル比=34)を水素置換して、H型ZS
M−5とし、これを実施例2と同様に処理して、比較サ
ンプル(B−1)を得た。このときのスラリーの担持量
は、ハニカム1cc当たり0.128gであつた。
Comparative Example 1 Sodium type ZSM-5 (SiO 2 manufactured by Japan Mobile Co., Ltd.
/ Al 2 O 3 molar ratio = 34) by hydrogen substitution to give H-type ZS
M-5 was treated in the same manner as in Example 2 to obtain a comparative sample (B-1). The amount of the slurry carried at this time was 0.128 g per 1 cc of the honeycomb.

【0039】比較例2 硝酸コバルト(Co(NO3 2 ・6H2 O)1.24g
をイオン交換水75mlに溶解させ、これにγ−アルミナ
粉末(住友化学社製A−11)50gを投入し、十分に
攪拌して、スラリーとした。このスラリーをスプレード
ライヤ(ヤマト科学製、乾燥温度150℃、出口温度5
0℃)に供給し、噴霧乾燥させた。得られた乾燥物を5
00℃にて空気中で4時間焼成し、CuO担持アルミナ
触媒(Cuとしての担持量0.5重量%)を得た。以下、
これを用いて、実施例1と同様にして、試作サンプル
(B−2)を得た。ハニカムへの触媒の担持量は、ハニ
カム1cc当たり0.109gであつた。
[0039] Comparative Example 2 cobalt nitrate (Co (NO 3) 2 · 6H 2 O) 1.24g
Was dissolved in 75 ml of ion-exchanged water, 50 g of γ-alumina powder (A-11 manufactured by Sumitomo Chemical Co., Ltd.) was added, and the mixture was sufficiently stirred to form a slurry. This slurry was spray-dried (manufactured by Yamato Scientific, drying temperature 150 ° C, outlet temperature 5
0 ° C.) and spray dried. The dried product obtained is 5
The mixture was calcined in air at 00 ° C. for 4 hours to obtain a CuO-supported alumina catalyst (support amount as Cu: 0.5% by weight). Less than,
Using this, a trial sample (B-2) was obtained in the same manner as in Example 1. The amount of catalyst loaded on the honeycomb was 0.109 g per 1 cc of the honeycomb.

【0040】比較例3 硝酸ニッケル(Ni(NO3 2 ・6H2 O)1.24g
をイオン交換水75mlに溶解させ、これにγ−アルミナ
粉末(住友化学社製A−11)50gを投入し、十分に
攪拌して、スラリーとした。以下、比較例2と同様にし
て、NiO担持担持アルミナ触媒(Niとしての担持量
0.5重量%)を得た。以下、これを用いて、実施例1と
同様にして、試作サンプル(B−3)を得た。ハニカム
への触媒の担持量は、ハニカム1cc当たり0.112gで
あつた。
[0040] Comparative Example 3 Nickel nitrate (Ni (NO 3) 2 · 6H 2 O) 1.24g
Was dissolved in 75 ml of ion-exchanged water, 50 g of γ-alumina powder (A-11 manufactured by Sumitomo Chemical Co., Ltd.) was added, and the mixture was sufficiently stirred to form a slurry. Hereinafter, in the same manner as in Comparative Example 2, NiO-supported alumina catalyst (supported amount as Ni)
0.5% by weight). Hereinafter, using this, a trial sample (B-3) was obtained in the same manner as in Example 1. The amount of catalyst loaded on the honeycomb was 0.112 g per 1 cc of the honeycomb.

【0041】(2)評価試験 上記試作サンプル(A−1)〜(A−6)並びに比較サ
ンプル(B−1)について、下記の試験条件により窒素
酸化物含有ガスの窒素酸化物接触還元を行ない、窒素酸
化物の窒素への転化率をガスクロマトグラフ法により窒
素を定量して算出した。
(2) Evaluation test The trial production samples (A-1) to (A-6) and the comparative sample (B-1) were subjected to nitrogen oxide catalytic reduction of nitrogen oxide-containing gas under the following test conditions. The conversion rate of nitrogen oxides to nitrogen was calculated by quantifying nitrogen by gas chromatography.

