JPH06232498A - Distribution feedback type semiconductor laser - Google Patents

Distribution feedback type semiconductor laser

Info

Publication number
JPH06232498A
JPH06232498A JP1748693A JP1748693A JPH06232498A JP H06232498 A JPH06232498 A JP H06232498A JP 1748693 A JP1748693 A JP 1748693A JP 1748693 A JP1748693 A JP 1748693A JP H06232498 A JPH06232498 A JP H06232498A
Authority
JP
Japan
Prior art keywords
layer
refractive index
semiconductor laser
index distribution
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1748693A
Other languages
Japanese (ja)
Other versions
JP3368607B2 (en
Inventor
Takashi Nakabayashi
隆志 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP01748693A priority Critical patent/JP3368607B2/en
Publication of JPH06232498A publication Critical patent/JPH06232498A/en
Application granted granted Critical
Publication of JP3368607B2 publication Critical patent/JP3368607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide the structure of a distribution feedback type semiconductor laser which improves coupling efficiency to an optical fiber. CONSTITUTION:A diffraction lattice layer 4 which allows periodic refraction index variation and allows oscillation by distributively feeding back light is formed between a first guide layer 2a and a first clad layer 3a. A third guide layer 5, which has almost the same thickness as the diffraction lattice layer 4 and almost same refraction index distribution as the average refraction index distribution of the diffraction lattice layer 4 in a direction vertical to the activating layer, is provided on one plane side of the activating layer 1, which is the opposite side to the side whereupon the diffraction lattice layer 4 is formed, and the symmetry of light intensity distribution having the activating layer 1 as the center is ensured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光通信、光情報処理
(光集積回路)等の分野で光源として用いられる半導体
レーザに関し、特に分布帰還型半導体レーザの構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source in the fields of optical communication, optical information processing (optical integrated circuit) and the like, and more particularly to the structure of a distributed feedback semiconductor laser.

【0002】[0002]

【従来の技術】従来、分布帰還型半導体レーザは、単一
モード性が優れ、高速動作に適するため、光通信、光情
報処理(光集積回路)等の情報伝達に光を用いる分野に
おいて、その光源として用いられている。
2. Description of the Related Art Conventionally, distributed feedback semiconductor lasers have excellent single mode characteristics and are suitable for high speed operation. Therefore, in the field of using light for information transmission such as optical communication and optical information processing (optical integrated circuit), It is used as a light source.

【0003】この分布帰還型半導体レーザは、例えばKA
ZUO SAKAI etc."1.5μm Range InGaAsP/InP Distribute
d Feedback Lasers",IEEE J. of Quantum Electronics
vol.QE-18 No.8,pp.1272-1278,1982に示されているよう
に、光導波層となる活性層の上側ないし下側のいずれか
一方に周期的な屈折率変動を持つ回折格子層を作り込む
ことで光を分布的に帰還させ発振を得ている。
This distributed feedback semiconductor laser is, for example, KA
ZUO SAKAI etc. "1.5μm Range InGaAsP / InP Distribute
d Feedback Lasers ", IEEE J. of Quantum Electronics
As shown in vol.QE-18 No.8, pp.1272-1278, 1982, diffraction with a periodic refractive index fluctuation on either the upper side or the lower side of the active layer that becomes the optical waveguide layer. By creating a lattice layer, light is distributed and returned to obtain oscillation.

【0004】一方、一般的な半導体レーザは、活性層か
ら出力される光を伝送路となる光ファイバに結合させて
用いるため、レーザの出力端の光強度分布が、上下、左
右に対称で、かつ光ファイバと同じ円形に近いほどより
効率よく結合できる。
On the other hand, since a general semiconductor laser is used by coupling the light output from the active layer to an optical fiber that serves as a transmission line, the light intensity distribution at the output end of the laser is symmetrical vertically and horizontally, Also, the closer to the same circular shape as the optical fiber, the more efficient the coupling.

【0005】したがって、その構造は例えば図4(a)
に示すように、活性層1に対し垂直方向に第1及び第2
のガイド層2a、2bを設け、さらに第1及び第2のク
ラッド層3a、3bを設けることで、同図(b)に示す
ような活性層1を中心として対称な屈折率分布にし、レ
ーザ出力端面における光強度分布を同図(c)に示しよ
うに対称にしている。
Therefore, the structure is, for example, as shown in FIG.
As shown in FIG.
By providing the guide layers 2a and 2b, and the first and second cladding layers 3a and 3b, a refractive index distribution symmetrical with respect to the active layer 1 as shown in FIG. The light intensity distribution on the end face is symmetrical as shown in FIG.

