JPH0623218A - Clean room - Google Patents
Clean roomInfo
- Publication number
- JPH0623218A JPH0623218A JP4180734A JP18073492A JPH0623218A JP H0623218 A JPH0623218 A JP H0623218A JP 4180734 A JP4180734 A JP 4180734A JP 18073492 A JP18073492 A JP 18073492A JP H0623218 A JPH0623218 A JP H0623218A
- Authority
- JP
- Japan
- Prior art keywords
- gas separation
- separation membrane
- air
- membrane
- room
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 claims abstract description 87
- 239000007789 gas Substances 0.000 claims abstract description 84
- 238000000926 separation method Methods 0.000 claims abstract description 71
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000012466 permeate Substances 0.000 claims abstract description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 239000010419 fine particle Substances 0.000 abstract description 10
- 241000700605 Viruses Species 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Ventilation (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はクリーンルーム、クリー
ンボックスに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clean room and a clean box.
【0002】[0002]
【従来の技術】近年、半導体、バイオ関係の先端製品を
開発する上でクリーンな環境は必須である。一般のクリ
ーンルーム用のフィルターとしては濾材にガラス繊維を
用いたHEPAフィルターが使用されている。HEPA
フィルターの捕集効率は0.3μmの単分散DOP粒子
に対して99.97%以上を有するものである。最近で
は更に捕集効率の良いULPAフィルターが開発されて
いる。ULPAフィルターの捕集効率は0.1μmの単
分散DOP粒子に対して99.9995%以上を有する
ものである。2. Description of the Related Art In recent years, a clean environment is essential for developing advanced products related to semiconductors and biotechnology. As a filter for a general clean room, a HEPA filter using glass fiber as a filter material is used. HEPA
The collection efficiency of the filter is 99.97% or more with respect to 0.3 μm monodisperse DOP particles. Recently, ULPA filters with even higher collection efficiency have been developed. The collection efficiency of the ULPA filter is 99.9995% or more with respect to 0.1 μm monodisperse DOP particles.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記のフ
ィルターを用いてクリーンルームやクリーンボックスを
構成してもフィルターの捕集効率以上にはならず、また
フィルターから吹き出す空気の組成の調整が出来ないと
いう問題点を有していた。However, even if a clean room or a clean box is constructed by using the above-mentioned filter, the collection efficiency of the filter does not exceed the efficiency, and the composition of the air blown from the filter cannot be adjusted. Had a point.
【0004】本発明は上記従来の問題点を解決するもの
で、無孔の気体分離膜を用いることにより気体分子以外
のものを遮断し、しかも酸素濃度を制御できるクリーン
ルームやクリーンボックスを提供することを目的とす
る。The present invention solves the above-mentioned conventional problems, and provides a clean room or a clean box which can block oxygen molecules other than gas molecules by using a non-porous gas separation membrane and can control the oxygen concentration. With the goal.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に本発明のクリーンルームは無孔膜から成る気体分離膜
と、前記気体分離膜の非透過側の流量を調整するための
手段と、前記気体分離膜に圧縮空気を供給する手段と、
供給口と排気口を有する部屋からなり、前記の部屋の供
給口に前記気体分離膜の透過気体を供給することから成
る。また、無孔膜から成る第1の気体分離膜と、前記第
1の気体分離膜の非透過側の流量を調整するための手段
と、前記第1の気体分離膜に圧縮空気を供給する手段
と、無孔膜から成る第2の気体分離膜と、前記第2の気
体分離膜の非透過側の流量を調整するための手段と、供
給口と排気口を有する部屋からなり、前記第1の気体分
離膜の非透過側の流量を調整するための手段を通過後の
気体を前記第2の気体分離膜に供給し、前記第2の気体
分離膜を透過した気体を前記の部屋の供給口に供給する
ことから成る。To achieve this object, the clean room of the present invention comprises a gas separation membrane comprising a non-porous membrane, means for adjusting the flow rate on the non-permeate side of the gas separation membrane, and Means for supplying compressed air to the gas separation membrane,
The chamber comprises a chamber having a supply port and an exhaust port, and the permeation gas of the gas separation membrane is supplied to the supply port of the room. Also, a first gas separation membrane composed of a non-porous membrane, means for adjusting the flow rate on the non-permeate side of the first gas separation membrane, and means for supplying compressed air to the first gas separation membrane. A second gas separation membrane composed of a non-porous membrane, means for adjusting the flow rate on the non-permeate side of the second gas separation membrane, and a room having a supply port and an exhaust port, Of the gas after passing through the means for adjusting the flow rate on the non-permeation side of the gas separation membrane, and the gas passing through the second gas separation membrane is supplied to the room. Consisting of feeding in the mouth.