【0042】(試験条件) (1)ガス組成 NO 1容量% O2 10容量% 還元剤 1容量% 水 6容量% He 残部 (SO2 100容量%、A−1、A−2及びA−4の
場合) (2)空間速度 30000又は60000(1/
Hr) (3)反応温度 300℃、400℃、500℃又
は600℃ 結果を表1に示す。
(Test conditions) (1) Gas composition NO 1% by volume O 2 10% by volume Reducing agent 1% by volume Water 6% by volume He balance (SO 2 100% by volume, A-1, A-2 and A-4) (2) Space velocity 30,000 or 60,000 (1 /
Hr) (3) Reaction temperature 300 ° C, 400 ° C, 500 ° C or 600 ° C Table 1 shows the results.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示す結果から明らかなように、本発
明の実施例による触媒は、いずれも窒素酸化物の窒素へ
の転化率が高いのに対して、比較例による触媒は、総じ
て、その窒素への転化率が低い。
As is clear from the results shown in Table 1, all the catalysts according to the examples of the present invention had a high conversion rate of nitrogen oxides to nitrogen, whereas the catalysts according to the comparative examples generally had the same conversion rate. Low conversion to nitrogen.

【0045】[0045]

【発明の効果】以上に詳細に説明したように、本発明に
よる炭化水素や含酸素化合物を還元剤として使用する窒
素酸化物接触還元用触媒は、酸素及び水分の共存下にお
いて、排ガス中の窒素酸化物を効率よく接触還元するこ
とができ、更に、耐久性にすぐれる。
As described in detail above, the catalyst for catalytic reduction of nitrogen oxides using the hydrocarbons and oxygen-containing compounds according to the present invention as a reducing agent is a catalyst for reducing nitrogen in exhaust gas in the presence of oxygen and water. Oxides can be efficiently catalytically reduced, and also have excellent durability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/74 301 A 8017−4G 23/82 A 8017−4G 23/84 301 A 8017−4G 37/30 7821−4G (71)出願人 000174541 堺化学工業株式会社 大阪府堺市戎之町西1丁1番23号 (74)上記3名の代理人 弁理士 牧野 逸郎 (72)発明者 仲辻 忠夫 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内 (72)発明者 清水 宏益 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内 (72)発明者 安川 律 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社中央研究所内 (72)発明者 北爪 章博 埼玉県北葛飾郡杉戸町杉戸2−15−36 (72)発明者 土田 裕志 神奈川県川崎市川崎区京町2−24−6 (72)発明者 川付 正明 埼玉県越谷市大沢2856−1 センチュリー マンション嵯峨103号 (72)発明者 伊藤 建彦 茨城県つくば市東1−1 工業技術院化学 技術研究所内 (72)発明者 浜田 秀昭 茨城県つくば市東1−1 工業技術院化学 技術研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location B01J 23/74 301 A 8017-4G 23/82 A 8017-4G 23/84 301 A 8017-4G 37 / 30 7821-4G (71) Applicant 000174541 Sakai Chemical Industry Co., Ltd. 1-2-1, Nishi, Hinocho-cho, Sakai City, Osaka Prefecture (74) The above three agents Attorney Mitsuno Makino (72) Inventor Tadao Nakatsuji Osaka Prefecture Sakai Chemical Industry Co., Ltd., 5-1, Ebisu-machi, Central Research Laboratory (72) Inventor Hiromasu Shimizu Osaka Prefecture, Sakai-shi, 5-1, Ebisu-machi, Central Research Laboratory (72) Inventor, Yaskawa Ritsu Osaka 5-1, Ebishima-cho, Sakai-shi, Sakai Chemical Industry Co., Ltd. Central Research Institute (72) Inventor Akihiro Kitazume 2-15-36 Sugito, Sugito-cho, Kitakatsushika-gun, Saitama (72) Inventor Hiroshi Tsuchida Kawasaki-shi, Kanagawa 2-24-6 Kyomachi, Saki-ku (72) Masaaki Kawatsuki, Masaaki Kawatsuki 2856-1, Osawa, Koshigaya, Saitama Century Condominium No. 103 Saga (72) Inventor, Takehiko Ito 1-1, East Japan Industrial Technology Institute, Tsukuba City, Ibaraki Prefecture (72) Inventor Hideaki Hamada 1-1 East, Tsukuba, Ibaraki Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化アルミニウム、二酸化ケイ素、二酸化
チタン、酸化ジルコニウム、五酸化ニオブ及び酸化第二
スズよりなる群から選ばれる少なくとも1種の金属酸化
物に遷移金属をイオン交換担持させたことを特徴とする
炭化水素及び/又は含酸素化合物を還元剤として用いる
窒素酸化物接触還元用触媒。
1. A transition metal is ion-exchanged and supported on at least one metal oxide selected from the group consisting of aluminum oxide, silicon dioxide, titanium dioxide, zirconium oxide, niobium pentoxide and stannic oxide. A catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon and / or an oxygen-containing compound as a reducing agent.
【請求項2】金属酸化物に遷移金属としての卑金属を0.
1〜2.0重量%担持させてなることを特徴とする請求項
1記載の窒素酸化物接触還元用触媒。
2. A base metal as a transition metal is added to a metal oxide in an amount of 0.
The catalyst for catalytic reduction of nitrogen oxides according to claim 1, wherein the catalyst is supported in an amount of 1 to 2.0% by weight.
【請求項3】金属酸化物に遷移金属としての貴金属を0.
01〜5重量%担持させてなることを特徴とする請求項
1記載の窒素酸化物接触還元用触媒。
3. A noble metal as a transition metal is added to a metal oxide in an amount of 0.
The catalyst for catalytic reduction of nitrogen oxides according to claim 1, wherein the catalyst is supported in an amount of 01 to 5% by weight.
JP4166166A 1992-06-24 1992-06-24 Catalyst for catalytic reduction of nitrogen oxides Expired - Fee Related JP2609974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166166A JP2609974B2 (en) 1992-06-24 1992-06-24 Catalyst for catalytic reduction of nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166166A JP2609974B2 (en) 1992-06-24 1992-06-24 Catalyst for catalytic reduction of nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH0623270A true JPH0623270A (en) 1994-02-01
JP2609974B2 JP2609974B2 (en) 1997-05-14