【0006】これに対し、従来の分布帰還型半導体レー
ザの構造は、図5(a)に示すように、活性層1の上側
(下側であってもよい)に設けられた第1のガイド層2
aと第1のクラッド層3aとの間に回折格子層4を設
け、光をこの回折格子層4で分布的に帰還させることで
発振を得ている。
On the other hand, in the structure of the conventional distributed feedback semiconductor laser, as shown in FIG. 5A, the first guide provided on the upper side of the active layer 1 (may be on the lower side). Layer 2
Oscillation is obtained by providing a diffraction grating layer 4 between a and the first cladding layer 3a and returning light in a distributed manner at the diffraction grating layer 4.

【0007】[0007]

【発明が解決しようとする課題】従来の分布帰還型半導
体レーザは、以上のように活性層の上側あるいは下側の
いずれか一方に回折格子層を設けた構造になっているの
で、このレーザ出力端面における屈折率分布は図5
(b)に示すように活性層を中心として対称にならず、
したがって同図(c)に示すように光強度分布も活性層
を中心にして垂直方向に非対称な分布となり、光ファイ
バへ効率よく結合することができないという課題があっ
た。
Since the conventional distributed feedback semiconductor laser has a structure in which the diffraction grating layer is provided on either the upper side or the lower side of the active layer as described above, this laser output The refractive index distribution on the end face is shown in Fig. 5.
As shown in (b), it is not symmetrical about the active layer,
Therefore, as shown in FIG. 6C, the light intensity distribution is also asymmetric in the vertical direction with the active layer as the center, and there is a problem that it cannot be efficiently coupled to the optical fiber.

【0008】この発明は上記のような課題を解決するた
めになされたもので、光ファイバへの結合効率を向上さ
せる分布帰還型半導体レーザの構造を提供することを目
的としてする。
The present invention has been made to solve the above problems, and an object thereof is to provide a structure of a distributed feedback semiconductor laser which improves the coupling efficiency with an optical fiber.

【0009】[0009]

【課題を解決するための手段】この発明に係る分布帰還
型半導体レーザは、第1のガイド層と第1のクラッド層
との間に、周期的な屈折率変動を有し、光を分布的に帰
還させて発振を得るための回折格子層が形成されている
側の反対側にあたる活性層の他方の表面側に、この回折
格子層の膜厚と略同一の厚さを有し、かつこの回折格子
層の、活性層に対して垂直方向の平均屈折率分布と略同
一の屈折率分布を有する第3のガイド層を設けたことを
特徴としている。
A distributed feedback semiconductor laser according to the present invention has a periodic refractive index variation between a first guide layer and a first cladding layer, and distributes light in a distributed manner. On the other surface side of the active layer, which is the side opposite to the side on which the diffraction grating layer for returning to obtain oscillation is formed, and has a thickness substantially the same as the thickness of this diffraction grating layer, and It is characterized in that a third guide layer of the diffraction grating layer having a refractive index distribution substantially the same as the average refractive index distribution in the direction perpendicular to the active layer is provided.

【0010】なお、この回折格子層は活性層に対して上
側に構成しても下側に構成してもよい。
The diffraction grating layer may be arranged above or below the active layer.

【0011】上記第3のガイド層は、活性層に対して垂
直方向に連続的に変化する屈折率分布を有し、回折格子
層の、活性層に対して垂直方向の屈折率分布と略同一な
屈折率分布を有する単一層であるか、あるいは均一な屈
折率を有し、回折格子層の平均屈折率と略同一な均一な
屈折率を有する単一層であることを特徴としている。
The third guide layer has a refractive index distribution that continuously changes in the direction perpendicular to the active layer, and is substantially the same as the refractive index distribution of the diffraction grating layer in the direction perpendicular to the active layer. A single layer having a uniform refractive index distribution or a single layer having a uniform refractive index and having a uniform refractive index substantially the same as the average refractive index of the diffraction grating layer.

【0012】また、上記第3のガイド層は、上述したよ
うな単一層である場合のほか、それぞれが均一な屈折率
分布を有する、異なる屈折率の複数の膜を積層して構成
され、この回折格子層の、活性層に対して垂直方向の平
均屈折率分布と略同一な屈折率分布を有する多層構造で
あることを特徴としている。
The third guide layer is formed by laminating a plurality of films having different refractive indexes, each of which has a uniform refractive index distribution, in addition to the single layer as described above. The diffraction grating layer has a multilayer structure having a refractive index distribution that is substantially the same as the average refractive index distribution in the direction perpendicular to the active layer.

【0013】[0013]

【作用】この発明における分布帰還型半導体レーザは、
回折格子層が形成されている活性層の一方の表面の反対
側にあたる他方の表面側に、この回折格子層の膜厚と略
同一の厚さを有し、かつこの回折格子層の平均屈折率と
略同一の屈折率を有する第3のガイド層を設けたので、
屈折率分布の非対称性が緩和され、上記活性層を中心と
した光強度分布の対称性が保証される。
The distributed feedback semiconductor laser according to the present invention is
On the other surface side, which is the opposite side of one surface of the active layer on which the diffraction grating layer is formed, has the same thickness as the thickness of this diffraction grating layer, and the average refractive index of this diffraction grating layer. Since the third guide layer having the same refractive index as
The asymmetry of the refractive index distribution is relaxed, and the symmetry of the light intensity distribution around the active layer is guaranteed.

【0014】なお、活性層を中心とした光強度分布の対
称性を保証するために新たに設けられる第3のガイド層
は、活性層に対して垂直方向に材料の組成比を変えるこ
とで、その屈折率分布を連続的に変化させた単一層(屈
折率分布は回折格子層の、活性層に対して垂直方向の平
均屈折率分布と略同一)であることが望ましいが、回折
格子層の平均屈折率と略同一な屈折率であって均一な屈
折率分布を有する単一層や、それぞれが均一な屈折率分
布を有する、異なる屈折率の複数の膜を積層して構成さ
れ、この回折格子層の、活性層に対して垂直方向の平均
屈折率分布と略同一な屈折率分布を有する多層構造によ
り、上記回折格子層の屈折率分布を近似し、活性層を中
心とした屈折率分布の非対称性を緩和する。
The third guide layer newly provided for ensuring the symmetry of the light intensity distribution centered on the active layer is obtained by changing the composition ratio of the material in the direction perpendicular to the active layer. Although it is desirable that the refractive index distribution is a single layer (the refractive index distribution is substantially the same as the average refractive index distribution of the diffraction grating layer in the direction perpendicular to the active layer), This diffraction grating is composed of a single layer having a refractive index substantially equal to the average refractive index and a uniform refractive index distribution, or a plurality of films having different refractive indexes each having a uniform refractive index distribution. The multilayer structure having a refractive index distribution substantially the same as the average refractive index distribution in the direction perpendicular to the active layer approximates the refractive index distribution of the diffraction grating layer, and Alleviates asymmetry.

【0015】[0015]

【実施例】以下、この発明の一実施例を図1乃至図3を
用いて説明する。なお、図中同一部分には同一符号を付
して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the figure, the same parts are designated by the same reference numerals and the description thereof will be omitted.

【0016】図1(a)はこの発明に係る分布帰還型半
導体レーザの第1の実施例による構成を示す断面図であ
る。
FIG. 1A is a sectional view showing the structure of the distributed feedback semiconductor laser according to the first embodiment of the present invention.

【0017】この第1の実施例では、活性層1の上側に
形成された第1のガイド層2aと第1のクラッド層3a
との間に、周期的に屈折率変動を有し、活性層1で発生
した光を分布的に帰還させて発振を得るための回折格子
層4が作り込まれている。
In the first embodiment, the first guide layer 2a and the first cladding layer 3a formed on the upper side of the active layer 1 are formed.
And a diffraction grating layer 4 having a periodic refractive index variation and for returning the light generated in the active layer 1 in a distributed manner to obtain oscillation.

【0018】そして、この活性層1の下側には、上記第
1のガイド層2aと略同一の厚さ及び屈折率を有する第
2のガイド層2bと上記第1のクラッド層3aと略同一
の厚さ及び屈折率を有する第2のクラッド層3bとの間
に、上記回折格子層4の膜厚と略同一の厚さを有し、か
つ回折格子層4の、活性層に対して垂直方向の平均屈折
率分布と略同一の屈折率分布を有する第3のガイド層5
を設けた構造にしている。
Below the active layer 1, a second guide layer 2b having substantially the same thickness and refractive index as the first guide layer 2a and substantially the same as the first cladding layer 3a are provided. Of the diffraction grating layer 4 and the second cladding layer 3b having the same refractive index and the same thickness as the diffraction grating layer 4 and perpendicular to the active layer of the diffraction grating layer 4. Guide layer 5 having a refractive index distribution substantially the same as the average refractive index distribution in the direction
Has a structure.

