JPH06230255A - Optical cable sent by air pressure and its production - Google Patents

Optical cable sent by air pressure and its production

Info

Publication number
JPH06230255A
JPH06230255A JP5015368A JP1536893A JPH06230255A JP H06230255 A JPH06230255 A JP H06230255A JP 5015368 A JP5015368 A JP 5015368A JP 1536893 A JP1536893 A JP 1536893A JP H06230255 A JPH06230255 A JP H06230255A
Authority
JP
Japan
Prior art keywords
optical cable
weight
cable
organopolysiloxane
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5015368A
Other languages
Japanese (ja)
Other versions
JP3003443B2 (en
Inventor
Kazufumi Kimura
一史 木村
Yoshifumi Odaka
義史 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP5015368A priority Critical patent/JP3003443B2/en
Publication of JPH06230255A publication Critical patent/JPH06230255A/en
Application granted granted Critical
Publication of JP3003443B2 publication Critical patent/JP3003443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To form a rugged structure for producing high air resistance on the periphery of a cable without carrying out surface machining and to mass- produce the optical cable ensuring long pressure sending distance at a low cost. CONSTITUTION:A compd. obtd. by kneading 40-90wt.% polyolefin with 10-60wt.% organopolysiloxane is melted and extruded with an extruder to form a coating later 1 on an optical cable 3. At this time, a silicone polymer having inferior compatibility plates out to make the surface of the cable uniformly rugged. Contact frictional resistance is reduced by the silicone component. The size and roughness of the rugged part 2 can be controlled by varying the rate of extrusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パイプ内に圧送空気吹
流し工法を用いて布設される空気圧送用光ケーブル及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic optical cable for laying in a pipe using a pneumatic blowing method and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光ケーブル布設のために構造物中にパイ
プを予備配設することが行われている。このようなパイ
プ配設は、メタルケーブルの配線ダクトを利用したり、
あるいは電力供給用幹線ケーブルに光ファイバ布設用パ
イプを添設したりするものである。この予備配設したパ
イプ内に光ケーブルを挿入布設する手段として、圧送空
気を用いる圧送空気吹流し工法が提案されている。
2. Description of the Related Art Prearrangement of a pipe in a structure is performed for laying an optical cable. This kind of pipe arrangement uses the wiring duct of the metal cable,
Alternatively, an optical fiber laying pipe is attached to the power supply main cable. As a means for inserting and laying an optical cable in this pre-arranged pipe, there has been proposed a compressed air blowing method using compressed air.

【0003】[0003]

【発明が解決しようとする課題】圧送空気吹流し工法に
おいては、光ケーブルが空気流に乗ってパイプ内を端末
まで搬送されて行けば理想的な布設を行うことができ
る。しかし、パイプは全長に亘って常に直線配置されて
いるとは限らず、一部曲線配置されているのが通常であ
る。また、光ケーブル自体に巻き癖もあって、光ケーブ
ルがパイプの内面に接触したりして抵抗を受ける。この
ため、内面が平滑なポリエチレンパイプなどを使用する
が、それでも光ケーブルを圧送空気により吹流し布設で
きる長さは、通常、水平方向で約1km程度、垂直方向
で約100m程度である。
In the blown-air blowing method, ideal laying can be carried out if the optical cable is carried by the air flow to the end inside the pipe. However, the pipes are not always arranged in a straight line over the entire length, but are usually arranged in a curve. Also, the optical cable itself has a winding tendency, and the optical cable comes into contact with the inner surface of the pipe and receives resistance. For this reason, a polyethylene pipe or the like having a smooth inner surface is used, but the length of the optical cable that can be blown away by compressed air is usually about 1 km in the horizontal direction and about 100 m in the vertical direction.

【0004】しかし、布設効率を上げるために、それ以
上の長さが布設できることが要請される。その要請に応
えるには空気流量を増大させ、入力圧力をより一層増大
させる方法もあるが、パイプの材料等を考慮した場合、
このような方法には限界がある。たとえば圧力を例にと
れば、1kmの吹き込みを行うには入力圧力は8気圧以
上必要であり、これをさらに上昇することは、パイプ破
損等の好ましくない事態を招く。
However, in order to improve the laying efficiency, it is required that a longer length can be laid. In order to meet the demand, there is a method of increasing the air flow rate and further increasing the input pressure, but when considering the material of the pipe,
Such methods have limitations. For example, taking pressure as an example, an input pressure of 8 atm or higher is required to blow 1 km, and further increase of this pressure causes an undesirable situation such as pipe damage.