Family

ID=15826301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166166A Expired - Fee Related JP2609974B2 (en) 1992-06-24 1992-06-24 Catalyst for catalytic reduction of nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2609974B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337497B1 (en) 1997-05-16 2002-01-08 International Business Machines Corporation Common source transistor capacitor stack
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057777A (en) * 1991-07-03 1993-01-19 Toyota Motor Corp Catalyst for exhaust gas purification
JPH05329369A (en) * 1992-06-01 1993-12-14 Toyota Motor Corp Manufacture of catalyst for exhaust gas purification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057777A (en) * 1991-07-03 1993-01-19 Toyota Motor Corp Catalyst for exhaust gas purification
JPH05329369A (en) * 1992-06-01 1993-12-14 Toyota Motor Corp Manufacture of catalyst for exhaust gas purification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337497B1 (en) 1997-05-16 2002-01-08 International Business Machines Corporation Common source transistor capacitor stack
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Also Published As

Publication number Publication date
JP2609974B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
EP0624393B1 (en) Catalyst for catalytic reduction of nitrogen oxides
EP0532024B1 (en) Catalyst for catalytic reduction of nitrogen oxide
US5336651A (en) Catalysts and methods for denitrization
US20120328500A1 (en) Highly acidic compositions comprising zirconium and silicon oxides and an oxide of at least one other element selected from among titanium, aluminum, tungsten, molybdenum, cerium, iron, tin, zinc, and manganese
JP3430422B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2558568B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2516516B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2618319B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JP2838336B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2558566B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2591703B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JPH07213911A (en) Catalyst for catalytic reduction of nitrogen oxide
JP2609974B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH0768180A (en) Catalyst for catalytic reduction of nox
CN112705220B (en) Catalyst for skeletal isomerization reaction of carbon tetra-alkane, preparation method and application thereof
JPH0884912A (en) High efficiency nitrogen oxide reduction method
JPH07227523A (en) Contact reducing method of nitrogen oxide
JP2558589B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JPH06320008A (en) Catalyst for catalytic reduction of nox
JPH06134305A (en) Heat resistant catalyst and method for using the same
JP2618316B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH0515782A (en) Catalyst for catalytic reduction of nitrogen oxide
JPH09206559A (en) Contact reducing method of nitrogen oxides
JPH09103681A (en) Solid acid catalyst and its manufacture
JPH1094718A (en) Catalytic reelection of nitrogen oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees