JPH06231936A - Magnetic filler - Google Patents

Magnetic filler

Info

Publication number
JPH06231936A
JPH06231936A JP3147193A JP3147193A JPH06231936A JP H06231936 A JPH06231936 A JP H06231936A JP 3147193 A JP3147193 A JP 3147193A JP 3147193 A JP3147193 A JP 3147193A JP H06231936 A JPH06231936 A JP H06231936A
Authority
JP
Japan
Prior art keywords
magnetic
filler
resin
powder
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3147193A
Other languages
Japanese (ja)
Inventor
Mitsugi Kawarai
貢 川原井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP3147193A priority Critical patent/JPH06231936A/en
Publication of JPH06231936A publication Critical patent/JPH06231936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To acquire a magnetic filler for filling up a clearance between magnetic substances which can reduce magnetic clearance remarkably by mixing spinel soft magnetic ferrite powder, i.e., magnetic powder with resin. CONSTITUTION:Spinel soft magnetic ferrite powder of an average grain diameter of about 1 to 100mum is mixed about 25 to 70vol% to resin for acquiring magnetic filler. During the process, thermosetting resin containing about 0 to 60wt.% volatile element or thermoplastic resin containing about 20 to 60wt.% volatile element is used as resin. The magnetic filler is used for filling up a clearance between magnetic substances. Thereby, it is possible to greatly reduce the leakage of magnetic flux and to remarkably improve the magnetic characteristics of a magnetic part comprised of a plurality of magnetic substances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スピネル系軟磁性フェ
ライト粉末を樹脂に混合した、磁性を有する充填剤に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic filler obtained by mixing a spinel soft magnetic ferrite powder with a resin.

【0002】[0002]

【従来の技術】従来、充填剤として、非磁性粉末を樹脂
に混合したものや、導電性粉末を混合したものがある。
2. Description of the Related Art Conventionally, as a filler, there are a filler in which a non-magnetic powder is mixed with a resin and a filler in which a conductive powder is mixed.

【0003】[0003]

【発明が解決しようとする課題】複数の磁性材料を組み
合わせて、一つの磁性部品を得る場合、この部品を構成
する各磁性体の形状的なゆがみや熱による膨張等によ
り、磁性体間に大きな隙間が生じる。このようにして生
じた磁性体間の隙間により、大きな反磁界が生じ、著し
い磁束の漏れを生じる。その結果、組み合わせて得られ
た磁性部品の磁気特性が著しく低下するという問題があ
った。
When a plurality of magnetic materials are combined to obtain one magnetic component, the magnetic components constituting the component are largely distorted due to shape distortion and thermal expansion. There is a gap. A large demagnetizing field is generated due to the gap between the magnetic bodies thus generated, and a remarkable leakage of magnetic flux occurs. As a result, there has been a problem that the magnetic properties of the magnetic parts obtained by the combination are significantly deteriorated.

【0004】上記、磁性部品の磁気特性の低下を防ぐ目
的で、磁性体間の隙間を低減する方法として、使用する
磁性体を高寸法精度で再加工するという方法がある。し
かしながら、この方法では、磁性部品の製造コストが著
しく増加してしまい、工業上大きな問題となる。
As a method of reducing the gap between the magnetic bodies in order to prevent the deterioration of the magnetic characteristics of the magnetic parts, there is a method of reprocessing the magnetic body to be used with high dimensional accuracy. However, with this method, the manufacturing cost of the magnetic component is significantly increased, which is a serious industrial problem.

【0005】本発明の課題は、磁性粉末であるスピネル
系軟磁性フェライト粉末を樹脂と混合することにより、
磁性体間の隙間に充填し、磁気的な隙間を著しく減少す
ることが可能な、磁性を有する充填剤を提供することで
ある。
An object of the present invention is to mix spinel soft magnetic ferrite powder, which is magnetic powder, with a resin,
It is an object of the present invention to provide a magnetic filler capable of filling gaps between magnetic bodies and significantly reducing magnetic gaps.

【0006】[0006]

【課題を解決するための手段】本発明の充填剤において
は、磁性粉末であるスピネル系軟磁性フェライト粉末
を、樹脂に混合することにより、磁性を有する充填剤を
得るものである。
In the filler of the present invention, a magnetic filler is obtained by mixing spinel soft magnetic ferrite powder, which is magnetic powder, with a resin.