【0006】[0006]
【作用】第1の構成によって、無孔膜から成る気体分離
膜に加圧空気を供給すると空気中の気体のみが無孔膜に
溶解し膜中を拡散し透過するため微粒子やウィルスは透
過してこないこととなり、また、酸素選択性に優れた気
体分離膜を透過した空気は酸素が濃縮され、一方非透過
の空気は酸素が優先的に気体分離膜を透過するため窒素
が濃縮されることとなり、この非透過側の流量を調整す
ることにより気体分離膜を透過した空気の酸素濃度を変
化させることができる。この空気を部屋に供給すること
により、酸素濃度が高いクリーンルームとなる。With the first configuration, when pressurized air is supplied to the gas separation membrane made of a non-porous membrane, only the gas in the air is dissolved in the non-porous membrane and diffuses and permeates through the membrane, so that fine particles and viruses do not permeate. Also, the air that has permeated the gas separation membrane with excellent oxygen selectivity is enriched with oxygen, while the non-permeated air has oxygen preferentially permeated through the gas separation membrane, so that nitrogen is concentrated. Therefore, by adjusting the flow rate on the non-permeate side, the oxygen concentration of the air that has permeated the gas separation membrane can be changed. By supplying this air to the room, it becomes a clean room with high oxygen concentration.
【0007】一方第2の構成によって、無孔膜から成る
第1の酸素選択性に優れた気体分離膜に加圧空気を供給
すると気体分離膜を透過した空気は酸素が濃縮され、一
方非透過の空気は酸素が優先的に気体分離膜を透過する
ため窒素が濃縮されることとなり、第1の気体分離膜の
非透過側は微粒子やウィルスは含むが窒素が濃縮された
空気が得られ、この空気を第2の気体分離膜に供給する
ことにより第2の気体分離膜を透過した気体は微粒子や
ウィルスを除かれることなる。この空気を部屋に供給す
ることにより、窒素濃度が高いクリーンルームとなる。On the other hand, according to the second structure, when pressurized air is supplied to the first gas separation membrane having excellent oxygen selectivity, which is a non-porous membrane, oxygen permeates through the gas separation membrane while oxygen is not permeated. Oxygen preferentially permeates the gas separation membrane, so that nitrogen is concentrated, and on the non-permeate side of the first gas separation membrane, air containing nitrogen and particles but containing fine particles and viruses is obtained. By supplying this air to the second gas separation membrane, the gas that has permeated the second gas separation membrane is free of fine particles and viruses. By supplying this air to the room, it becomes a clean room with high nitrogen concentration.
【0008】[0008]
(実施例1)以下本発明の実施例1について、図面を参
照しながら説明する。(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.
【0009】図1において、1はポリプロピレン不織布
が裏打ちされたポリスルホン支持体上に4メチルペンテ
ン1を主体とする高分子膜を積層した気体分離膜でスパ
イラル構造を有しており、気体分離膜の有効面積は8.
25m2である。3は気体分離膜1に加圧空気を供給す
る手段で加圧ポンプである。4は空気供給口と排気口を
有する1m3の内容積を持つ部屋である。5は気体分離
膜の非透過側の流量を調整するための手段で流量調整バ
ルブである。In FIG. 1, reference numeral 1 denotes a gas separation membrane having a spiral structure, in which a polymer membrane mainly composed of 4-methylpentene 1 is laminated on a polysulfone support lined with a polypropylene non-woven fabric. Effective area is 8.
It is 25 m 2 . Reference numeral 3 denotes a means for supplying pressurized air to the gas separation membrane 1, which is a pressure pump. 4 is a room having an air supply port and an exhaust port and having an internal volume of 1 m 3 . 5 is a means for adjusting the flow rate on the non-permeate side of the gas separation membrane, and is a flow rate adjusting valve.
【0010】以下に動作について説明する。 (動作−1)加圧ポンプ3を作動させ5kg/cm2の
空気を気体分離膜1に供給した。流量調整バルブ5を閉
鎖し、気体分離膜1を透過した空気を部屋4に供給しク
リーンルームとした。加圧ポンプ3から供給された空気
は全て気体分離膜1を透過するため、部屋4に微粒子が
除去された通常空気と同程度の酸素濃度21%の空気を
1.2m3/分供給できるクリーンルームとなった。The operation will be described below. (Operation-1) The pressure pump 3 was operated to supply 5 kg / cm 2 of air to the gas separation membrane 1. The flow rate adjusting valve 5 was closed, and the air that had permeated the gas separation membrane 1 was supplied to the room 4 to form a clean room. Since all the air supplied from the pressurizing pump 3 passes through the gas separation membrane 1, a clean room capable of supplying 1.2 m 3 / min of air with an oxygen concentration of 21%, which is the same level as normal air from which particles have been removed, to the room 4. Became.