【0019】これにより、上記活性層1を中心とした垂
直方向の屈折率分布は、同図(b)に示すように非対称
性を緩和することができ、したがって同図(c)に示す
ように活性層1を中心として対称な光強度分布を得るこ
とができる。
As a result, the refractive index distribution in the vertical direction centered on the active layer 1 can alleviate the asymmetry as shown in FIG. 2B, and as shown in FIG. It is possible to obtain a symmetrical light intensity distribution centered on the active layer 1.

【0020】具体的には、1.3μm帯の分布帰還型半
導体レーザを作成する場合、通常半導体基板としてはI
nPが用いられ、第1及び第2のクラッド層3a、3b
がInP、第1及び第2のガイド層2a、2b及び活性
層1が組成の異なるInGaAsPで作製される。
Specifically, when a 1.3 μm band distributed feedback semiconductor laser is to be produced, a semiconductor substrate is usually I.
nP is used, and the first and second cladding layers 3a and 3b are used.
Is made of InP, the first and second guide layers 2a and 2b, and the active layer 1 are made of InGaAsP having different compositions.

【0021】ここで、第3のガイド層5は、材料である
InGaAsPの組成比を変化させることにより、活性
層1に対して垂直方向に連続的に屈折率分布を変化させ
(従来からその屈折率が材料であるInGaAsPの組
成比に依存することが知られている)、活性層に対して
垂直方向の屈折率分布が回折格子層4の平均屈折率分布
と略同一となるように作製する。
Here, the third guide layer 5 continuously changes its refractive index distribution in the direction perpendicular to the active layer 1 by changing the composition ratio of the material InGaAsP (the refractive index of the third guide layer 5 has been changed from the conventional one). It is known that the index depends on the composition ratio of InGaAsP which is a material), and the refractive index distribution in the direction perpendicular to the active layer is made to be substantially the same as the average refractive index distribution of the diffraction grating layer 4. .

【0022】なお、この第3のガイド層5内の各部にお
ける屈折率が活性層1からの距離とともに変化する場
合、材料の組成比も距離とともに変化させることが必要
となるが、このような構造は例えばMOCVD法などに
より高精度で作製することができる。
When the refractive index of each portion in the third guide layer 5 changes with the distance from the active layer 1, it is necessary to change the composition ratio of the materials with the distance. Can be manufactured with high precision by, for example, the MOCVD method.

【0023】次に、この発明に係る分布帰還型半導体レ
ーザの第2の実施例による構造を図2(a)に示す。
Next, the structure of the distributed feedback semiconductor laser according to the second embodiment of the present invention is shown in FIG.

【0024】この第2の実施例において、第3のガイド
層6を設ける位置及び膜厚は上述した第1の実施例と同
じであるが、この第3のガイド層6は、均一な屈折率分
布を有する単一層であることを特徴としている。
In the second embodiment, the position and the film thickness of the third guide layer 6 are the same as those in the first embodiment described above, but the third guide layer 6 has a uniform refractive index. It is characterized by a single layer having a distribution.

【0025】すなわち、垂直方向の屈折率分布は、同図
(b)に示すように活性層1を中心とした非対称性を緩
和できるので、同図(c)に示すように活性層1を中心
としてほぼ対称な光強度分布が得られる。
That is, since the vertical refractive index distribution can alleviate the asymmetry about the active layer 1 as shown in FIG. 2B, the active layer 1 is centered as shown in FIG. As a result, an almost symmetrical light intensity distribution is obtained.

【0026】かつ、この第2の実施例によると上記第1
の実施例のように第3のガイド層5の屈折率分布を連続
的に変化させる必要がないので、第3のガイド層6の作
製が容易にできる。
According to the second embodiment, the first
Since it is not necessary to continuously change the refractive index distribution of the third guide layer 5 as in the embodiment described above, it is possible to easily manufacture the third guide layer 6.

【0027】次に、この発明に係る分布帰還型半導体レ
ーザの第3の実施例による構造を図3(a)に示す。
Next, the structure of the distributed feedback semiconductor laser according to the third embodiment of the present invention is shown in FIG.