【0007】[0007]

【作用】スピネル系軟磁性フェライト粉末を樹脂に混合
することにより、磁性を持つ充填剤が得られる。この磁
性充填剤を磁性体間の隙間の充填に使用することによ
り、磁束の漏洩を著しく低減することができ、その結
果、複数の磁性体からなる磁性部品の磁気特性を従来に
比べ顕著に向上させることができる。
The magnetic filler is obtained by mixing the spinel soft magnetic ferrite powder with the resin. By using this magnetic filler to fill the gaps between magnetic bodies, it is possible to significantly reduce the leakage of magnetic flux, and as a result, the magnetic characteristics of magnetic parts made up of multiple magnetic bodies are significantly improved compared to conventional products. Can be made.

【0008】[0008]

【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0009】[0009]

【実施例1】平均粒子径0.5〜150μmのスピネル
系軟磁性フェライト粉末[(Ni0.5・Zn0.5
O・Fe]100g(18.76cc)と、熱硬
化性エポキシ樹脂22.51g(18.76cc)とを
混練機で1時間混合し(粉末体積分率50vol%)、
磁性を有する充填剤を作製した。
Example 1 Spinel soft magnetic ferrite powder [(Ni 0.5 .Zn 0.5 )] having an average particle size of 0.5 to 150 μm
O.Fe 2 O 3 ] 100 g (18.76 cc) and thermosetting epoxy resin 22.51 g (18.76 cc) were mixed for 1 hour with a kneader (powder volume fraction 50 vol%),
A magnetic filler was prepared.

【0010】上記充填剤の評価として、フェライト焼結
体製のリングコア(外径20mm、内径10mm、高さ
5mm)を直径方向に半分に切断したものを用意した。
切断したリングコアを、切断面の間隔が0.5mmにな
るように、治具に固定し、この隙間に前述の磁性を有す
る充填剤と磁性粉末を含まない非磁性の充填剤を充填し
たものを用意し、100℃で2時間熱硬化を行った。次
に、このリングコアに被覆銅線を10回巻線し、このと
きのインダクタンスを測定し、非磁性の充填剤に対す
る、磁性を持つ充填剤を用いた場合のインダクタンスの
増加率を評価した。
As an evaluation of the above-mentioned filler, a ferrite sintered body ring core (outer diameter 20 mm, inner diameter 10 mm, height 5 mm) cut in half in the diameter direction was prepared.
The cut ring core was fixed to a jig so that the distance between the cut surfaces was 0.5 mm, and the gap was filled with the above-mentioned magnetic filler and non-magnetic filler containing no magnetic powder. It was prepared and heat cured at 100 ° C. for 2 hours. Next, the coated copper wire was wound 10 times around this ring core, the inductance at this time was measured, and the rate of increase of the inductance when the magnetic filler was used with respect to the non-magnetic filler was evaluated.

【0011】図1は、フェライト粉末の平均粒子径を
0.5〜150μmまで変えて作製した充填剤を用いた
場合の、非磁性の充填剤を用いた場合に対するインダク
タンスの増加率を示す図である。図中、×印は、充填剤
がコアから剥離したものである。図1によれば、平均粒
子径1〜100μmの範囲でインダクタンスが高くなっ
ており、効果的に磁性材料間の隙間からの磁束の漏れを
低減していることがわかる。平均粒子径が1μm未満で
は、コア断面で充填剤が剥離し、実用上、充填剤として
機能しない。また平均粒子径が100μmより大きい場
合には、インダクタンスの増加率が低く、工業上有益で
はない。
FIG. 1 is a graph showing the rate of increase in inductance in the case of using a filler prepared by changing the average particle diameter of ferrite powder to 0.5 to 150 μm with respect to the case of using a non-magnetic filler. is there. In the figure, the mark X indicates that the filler has peeled from the core. According to FIG. 1, it can be seen that the inductance is high in the range of the average particle diameter of 1 to 100 μm, and the leakage of the magnetic flux from the gap between the magnetic materials is effectively reduced. When the average particle diameter is less than 1 μm, the filler peels off at the core cross section, and does not function as a filler in practical use. When the average particle size is larger than 100 μm, the rate of increase in inductance is low, which is not industrially useful.

【0012】また、実施例1では、スピネル系軟磁性フ
ェライト粉末として、組成が[(Ni0.5・Zn
0.5)O・Fe]なる磁性粉末を用いたが、ス
ピネル系軟磁性フェライト粉末であれば、これ以外の組
成でも同様な効果が得られる。
In Example 1, the composition of the spinel soft magnetic ferrite powder was [(Ni 0.5 .Zn
Although 0.5 ) O.Fe 2 O 3 ] magnetic powder was used, similar effects can be obtained with spinel soft magnetic ferrite powders having other compositions.

【0013】[0013]

【実施例2】熱硬化性シリコン樹脂50gに、平均粒子
径10μmのスピネル系軟磁性フェライト粉末[(Mn
0.5・Zn0.5)O・Fe]を0〜883g
(樹脂分に対し0〜80vol%)、更に希釈溶剤とし
てトルエン12.5g(揮発成分20wt%)を混練機
で1時間混合し、磁性を有する充填剤を作製した。
Example 2 50 g of thermosetting silicone resin was mixed with spinel soft magnetic ferrite powder [(Mn
0.5 · Zn 0.5 ) O · Fe 2 O 3 ] is 0 to 883 g.
(0 to 80 vol% with respect to the resin content) and 12.5 g of toluene (volatile component 20 wt%) as a diluting solvent were mixed for 1 hour with a kneading machine to prepare a magnetic filler.

【0014】上記充填剤の評価として、実施例1と同
様、フェライト焼結体製のリングコア(外径20mm、
内径10mm、高さ5mm)を直径方向に半分に切断し
たものを用意した。切断したリングコアを、切断面の間
隔が0.5mmになるように、治具に固定し、この隙間
に前述の磁性を有する充填剤と、磁性粉末を含まない非
磁性の充填剤を充填したものを用意し、100℃で2時
間熱硬化を行った。次に、このリングコアに被覆銅線を
10回巻線し、このときのインダクタンスを測定し、非
磁性の充填剤に対する、磁性を持つ充填剤を用いた場合
のインダクタンスの増加率を評価した。
For the evaluation of the above-mentioned filler, a ring core made of a ferrite sintered body (outer diameter 20 mm,
An inner diameter of 10 mm and a height of 5 mm) was cut in half in the diameter direction. The cut ring core is fixed to a jig so that the distance between the cut surfaces is 0.5 mm, and the gap is filled with the magnetic filler described above and a non-magnetic filler containing no magnetic powder. Was prepared and heat cured at 100 ° C. for 2 hours. Next, the coated copper wire was wound 10 times around this ring core, the inductance at this time was measured, and the rate of increase of the inductance when the magnetic filler was used with respect to the non-magnetic filler was evaluated.

【0015】図2は、充填剤の評価として、スピネル系
軟磁性フェライト粉末の体積分率を0〜80%まで変え
て作製した充填剤を用いた場合の、非磁性の充填剤を用
いた場合に対するインダクタンスの増加率を示す図であ
る。図2中、×印は充填剤の強度が弱く形状が保持でき
なかったものである。この図によれば、フェライト粉末
の体積分率25〜70vol%の範囲でインダクタンス
が高くなっており、効果的に磁性材料間の隙間からの磁
束の漏れを低減していることがわかる。体積分率25%
未満では、含有する粉末が少ないためインダクタンスの
増加率が著しく低く、磁性を持つ充填剤として有効性は
認められない。また、粉末の体積分率が70%より多い
場合には、充填剤の強度が低く、実用上充填剤として機
能しない。
FIG. 2 shows the case of using a non-magnetic filler in the case of using a filler prepared by changing the volume fraction of spinel soft magnetic ferrite powder from 0 to 80% as an evaluation of the filler. It is a figure which shows the increase rate of the inductance with respect to. In FIG. 2, the mark X indicates that the strength of the filler was weak and the shape could not be maintained. According to this figure, it can be seen that the inductance is high in the range of the volume fraction of the ferrite powder of 25 to 70 vol%, and the leakage of the magnetic flux from the gap between the magnetic materials is effectively reduced. 25% volume fraction
If it is less than the above, the increase rate of the inductance is remarkably low because the content of the powder is small, and the effectiveness as a magnetic filler is not recognized. Further, when the volume fraction of the powder is more than 70%, the strength of the filler is low and the filler does not practically function.

【0016】[0016]

【実施例3】熱硬化性エポキシ樹脂50gに、希釈溶剤
としてトルエンを0〜200g(揮発成分0〜80wt
%)を混合し、これに平均粒子径10μmのスピネル系
軟磁性フェライト粉末[(Mn0.5・Zn0.5)O
・Fe]223g(樹脂分に対して50vol
%)を混練機で1時間混合し、磁性を有する充填剤を作
製した。
[Example 3] To 50 g of a thermosetting epoxy resin, 0 to 200 g of toluene as a diluent solvent (0 to 80 wt.
%) And mixed with it, spinel soft magnetic ferrite powder [(Mn 0.5 .Zn 0.5 ) O having an average particle diameter of 10 μm].
・ Fe 2 O 3 ] 223 g (50 vol with respect to resin content)
%) Was mixed with a kneader for 1 hour to prepare a magnetic filler.

【0017】上記充填剤の評価として、実施例1と同
様、フェライト焼結体製のリングコア(外径20mm、
内径10mm、高さ5mm)を直径方向に半分に切断し
たものを用意した。切断したリングコアを、切断面の間
隔が0.5mmになるように、治具に固定し、この隙間
に前述の磁性を有する充填剤と、磁性粉末を含まない非
磁性の充填剤を充填したものを用意し、100℃で3時
間溶剤(揮発成分)の除去と樹脂の熱硬化を行った。次
に、このリングコアに被覆銅線を10回巻線し、このと
きのインダクタンスを測定し、非磁性の充填剤に対す
る、磁性を持つ充填剤を用いた場合のインダクタンスの
増加率を評価した。
As an evaluation of the above-mentioned filler, a ring core made of a ferrite sintered body (outer diameter 20 mm,
An inner diameter of 10 mm and a height of 5 mm) was cut in half in the diameter direction. The cut ring core is fixed to a jig so that the distance between the cut surfaces is 0.5 mm, and the gap is filled with the magnetic filler described above and a non-magnetic filler containing no magnetic powder. Was prepared, and the solvent (volatile component) was removed and the resin was thermoset at 100 ° C. for 3 hours. Next, the coated copper wire was wound 10 times around this ring core, the inductance at this time was measured, and the rate of increase of the inductance when the magnetic filler was used with respect to the non-magnetic filler was evaluated.

【0018】図3は、揮発成分として混合したトルエン
の混合量を0〜80wt%まで変えて作製した充填剤を
用いたときの、非磁性の充填剤を用いた場合に対するイ
ンダクタンスの増加率を示す図である。図3によれば、
揮発成分の混合量0〜60wt%の範囲でインダクタン
スが高くなっており、効果的に磁性材料間の隙間からの
磁束の漏れを低減していることがわかる。揮発成分の混
合量が60wt%より多い場合には、インダクタンスの
増加率が低く、工業上有益ではない。これは、揮発成分
が60wt%より多い場合、揮発成分の蒸発による樹脂
の体積収縮により、充填剤が磁性材料から剥離したり、
充填剤自体にクラックが入るなどによって、磁気的な隙
間が生じて磁束の損失が生じ、磁性部品の磁気特性を低
下させるためである。
FIG. 3 shows the rate of increase of the inductance when using a filler prepared by changing the amount of toluene mixed as a volatile component from 0 to 80 wt% with respect to the case of using a non-magnetic filler. It is a figure. According to FIG.
It can be seen that the inductance is high in the range of the mixed amount of volatile components of 0 to 60 wt%, effectively reducing the leakage of the magnetic flux from the gap between the magnetic materials. When the mixing amount of the volatile component is more than 60 wt%, the increase rate of the inductance is low and it is not industrially beneficial. This is because when the volatile component is more than 60 wt%, the filler is separated from the magnetic material due to the volume contraction of the resin due to the evaporation of the volatile component,
This is because when the filler itself is cracked, a magnetic gap is generated and a loss of magnetic flux occurs, which deteriorates the magnetic characteristics of the magnetic component.

【0019】また、実施例では、揮発成分としてトルエ
ンを希釈溶剤に用いたが、これ以外でも、樹脂を溶解す
る溶剤であれば同様な効果が得られる。
Further, although toluene was used as the volatile component in the diluent solvent in the examples, the same effect can be obtained with other solvents as long as it dissolves the resin.

【0020】[0020]

【実施例4】熱可塑性樹脂であるポリウレタン樹脂50
gに、希釈溶剤としてメチルエチルケトンを0〜200
g(揮発成分0〜80wt%)を混合し、これに平均粒
子径10μmのスピネル系軟磁性フェライト粉末[(M
0.5・Zn0.5)O・Fe]223g(樹
脂に対して粉末50vol%)を混練機で1時間混合
し、磁性を有する充填剤を作製した。
Example 4 Polyurethane resin 50 which is a thermoplastic resin
g to 0 to 200 of methyl ethyl ketone as a diluting solvent
g (volatile component 0 to 80 wt%), and mixed with this is spinel soft magnetic ferrite powder with an average particle diameter of 10 μm [(M
223 g (powder 50 vol% with respect to the resin) of n 0.5 · Zn 0.5 ) O · Fe 2 O 3 ] was mixed for 1 hour with a kneader to prepare a magnetic filler.

【0021】上記充填剤の評価として、実施例1と同
様、フェライト焼結体製のリングコア(外径20mm
内径10mm、高さ5mm)を直径方向に半分に切断し
たものを用意した。切断したリングコアを、切断面の間
隔が0.5mmになるように、治具に固定し、この隙間
に前述の磁性を有する充填剤と、磁性粉末を含まない非
磁性の充填剤を充填したものを用意し、80℃で3時間
溶剤(揮発成分)の除去を行った。次に、このリングコ
アに被覆銅線を10回巻線し、このときのインダクタン
スを測定し、非磁性の充填剤に対する、磁性を持つ充填
剤を用いた場合のインダクタンスの増加率を評価した。
As the evaluation of the above-mentioned filler, a ring core made of a ferrite sintered body (outer diameter 20 mm) was used as in Example 1.
An inner diameter of 10 mm and a height of 5 mm) was cut in half in the diameter direction. The cut ring core is fixed to a jig so that the distance between the cut surfaces is 0.5 mm, and the gap is filled with the magnetic filler described above and a non-magnetic filler containing no magnetic powder. Was prepared, and the solvent (volatile component) was removed at 80 ° C. for 3 hours. Next, the coated copper wire was wound 10 times around this ring core, the inductance at this time was measured, and the rate of increase of the inductance when the magnetic filler was used with respect to the non-magnetic filler was evaluated.

【0022】図4は、揮発成分として混合したメチルエ
チルケトンの混合量を0〜80wt%まで変えて作製し
た充填剤を用いたときの、インダクタンスの増加率を示
す図である。図4によれば、揮発成分の混合量20〜6
0wt%の範囲でインダクタンスが高くなっており、効
果的に磁性材料間の隙間からの磁束の漏れを低減してい
ることがわかる。揮発成分が20wt%未満では、充填
剤の粘度が極めて高く、実用上充填剤として機能しな
い。この状況を図4中×印で示している。また、揮発成
分が60wt%より多い場合には、インダクタンスの増
加率が低く、工業上有益ではない。これは、実施例3と
同様に揮発成分が60wt%より多い場合、揮発成分の
蒸発による樹脂の体積収縮により、充填剤が磁性材料か
ら剥離したり、充填剤自体にクラックが入るなどによっ
て、磁気的な隙間が生じて磁束の損失が生じ、磁性部品
の磁気特性を低下させるためである。
FIG. 4 is a diagram showing the rate of increase in inductance when a filler prepared by changing the amount of methyl ethyl ketone mixed as a volatile component to 0 to 80 wt%. According to FIG. 4, the mixing amount of volatile components is 20 to 6
It can be seen that the inductance is high in the range of 0 wt% and the leakage of the magnetic flux from the gap between the magnetic materials is effectively reduced. If the volatile component is less than 20 wt%, the viscosity of the filler is extremely high, and the filler does not function as a practical filler. This situation is indicated by a cross mark in FIG. Further, when the volatile component is more than 60 wt%, the rate of increase in inductance is low, which is not industrially beneficial. This is because when the volatile component is more than 60 wt% as in Example 3, the filler is separated from the magnetic material due to the volume contraction of the resin due to the evaporation of the volatile component, or the filler itself is cracked. This is because a magnetic gap is generated and a loss of magnetic flux occurs, which deteriorates the magnetic characteristics of the magnetic component.

【0023】また、実施例では、揮発成分としてメチル
エチルケトンを希釈溶剤に用いたが、これ以外でも、樹
脂を溶解する溶剤であれば同様な効果が得られる。
Further, in the examples, methyl ethyl ketone was used as the volatile component in the diluting solvent, but other than that, the same effect can be obtained as long as it is a solvent capable of dissolving the resin.

【0024】[0024]

【実施例5】熱可塑性樹脂である酢酸ビニル樹脂50g
に、平均粒子径10μmのスピネル系軟磁性フェライト
粉末[(Mn0.5・Zn0.5)O・Fe]を
0〜883g(樹脂分に対して粉末0〜80vol%)
を、加熱溶融状態で混練機で1時間混合し、磁性を有す
る充填剤を作製した。
Example 5 Vinyl acetate resin 50 g which is a thermoplastic resin
In addition, 0 to 883 g (0 to 80 vol% of the powder relative to the resin content) of spinel soft magnetic ferrite powder [(Mn 0.5 .Zn 0.5 ) O.Fe 2 O 3 ] having an average particle diameter of 10 μm.
Were mixed in a kneading machine for 1 hour in a heated and melted state to prepare a magnetic filler.

【0025】上記充填剤の評価として、実施例1と同
様、フェライト焼結体製のリングコア(外径20mm、
内径10mm、高さ5mm)を直径方向に半分に切断し
たものを用意した。切断したリングコアを、切断面の間
隔が0.5mmになるように、治具に固定した。この隙
間に前述の磁性を有する充填剤と、磁性粉末を含まない
非磁性の充填剤を、加熱溶融させて充填したものを用意
し、その後自然冷却により充填剤を固化させた。次に、
このリングコアに被覆銅線を10回巻線し、このときの
インダクタンスを測定し、非磁性の充填剤に対する、磁
性を持つ充填剤を用いた場合のインダクタンスの増加率
を評価した。
As the evaluation of the above-mentioned filler, as in Example 1, a ring core made of a ferrite sintered body (outer diameter 20 mm,
An inner diameter of 10 mm and a height of 5 mm) was cut in half in the diameter direction. The cut ring core was fixed to a jig so that the distance between the cut surfaces was 0.5 mm. The gap was prepared by heating and melting the above-mentioned magnetic filler and non-magnetic filler containing no magnetic powder, and thereafter, the filler was solidified by natural cooling. next,
A coated copper wire was wound around this ring core 10 times, the inductance at this time was measured, and the rate of increase of the inductance when a magnetic filler was used with respect to a non-magnetic filler was evaluated.

【0026】図5は、加熱溶融型、いわゆるホットメル
ト型の磁性充填剤について、スピネル系軟磁性フェライ
ト粉末の体積分率を0〜80%まで変えて作製した場合
の、インダクタンスの増加率を示す図である。図5中、
×印は充填剤の強度が弱く形状が保持できなかったもの
である。図5によれば、実施例2と同様、フェライト粉
末の体積分率25〜70vol%の範囲でインダクタン
スが高くなっており、効果的に磁性材料間の隙間からの
磁束の漏れを低減していることがわかる。体積分率25
%未満では、含有する粉末が少ないためインダクタンス
の増加率が著しく低く、磁性を持つ充填剤として有効性
は認められない。また、粉末の体積分率が70%より多
い場合には、充填剤の強度が低く、実用上充填剤として
機能しない。
FIG. 5 shows the rate of increase in inductance when a spin-melt soft magnetic ferrite powder was prepared by changing the volume fraction of the spinel soft magnetic ferrite powder to a hot-melt type, so-called hot-melt type magnetic filler. It is a figure. In FIG.
The cross mark indicates that the strength of the filler was weak and the shape could not be retained. According to FIG. 5, as in Example 2, the inductance is high in the range of the volume fraction of the ferrite powder of 25 to 70 vol%, and the leakage of the magnetic flux from the gap between the magnetic materials is effectively reduced. I understand. Volume fraction 25
If it is less than%, the increase rate of the inductance is remarkably low because the content of the powder is small, and the effectiveness as a magnetic filler is not recognized. Further, when the volume fraction of the powder is more than 70%, the strength of the filler is low and the filler does not practically function.

【0027】実施例では、樹脂として酢酸ビニル樹脂を
用いたが、これ以外に塩化ビニル樹脂やウレタン樹脂
等、熱可塑性樹脂であれば同様の効果が得られる。
Although vinyl acetate resin was used as the resin in the examples, similar effects can be obtained with other thermoplastic resins such as vinyl chloride resin and urethane resin.

【0028】また、実施例では、粉末と樹脂の混合方法
として、樹脂を加熱溶融させて混合を行ったが、その他
に、樹脂を溶剤に溶解させて粉末と混合し、その後溶剤
を蒸発させるという方法で混合を行っても、同様の効果
が得られる。
Further, in the embodiment, as a method of mixing the powder and the resin, the resin is heated and melted to perform the mixing, but other than that, the resin is dissolved in the solvent and mixed with the powder, and then the solvent is evaporated. Similar effects can be obtained by mixing by the method.

【0029】[0029]

【発明の効果】本発明は、以上説明したように、スピネ
ル系軟磁性フェライト粉末を、樹脂に混合することによ
って、磁性部品内の隙間における磁束の漏れを効果的に
減少し、磁束の損失を著しく低減することが可能な磁性
を有する充填剤を得ることができる。
As described above, according to the present invention, by mixing the spinel soft magnetic ferrite powder with the resin, the leakage of the magnetic flux in the gap in the magnetic component can be effectively reduced and the loss of the magnetic flux can be reduced. It is possible to obtain a filler having magnetic properties that can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における磁性充填剤において、平均粒
子径を変えた場合の、非磁性の充填剤を用いた場合に対
する、インダクタンスの増加率を示す図。
FIG. 1 is a graph showing the rate of increase in inductance in the magnetic filler of Example 1 when the average particle diameter is changed and when a non-magnetic filler is used.

【図2】実施例2における磁性充填剤において、粉末の
体積分率を変えた場合の、非磁性の充填剤を用いた場合
に対する、インダクタンスの増加率を示す図。
FIG. 2 is a diagram showing the rate of increase in inductance in the magnetic filler in Example 2 when the volume fraction of powder was changed and when a non-magnetic filler was used.

【図3】実施例3における磁性充填剤において、揮発成
分の混合比率(揮発分率)を変えた場合の、非磁性の充
填剤を用いた場合に対する、インダクタンスの増加率を
示す図。
FIG. 3 is a diagram showing an increase rate of inductance in the magnetic filler in Example 3 when the mixing ratio (volatile content ratio) of volatile components is changed and when a non-magnetic filler is used.

【図4】実施例4における磁性充填剤において、揮発成
分の混合比率(揮発分率)を変えた場合の、非磁性の充
填剤を用いた場合に対する、インダクタンスの増加率を
示す図。
FIG. 4 is a diagram showing the rate of increase in inductance in the magnetic filler of Example 4 when the mixing ratio (volatile content ratio) of volatile components was changed and when a non-magnetic filler was used.