【0011】(動作−2)加圧ポンプ3を作動させ5k
g/cm2の空気を気体分離膜1に供給した。供給流量
の15%を大気中に放出できるように、即ち供給流量の
15が気体分離膜1の表面を流れるように流量調整バル
ブ5を調整し大気に放出した。一方気体分離膜1を透過
した空気を部屋4に供給しクリーンルームとした。加圧
ポンプ3から供給された空気の15%は流量調整バルブ
を通り大気に放出される過程で、気体分離膜表面で窒素
が濃縮され窒素濃度が99%になった。部屋4に供給さ
れる空気は気体分離膜1を透過するため微粒子が除去さ
れた酸素濃度24.5%の空気を1.2m3/分供給で
きるクリーンルームとなった。(Operation-2) The pressurizing pump 3 is operated for 5 k
Air of g / cm 2 was supplied to the gas separation membrane 1. The flow rate adjusting valve 5 was adjusted so that 15% of the supply flow rate could be released into the atmosphere, that is, 15 of the supply flow rate could flow over the surface of the gas separation membrane 1 and was released into the atmosphere. On the other hand, the air that permeated the gas separation membrane 1 was supplied to the room 4 to make a clean room. 15% of the air supplied from the pressurizing pump 3 passed through the flow rate adjusting valve and was released into the atmosphere, so that nitrogen was concentrated on the surface of the gas separation membrane and the nitrogen concentration became 99%. Since the air supplied to the room 4 passes through the gas separation membrane 1, it became a clean room capable of supplying 1.2 m 3 / min of air having an oxygen concentration of 24.5% from which fine particles were removed.
【0012】(実施例2)以下本発明の実施例2につい
て、図面を参照しながら説明する。(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings.
【0013】図2において、1はポリプロピレン不織布
が裏打ちされたポリスルホン支持体上に4メチルペンテ
ン1を主体とする高分子膜を積層した気体分離膜でスパ
イラル構造を有しており、気体分離膜1の有効面積は1
6.5m2である。2はポリプロピレン不織布が裏打ち
されたポリスルホン支持体上にポリシロキサンとポリス
チレンの共重合体を主体とする高分子を積層した気体分
離膜でスパイラル構造を有しており、気体分離膜2の有
効面積は3.5m2である。3は気体分離膜1に加圧空
気を供給する手段で加圧ポンプである。4は空気供給口
と排気口を有する1m3の内容積を持つ部屋である。5
は気体分離膜1の非透過側の流量を調整するための手段
で流量調整バルブである。6は気体分離膜2の非透過側
の流量を調整するための流量調整バルブである。In FIG. 2, reference numeral 1 denotes a gas separation membrane having a spiral structure having a polymer membrane mainly composed of 4-methylpentene 1 laminated on a polysulfone support lined with polypropylene nonwoven fabric. Effective area is 1
It is 6.5 m 2 . 2 is a gas separation membrane in which a polymer mainly composed of a copolymer of polysiloxane and polystyrene is laminated on a polysulfone support lined with a polypropylene nonwoven fabric, and has a spiral structure. The effective area of the gas separation membrane 2 is It is 3.5 m 2 . Reference numeral 3 denotes a means for supplying pressurized air to the gas separation membrane 1, which is a pressure pump. 4 is a room having an air supply port and an exhaust port and having an internal volume of 1 m 3 . 5
Is a means for adjusting the flow rate on the non-permeate side of the gas separation membrane 1 and is a flow rate adjusting valve. 6 is a flow rate adjusting valve for adjusting the flow rate on the non-permeate side of the gas separation membrane 2.