【0028】この第3の実施例において、第3のガイド
層7を設ける位置及び全体の膜厚は上述した第1及び第
2の実施例と同じであるが、この第3のガイド層7は、
それぞれが均一な屈折率を有する複数の膜を積層して構
成した多層構造であり、それぞれの屈折率が除々に異な
ることを特徴としている。
In the third embodiment, the position where the third guide layer 7 is provided and the overall film thickness are the same as those in the first and second embodiments described above, but the third guide layer 7 is ,
It is a multi-layer structure formed by laminating a plurality of films each having a uniform refractive index, and is characterized in that the respective refractive indices gradually differ.

【0029】特に、この第3の実施例では第3のガイド
層7を屈折率が徐々に異なる複数の単一層を活性層1に
対して垂直方向に積層して構成し(同図(a))、膜全
体として回折格子層の平均屈折率と略同一の平均屈折率
となるようにしている。
In particular, in the third embodiment, the third guide layer 7 is formed by laminating a plurality of single layers having gradually different refractive indexes in the direction perpendicular to the active layer 1 (FIG. 1 (a)). ), The average refractive index of the entire film is approximately the same as the average refractive index of the diffraction grating layer.

【0030】これにより、この第3の実施例における垂
直方向の屈折率分布は同図(b)に示すように活性層1
を中心とした非対称性を緩和できるので、同図(c)に
示すように活性層1を中心としてほぼ対称な光強度分布
が得られる。
As a result, the vertical refractive index distribution in the third embodiment is as shown in FIG.
Since the asymmetry with respect to the center can be relaxed, a substantially symmetrical light intensity distribution can be obtained about the active layer 1 as shown in FIG.

【0031】したがって、この第3の実施例によると上
記第1の実施例のように第3のガイド層5の屈折率分布
を連続的に変化させる必要がないので、第3のガイド層
7の作製が容易にできる。
Therefore, according to the third embodiment, it is not necessary to continuously change the refractive index distribution of the third guide layer 5 as in the case of the first embodiment. Easy to make.

【0032】なお、上記第1の実施例では1.3μmの
波長帯で、第3のガイド層5としてInGaAsPを用
いた分布帰還型半導体レーザについて説明したが、特に
この波長帯及び材料系の分布帰還型半導体レーザに限る
ものではなく、同様に第3のガイド層5となる材料の組
成比を変えることで屈折率分布を制御し、作製すること
ができる。
In the first embodiment, the distributed feedback semiconductor laser using InGaAsP as the third guide layer 5 in the wavelength band of 1.3 μm has been described. The present invention is not limited to the feedback type semiconductor laser, and similarly, the refractive index distribution can be controlled and manufactured by changing the composition ratio of the material forming the third guide layer 5.

【0033】また、この発明は分布帰還型半導体レーザ
の他の構造、例えばλ/4シフト構造の有無、ストライ
プ幅変調の有無、端面反射率、ストライプ作製方法や埋
め込み構造の差異、活性層の構造などによらず適用でき
ることは明かで、上記各実施例と同様の効果を奏する。
Further, the present invention has another structure of the distributed feedback semiconductor laser, for example, the presence / absence of a λ / 4 shift structure, the presence / absence of stripe width modulation, the end face reflectance, the difference in the stripe forming method and the buried structure, and the structure of the active layer. It is obvious that the present invention can be applied regardless of the above, and has the same effects as those of the above-mentioned respective embodiments.

【0034】[0034]

【発明の効果】以上のようにこの発明によれば、第1の
ガイド層と第1のクラッド層との間に、周期的な屈折率
変動を有し、光を分布的に帰還させて発振を得る回折格
子層が形成されている側の反対側にあたる活性層の他方
の表面側に、この回折格子層の膜厚と略同一の厚さを有
し、かつこの回折格子層の、活性層に対して垂直方向の
平均屈折率分布と略同一の屈折率分布を有する第3のガ
イド層を設けたことにより、上記活性層を中心とした光
強度分布の対称性が保証され、光ファイバへの結合効率
が向上するので、同等の性能を有する従来の分布帰還型
半導体レーザ(例えば図5)に比べ、光ファイバに結合
した光は多くなり、実質的に光出力の増加と同等の効果
がある。
As described above, according to the present invention, there is a periodical refractive index fluctuation between the first guide layer and the first cladding layer, and the light is oscillated by distributed feedback. On the other surface side of the active layer, which is the side opposite to the side on which the diffraction grating layer is formed, the active layer of the diffraction grating layer having a thickness substantially the same as the thickness of this diffraction grating layer is formed. By providing the third guide layer having a refractive index distribution that is substantially the same as the average refractive index distribution in the vertical direction, the symmetry of the light intensity distribution around the active layer is guaranteed, and Since the coupling efficiency is improved, the amount of light coupled to the optical fiber is larger than that of the conventional distributed feedback semiconductor laser having the same performance (for example, FIG. 5), and an effect substantially equivalent to the increase of the optical output is obtained. is there.