【図5】実施例5における加熱溶融型の磁性充填剤にお
いて、粉末の体積分率を変えた場合の、非磁性の充填剤
を用いた場合に対する、インダクタンスの増加率を示す
図。
FIG. 5 is a graph showing the rate of increase in inductance in the heating and melting type magnetic filler in Example 5 when the volume fraction of powder is changed and when a non-magnetic filler is used.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁性を有する充填剤として、平均粒子径
1〜100μmのスピネル系軟磁性フェライト粉末を、
樹脂に対して、25〜70vol%混合することを特徴とす
る磁性充填剤。
1. A spinel soft magnetic ferrite powder having an average particle diameter of 1 to 100 μm as a magnetic filler,
A magnetic filler characterized by being mixed in an amount of 25 to 70 vol% with respect to a resin.
【請求項2】 請求項1記載の磁性充填剤において、樹
脂として熱硬化性樹脂を用い、該熱硬化性樹脂に対して
揮発成分を0〜60wt%含むことを特徴とする磁性充填
剤。
2. The magnetic filler according to claim 1, wherein a thermosetting resin is used as the resin, and the thermosetting resin contains a volatile component in an amount of 0 to 60 wt%.
【請求項3】 請求項1記載の磁性充填剤において、樹
脂として熱可塑性樹脂を用い、該熱可塑性樹脂に対して
揮発成分を20〜60wt%含むことを特徴とする磁性充
填剤。
3. The magnetic filler according to claim 1, wherein a thermoplastic resin is used as the resin and the volatile component is contained in an amount of 20 to 60 wt% with respect to the thermoplastic resin.
【請求項4】 請求項1記載の磁性充填剤において、樹
脂として熱可塑性樹脂を用い、該熱可塑性樹脂とスピネ
ル系軟磁性フェライト粉末の混合物を加熱溶融させて被
充填部に充填し、冷却によって固化することを特徴とす
る磁性充填剤。
4. The magnetic filler according to claim 1, wherein a thermoplastic resin is used as the resin, and a mixture of the thermoplastic resin and the spinel soft magnetic ferrite powder is heated and melted to fill the filled portion and then cooled. A magnetic filler characterized by solidifying.
JP3147193A 1993-01-26 1993-01-26 Magnetic filler Pending JPH06231936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147193A JPH06231936A (en) 1993-01-26 1993-01-26 Magnetic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147193A JPH06231936A (en) 1993-01-26 1993-01-26 Magnetic filler

Publications (1)

Publication Number Publication Date
JPH06231936A true JPH06231936A (en) 1994-08-19

Family

ID=12332184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147193A Pending JPH06231936A (en) 1993-01-26 1993-01-26 Magnetic filler

Country Status (1)

Country Link
JP (1) JPH06231936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538253A (en) * 2020-12-07 2021-03-23 陕西生益科技有限公司 Magnetic dielectric resin composition, laminated board containing same and printed circuit board containing laminated board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538253A (en) * 2020-12-07 2021-03-23 陕西生益科技有限公司 Magnetic dielectric resin composition, laminated board containing same and printed circuit board containing laminated board

Similar Documents

Publication Publication Date Title
EP0831501B1 (en) Process for producing rare earth bond magnet
US5580400A (en) Magnetically anisotropic permanent magnet
CN103325515A (en) Magnetic epoxy resin powder solvent and method for packaging inductor by utilization of same
EP1548765B1 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
JPH06231936A (en) Magnetic filler
US4620933A (en) Deflecting yoke for electromagnetic deflection type cathode-ray tubes and method for manufacturing it
JPH06215927A (en) Magnetic bonding agent
JPS61237405A (en) Multipolarized magnet
JP2000077221A (en) Granulated powder for rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
US6652767B2 (en) Composition for plastic magnet
JPH1167515A (en) Rare earth magnet
JPH04257203A (en) Plastic magnet composite
JP3426780B2 (en) Ferrite material
JPH07153616A (en) Resin composite ferrite, manufacture thereof and material for electronic component
US20160027567A1 (en) Manufacturing Method for Bonded Magnet and Motor Using the Magnet
JPH08120234A (en) Magnetic adhesive
JP2689651B2 (en) Method for manufacturing permanent magnet molded body
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPH0158220B2 (en)
JP2006147830A (en) Resin composite for anisotropic bond magnet and anisotropic bond magnet, and motor
JPH01194305A (en) Polar anisotropic bond magnet and manufacture thereof
EP0517073A1 (en) Method of encapsulating electrical and electronic components
JPS61279106A (en) Resin-bonded type permanent magnet
JP2002208362A (en) Electron beam adjustment device, magnet used for it and its manufacturing method
SU1624541A1 (en) Composite magnetic material