【0005】そこで、これを解決する一つの方法とし
て、光ケーブルの外周に空気流に対して大きな抵抗を生
じさせる凹凸構造を持たせる方法が検討されている。し
かし、機械的にせよ化学的にせよ、光ケーブルをこのよ
うな凹凸形状に表面加工することは、量産化の点で困難
であり、これを敢えて実現しようとする場合には、光ケ
ーブルの大幅なコストアップが予想される。
Therefore, as one method for solving this problem, a method of providing an outer periphery of the optical cable with a concavo-convex structure that causes a large resistance to an air flow is being studied. However, it is difficult in terms of mass production to surface-treat an optical cable into such a concavo-convex shape, whether mechanically or chemically. Up is expected.

【0006】本発明の目的は、ケーブル表面に、より大
きな推進力と低摩擦性を付与することによって、上述し
た従来技術の欠点を解消し、ケーブルの圧送距離を大幅
に向上させることが可能な空気圧送用光ケーブルを提供
することにある。また、本発明の目的は、上記したケー
ブルの量産化、低コスト化が可能な空気圧送用光ケーブ
ルの製造方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to greatly improve the pumping distance of the cable by imparting a larger propulsive force and a low friction property to the cable surface. An object is to provide an optical cable for pneumatic transmission. Another object of the present invention is to provide a method for manufacturing an optical cable for pneumatic transmission, which enables mass production and cost reduction of the above cable.

【0007】[0007]

【課題を解決するための手段】本発明の空気圧送用光ケ
ーブル3は、図1に示すように、ポリオレフィン40〜
90重量%と、オルガノポリシロキサン10〜60重量
%との混合物からなる被覆層1を有し、その表面に空気
抵抗を生じる均一な凹凸部2が形成されているものであ
る。なお、光ケーブルには光ファイバも含まれる。
As shown in FIG. 1, a pneumatic cable 3 for pneumatic feeding according to the present invention comprises polyolefins 40 to 40.
The coating layer 1 is composed of a mixture of 90% by weight and 10 to 60% by weight of organopolysiloxane, and a uniform uneven portion 2 that causes air resistance is formed on the surface thereof. The optical cable also includes an optical fiber.

【0008】また、本発明の空気圧送用光ケーブルは、
ポリオレフィン40〜90重量%と、動粘度が100c
2 /S以上のオルガノポリシロキサン10〜60重量
%とを混合して混合物を得、この混合物を押出し被覆す
ることによりケーブル表面に均一な凹凸部を設けたもの
である。
The optical cable for pneumatic feeding of the present invention is
Polyolefin 40-90% by weight, kinematic viscosity 100c
A mixture is obtained by mixing 10 to 60% by weight of organopolysiloxane having a m 2 / S or more, and the mixture is extruded and coated to form a uniform uneven portion on the cable surface.

【0009】ポリオレフィンは、エチレン酢酸ビニル共
重合体、エチレンメチルアクリレート、エチレンメチル
メタアクリレート、エチレンエチルアクリレート、エチ
レンプロピレンゴム、エチレン−プロピレン−ジエン三
元共重合体等のエチレン系コポリマや、高,中,低密度
ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポ
リエチレン、ポリプロピレン等である。
The polyolefin is an ethylene-based copolymer such as ethylene vinyl acetate copolymer, ethylene methyl acrylate, ethylene methyl methacrylate, ethylene ethyl acrylate, ethylene propylene rubber or ethylene-propylene-diene terpolymer, and high and medium copolymers. , Low density polyethylene, linear low density polyethylene, ultra low density polyethylene, polypropylene and the like.

【0010】このようなポリオレフィンを40〜90重
量%としたのは、40重量%未満では均一な凹凸部が得
られず、逆に90重量%を越えると、ポリオレフィン自
体の平滑な外観に近く、ほとんど凹凸形状にならないか
らである。
The reason why the content of such a polyolefin is 40 to 90% by weight is that if the amount is less than 40% by weight, a uniform uneven portion cannot be obtained, and if it exceeds 90% by weight, the polyolefin itself has a smooth appearance. This is because there is almost no uneven shape.

【0011】オルガノポリシロキサンは、シリコーンガ
ム、シリコーンオイル、変成シリコーンオイル等であ
る。オルガノポリシロキサンを10〜60重量%とした
のは、10重量%未満では凹凸部が得られず、60重量
%を越えると形くずれを起こし凹凸部が均一にならない
からである。特に、オルガノポリシロキサンは、動粘度
が低いとブリードが激しく、押出機内で滑りが生じて押
出しできないため、動粘度100cm2 /S以上とする
必要がある。
Organopolysiloxanes include silicone gum, silicone oil, modified silicone oil and the like. The content of the organopolysiloxane is set to 10 to 60% by weight because if the content is less than 10% by weight, the unevenness cannot be obtained, and if it exceeds 60% by weight, the unevenness occurs and the unevenness is not uniform. In particular, when the kinematic viscosity of the organopolysiloxane is low, bleeding is severe, and slippage occurs in the extruder so that it cannot be extruded. Therefore, the kinematic viscosity needs to be 100 cm 2 / S or more.