【0035】さらに、各種光通信システムにおいては、
光出力が実質的に増加することにより、S/N比の向上
させ、伝送距離を飛躍的に増大させるという効果があ
る。
Further, in various optical communication systems,
The substantial increase in the optical output has the effects of improving the S / N ratio and dramatically increasing the transmission distance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る分布帰還型半導体レーザの第1
の実施例による構成を示す断面図、屈折率分布を示す
図、及び光強度分布を示す図である。
FIG. 1 shows a first distributed feedback semiconductor laser according to the present invention.
FIG. 6 is a cross-sectional view showing a configuration according to the example of FIG. 6, a view showing a refractive index distribution, and a view showing a light intensity distribution.

【図2】この発明に係る分布帰還型半導体レーザの第2
の実施例による構成を示す断面図、屈折率分布を示す
図、及び光強度分布を示す図である。
FIG. 2 is a second view of the distributed feedback semiconductor laser according to the present invention.
FIG. 6 is a cross-sectional view showing a configuration according to the example of FIG. 6, a view showing a refractive index distribution, and a view showing a light intensity distribution.

【図3】この発明に係る分布帰還型半導体レーザの第3
の実施例による構成を示す断面図、屈折率分布を示す
図、及び光強度分布を示す図である。
FIG. 3 is a third view of the distributed feedback semiconductor laser according to the present invention.
FIG. 6 is a cross-sectional view showing a configuration according to the example of FIG. 6, a view showing a refractive index distribution, and a view showing a light intensity distribution.

【図4】一般的な半導体レーザの構成を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing the structure of a general semiconductor laser.

【図5】従来の分布帰還型半導体レーザの構成を示す断
面図である。
FIG. 5 is a cross-sectional view showing the structure of a conventional distributed feedback semiconductor laser.

【符号の説明】[Explanation of symbols]