【0014】(動作)加圧ポンプ3を作動させ5kg/
cm2の空気を気体分離膜1に供給した。供給流量の3
0%が気体分離膜2に供給できるように、即ち供給量の
30%が気体分離膜1の表面を流れるように流量調整バ
ルブ5を調整し、気体分離膜2に供給した。一方気体分
離膜1を透過した空気は大気中に放出した。この時流量
調整バルブ6は閉鎖した。気体分離膜2を透過した空気
を部屋4に供給しクリーンルームとした。加圧ポンプ3
から供給された空気の30%は流量調整バルブ5を通り
気体分離膜2に供給される過程において、気体分離膜表
面で窒素が濃縮され窒素濃度が95%で、流量1.1m
になった。放出した空気の酸素濃度は27.8%、流量
は2.4m3/分であった。気体分離膜1により窒素が
濃縮された空気は気体分離膜1を透過していないので微
粒子は含んでいるが、気体分離膜2を透過することによ
り微粒子を除去することができた。気体分離膜2を透過
した空気を部屋4に供給することにより、酸素濃度5%
の空気を1.0m3/分供給するクリーンルームとなっ
た。(Operation) 5 kg /
cm 2 of air was supplied to the gas separation membrane 1. Supply flow rate 3
The flow rate adjusting valve 5 was adjusted so that 0% could be supplied to the gas separation membrane 2, that is, 30% of the supplied amount was supplied to the gas separation membrane 2. On the other hand, the air that has permeated the gas separation membrane 1 is released into the atmosphere. At this time, the flow rate adjusting valve 6 was closed. The air having passed through the gas separation membrane 2 was supplied to the room 4 to make a clean room. Pressure pump 3
In the process in which 30% of the air supplied from the air is supplied to the gas separation membrane 2 through the flow rate adjusting valve 5, nitrogen is concentrated on the surface of the gas separation membrane, the nitrogen concentration is 95%, and the flow rate is 1.1 m.
Became. The released air had an oxygen concentration of 27.8% and a flow rate of 2.4 m 3 / min. The air in which the nitrogen was concentrated by the gas separation membrane 1 did not pass through the gas separation membrane 1 and thus contained fine particles, but the fine particles could be removed by passing through the gas separation membrane 2. By supplying the air that has permeated the gas separation membrane 2 to the room 4, the oxygen concentration is 5%.
It became a clean room that supplies 1.0 m 3 / min of air.
【0015】本発明は本実施例に限定されるものではな
い。本実施例では1m3の内容積を持つ部屋に1.0m3
/分〜1.2m3/分の割合で空気を供給したが、供給
量が更に多く必要であれば気体分離膜面積を増やしてや
れば良いことは言うまでもないことである。また、本実
施例では部屋の供給口から空気を供給し、部屋の空気排
気口から大気中に放出する構成図であるが、図3、4の
様に排気口から放出する空気を加圧ポンプの供給口に戻
してやっても良い。The present invention is not limited to this embodiment. Room with an internal volume of 1 m 3 in the present embodiment 1.0 m 3
Although air was supplied at a rate of 1 / min to 1.2 m 3 / min, needless to say, it is sufficient to increase the area of the gas separation membrane if a larger supply amount is required. Further, in the present embodiment, the air is supplied from the supply port of the room and is discharged into the atmosphere from the air exhaust port of the room. However, as shown in FIGS. It may be returned to the supply port of.
【0016】[0016]
【発明の効果】以上のように本発明は、微粒子やウィル
スを除く手段として気体分子のみを透過する無孔膜の気
体分離膜を用いることにより、微粒子やウィルスを完全
に除くことができ、しかも供給空気の酸素濃度をコント
ロールできるクリーンルームを提供できる。INDUSTRIAL APPLICABILITY As described above, the present invention can completely remove fine particles and viruses by using a non-porous gas separation membrane that permeates only gas molecules as a means for removing fine particles and viruses. It is possible to provide a clean room in which the oxygen concentration of supply air can be controlled.
【図1】第1の実施例におけるクリーンルームの構成図
である。矢印は空気の流れを示す。FIG. 1 is a configuration diagram of a clean room according to a first embodiment. Arrows indicate the flow of air.
【図2】第2の実施例におけるクリーンルームの構成図
である。矢印は空気の流れを示す。FIG. 2 is a configuration diagram of a clean room according to a second embodiment. Arrows indicate the flow of air.
【図3】第1の実施例の改良でクリーンルームの排気空
気を加圧ポンプの供給口に戻したクリーンルームの構成
図である。矢印は空気の流れを示す。FIG. 3 is a configuration diagram of a clean room in which exhaust air of the clean room is returned to a supply port of a pressurizing pump by improvement of the first embodiment. Arrows indicate the flow of air.
【図4】第2の実施例の改良でクリーンルームの排気空
気を加圧ポンプの供給口に戻したクリーンルームの構成
図である。矢印は空気の流れを示す。FIG. 4 is a configuration diagram of a clean room in which exhaust air of the clean room is returned to a supply port of a pressurizing pump by improvement of the second embodiment. Arrows indicate the flow of air.