1…活性層、2a…第1のガイド層、2b…第2のガイ
ド層、3a…第1のクラッド層、3b…第2のクラッド
層、4…回折格子層、5、6、7…第3のガイド層。
1 ... Active layer, 2a ... 1st guide layer, 2b ... 2nd guide layer, 3a ... 1st cladding layer, 3b ... 2nd cladding layer, 4 ... Diffraction grating layer, 5, 6, 7 ... 3 guide layers.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性層の一方の表面側に形成された第1
のガイド層と第1のクラッド層との間に、周期的な屈折
率変動を有し、光を分布的に帰還させて発振を得るため
の回折格子層が作り込まれた分布帰還型半導体レーザに
おいて、 前記活性層の他方の表面側に形成された前記第1のガイ
ド層と略同一の厚さ及び屈折率を有する第2のガイド層
と前記第1のクラッド層と略同一の厚さ及び屈折率を有
する第2のクラッド層の間に、前記回折格子層の膜厚と
略同一の厚さを有し、かつ該回折格子層の、該活性層に
対して垂直方向の平均屈折率分布と略同一の屈折率分布
を有する第3のガイド層を設けたことを特徴とする分布
帰還型半導体レーザ。
1. A first layer formed on one surface of an active layer
Distributed feedback semiconductor laser having a periodic refractive index variation between the first guide layer and the first cladding layer and having a diffraction grating layer for feedbacking light in a distributed manner to obtain oscillation. In the above, the second guide layer formed on the other surface side of the active layer and having the substantially same thickness and the same refractive index as the first guide layer and the first cladding layer, and An average refractive index distribution of the diffraction grating layer in a direction perpendicular to the active layer, having a thickness substantially the same as that of the diffraction grating layer, between the second cladding layers having a refractive index. A distributed feedback semiconductor laser, comprising a third guide layer having a refractive index distribution substantially the same as
【請求項2】 前記第3のガイド層は、前記活性層に対
して垂直方向に連続的に変化する屈折率分布を有し、前
記回折格子層の、前記活性層に対して垂直方向の平均屈
折率分布と略同一な屈折率分布を有する単一層であるこ
とを特徴とする請求項1記載の分布帰還型半導体レー
ザ。
2. The third guide layer has a refractive index profile that continuously changes in the vertical direction with respect to the active layer, and the average of the diffraction grating layers in the vertical direction with respect to the active layer. 2. The distributed feedback semiconductor laser according to claim 1, wherein the distributed feedback semiconductor laser is a single layer having a refractive index distribution substantially the same as the refractive index distribution.
【請求項3】 前記第3のガイド層は、均一な屈折率分
布を有し、前記回折格子層の平均屈折率と略同一な屈折
率を有する単一層であることを特徴とする請求項1記載
の分布帰還型半導体レーザ。
3. The third guide layer is a single layer having a uniform refractive index distribution and a refractive index substantially the same as the average refractive index of the diffraction grating layer. The distributed feedback semiconductor laser described.
【請求項4】 前記第3のガイド層は、それぞれが均一
な屈折率分布を有する、異なる屈折率の複数の膜を積層
して構成され、前記回折格子層の、前記活性層に対して
垂直方向の平均屈折率分布と略同一な屈折率分布を有す
る多層構造であることを特徴とする請求項1記載の分布
帰還型半導体レーザ。
4. The third guide layer is formed by laminating a plurality of films each having a uniform refractive index distribution and having different refractive indexes, and is perpendicular to the active layer of the diffraction grating layer. 2. The distributed feedback semiconductor laser according to claim 1, wherein the distributed feedback semiconductor laser has a multilayer structure having a refractive index distribution substantially the same as the average refractive index distribution in the direction.
JP01748693A 1993-02-04 1993-02-04 Distributed feedback semiconductor laser Expired - Fee Related JP3368607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01748693A JP3368607B2 (en) 1993-02-04 1993-02-04 Distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01748693A JP3368607B2 (en) 1993-02-04 1993-02-04 Distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JPH06232498A true JPH06232498A (en) 1994-08-19
JP3368607B2 JP3368607B2 (en) 2003-01-20

Family

ID=11945336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01748693A Expired - Fee Related JP3368607B2 (en) 1993-02-04 1993-02-04 Distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JP3368607B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234540A (en) * 2002-02-12 2003-08-22 Mitsubishi Electric Corp Distributed feedback laser, semiconductor optical device and method for fabricating distributed feedback laser
JP2015220323A (en) * 2014-05-16 2015-12-07 日本電信電話株式会社 Semiconductor optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234540A (en) * 2002-02-12 2003-08-22 Mitsubishi Electric Corp Distributed feedback laser, semiconductor optical device and method for fabricating distributed feedback laser
JP2015220323A (en) * 2014-05-16 2015-12-07 日本電信電話株式会社 Semiconductor optical device

Also Published As

Publication number Publication date
JP3368607B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US5543353A (en) Method of manufacturing a semiconductor photonic integrated circuit
JP2618875B2 (en) Waveguide
CA1100216A (en) Mode control of heterojunction injection lasers and method of fabrication
JPS61216383A (en) Distributed feedback semiconductor laser
JPS60145685A (en) Distributed feedback type semiconductor device
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
US20020181529A1 (en) Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
US4589117A (en) Butt-jointed built-in semiconductor laser
JP2932868B2 (en) Semiconductor optical integrated device
JP3368607B2 (en) Distributed feedback semiconductor laser
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPS58114476A (en) Semiconductor laser
JPS63111689A (en) Distributed feedback type semiconductor laser
KR20040032375A (en) Distributed Bragg reflector laser diode having distributed feedback laser diode and optical spot size converter on the same substrate
US5048039A (en) Laser diode
JPS63213383A (en) Semiconductor laser
JPH0147031B2 (en)
JP2924714B2 (en) Distributed feedback semiconductor laser device
JP2002014247A (en) Distributed reflection optical waveguide and optical device containing the same
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPS5911690A (en) Semiconductor laser device
WO2023042855A1 (en) Semiconductor laser element
JP2605650B2 (en) Optical isolator
JPS60152086A (en) Semiconductor laser device
JPH09307179A (en) Phase shift type distributed feedback semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101115

LAPS Cancellation because of no payment of annual fees