1,2 気体分離膜 3 加圧ポンプ 4 部屋 5,6 流量調整バルブ 1, 2 Gas separation membrane 3 Pressurizing pump 4 Room 5, 6 Flow rate adjusting valve
Claims (3)
分離膜の非透過側の流量を調整するための手段と、前記
気体分離膜に圧縮空気を供給する手段と、供給口と排気
口を有する部屋からなり、前記の部屋の供給口に前記気
体分離膜の透過気体を供給するクリーンルーム。1. A gas separation membrane comprising a non-porous membrane, means for adjusting the flow rate on the non-permeate side of the gas separation membrane, means for supplying compressed air to the gas separation membrane, a supply port and an exhaust gas. A clean room comprising a room having a mouth and supplying the permeated gas of the gas separation membrane to the supply port of the room.
記第1の気体分離膜の非透過側の流量を調整するための
手段と、前記第1の気体分離膜に圧縮空気を供給する手
段と、無孔膜から成る第2の気体分離膜と、前記第2の
気体分離膜の非透過側の流量を調整するための手段と、
供給口と排気口を有する部屋からなり、前記第1の気体
分離膜の非透過側の流量を調整するための手段を通過後
の気体を前記第2の気体分離膜に供給し、前記第2の気
体分離膜を透過した気体を前記の部屋の供給口に供給す
るクリーンルーム。2. A first gas separation membrane comprising a non-porous membrane, means for adjusting the flow rate on the non-permeate side of the first gas separation membrane, and compressed air to the first gas separation membrane. Means for supplying, a second gas separation membrane composed of a non-porous membrane, and means for adjusting the flow rate on the non-permeation side of the second gas separation membrane,
The gas is supplied to the second gas separation membrane after passing through a means for adjusting the flow rate on the non-permeation side of the first gas separation membrane, which comprises a chamber having a supply port and an exhaust port. A clean room that supplies the gas that has permeated the gas separation membrane to the supply port of the room.
膜である請求項1または2記載のクリーンルーム。3. The clean room according to claim 1, wherein the gas separation membrane has a higher oxygen selectivity than nitrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4180734A JPH0623218A (en) | 1992-07-08 | 1992-07-08 | Clean room |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4180734A JPH0623218A (en) | 1992-07-08 | 1992-07-08 | Clean room |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0623218A true JPH0623218A (en) | 1994-02-01 |
Family
ID=16088379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4180734A Pending JPH0623218A (en) | 1992-07-08 | 1992-07-08 | Clean room |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0623218A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976220A (en) * | 1996-12-09 | 1999-11-02 | 3M Innovative Properties Company | Diffusional gas transfer system and method using same |
-
1992
- 1992-07-08 JP JP4180734A patent/JPH0623218A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976220A (en) * | 1996-12-09 | 1999-11-02 | 3M Innovative Properties Company | Diffusional gas transfer system and method using same |
US6248153B1 (en) | 1996-12-09 | 2001-06-19 | 3M Innovative Properties Company | Diffusional gas transfer system and method of using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2872521B2 (en) | Two-stage membrane separation drying method and apparatus | |
JP6471243B2 (en) | Low maintenance cost gas separation process | |
JP7365453B2 (en) | Processes and equipment for gas separation | |
JP2006512946A (en) | Method and apparatus for reducing carbon dioxide concentration in air | |
KR930007495A (en) | Membrane Gas Separation Method | |
CA2029484A1 (en) | Gas separation by adsorbent membranes | |
EP0390392A2 (en) | Separation of gas mixtures | |
KR20190138430A (en) | high purity oxygen generator preventing and eleminating the generation of fine-small dust at the beginning | |
KR102235015B1 (en) | Method for producing nitrogen-enriched air using flue gas | |
JPH10512808A (en) | Gas separation method | |
JPS58166018A (en) | Continuous manufacture of polymethyl pentene film | |
JPH0623218A (en) | Clean room | |
CA2098684A1 (en) | Composite Porous Carbonaceous Membranes | |
JPS62294410A (en) | Method and device for treating fluid containing floating or suspended particle | |
JPS63182019A (en) | Method for dehumidifying pressurized gas | |
JPS5987019A (en) | Oxygen enriching apparatus | |
JPH0829215B2 (en) | Air conditioner | |
JP7031214B2 (en) | Helium-enriched gas production method and gas separation system | |
JPH09206541A (en) | Separation of oxygen and argon in air and device therefor | |
JPH03245812A (en) | Separation of gas | |
JPH0213452Y2 (en) | ||
JPS6249929A (en) | Dehumidifier | |
JPH0328363B2 (en) | ||
JP2878297B2 (en) | Method for producing nitrogen-enriched air | |
JPH01143625A (en) | Method for dehumidifying gases |