【0012】[0012]

【作用】ポリオレフィン40〜90重量%と、オルガノ
ポリシロキサン10〜60重量%とをバンバリーミキサ
等で温度約130〜150℃で混練して得られた混合物
を用いる。この混合物を押出機により約120〜150
℃で溶融押出して光ケーブルに被覆する。この際、相溶
性の悪いシリコーンポリマがプレートアウトし、ケーブ
ル表面を均一な凹凸形状とする。
A mixture obtained by kneading 40 to 90% by weight of polyolefin and 10 to 60% by weight of organopolysiloxane with a Banbury mixer at a temperature of about 130 to 150 ° C is used. This mixture is passed through an extruder to approximately 120-150.
Melt extruded at ℃ to coat the optical cable. At this time, the poorly compatible silicone polymer is plated out, and the cable surface is made into a uniform uneven shape.

【0013】この凹凸形状は、押出速度を変えること
で、その大きさや粗さをコントロールできる。また、シ
リコーン成分が、接触摩擦抵抗を小さくし、圧送距離を
延長させる効果を発揮する。これらの光ケーブルは、電
子線や紫外線等を照射したり、有機過酸化物を用いて周
知の方法で架橋しても良い。また、これらの混合物に必
要に応じ、滑剤や、酸化防止剤、充填剤、発泡剤、着色
剤、架橋剤等を適量加えてもよい。
This uneven shape can be controlled in size and roughness by changing the extrusion speed. Further, the silicone component has the effect of reducing the contact frictional resistance and extending the pumping distance. These optical cables may be irradiated with electron beams, ultraviolet rays, or the like, or may be crosslinked by a known method using an organic peroxide. Further, if necessary, a lubricant, an antioxidant, a filler, a foaming agent, a coloring agent, a cross-linking agent and the like may be added to these mixtures in an appropriate amount.

【0014】このようにして上記各成分の混合物を押出
し被覆するだけで、ケーブル表面に流体との抵抗を増大
させる凹凸部を容易に形成することができ、光ファイバ
を量産することができる。これによって光ケーブルの圧
送距離が大幅に向上する。また、各成分割合や押出速度
により、容易に表面の粗さをコントロールできる。
As described above, by merely extrusion-coating the mixture of the above-mentioned respective components, the concavo-convex portion that increases the resistance to the fluid can be easily formed on the cable surface, and the optical fiber can be mass-produced. This greatly improves the pumping distance of the optical cable. Further, the surface roughness can be easily controlled by the ratio of each component and the extrusion rate.

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。ここで
は、ポリオレフィンとして超低密度ポリエチレン(溶解
度パラメータ(SP)値:7.9)及びポリプロピレン
(SP値:8.1)を用い、またオルガノポリシロキサ
ンとしてシリコーンガム(SP値:7.3)を用いた。
EXAMPLES Examples of the present invention will be described below. Here, ultra low density polyethylene (solubility parameter (SP) value: 7.9) and polypropylene (SP value: 8.1) are used as the polyolefin, and silicone gum (SP value: 7.3) is used as the organopolysiloxane. Using.

【0016】実施例1 密度0.90、メルトインデックス(MI)0.8の超
低密度ポリエチレン90重量%と、動粘度3,000c
2 /Sのシリコーンガム10重量%とを120℃に保
持された8インチオープンロールを用いて混練して混合
物を得た。得られた混合物を40mm押出機で温度13
0℃、線速80m/minで押し出して、表1の最下欄
に示すケーブルの外周形状をもつ空気圧送用の光ケーブ
ルを得た。圧送距離は、水平方向で2.2km、垂直方
向で0.6kmであった。
Example 1 90% by weight of ultra-low density polyethylene having a density of 0.90 and a melt index (MI) of 0.8 and a kinematic viscosity of 3,000 c
The mixture was obtained by kneading using an 8-inch open rolls held m 2 / S silicone gum 10% by weight to 120 ° C.. The obtained mixture was heated at a temperature of 13 with a 40 mm extruder.
It was extruded at 0 ° C. and a linear velocity of 80 m / min to obtain an optical cable for pneumatic feeding having the outer peripheral shape of the cable shown in the bottom column of Table 1. The pumping distance was 2.2 km in the horizontal direction and 0.6 km in the vertical direction.

【0017】実施例2 超低密度ポリエチレンを80重量%、シリコーンガムを
20重量%とした以外は実施例1と同じとした。圧送距
離は、水平方向で3.3km、垂直方向で0.8kmで
あった。
Example 2 The same as Example 1 except that the ultra low density polyethylene was 80% by weight and the silicone gum was 20% by weight. The pumping distance was 3.3 km in the horizontal direction and 0.8 km in the vertical direction.

【0018】実施例3 超低密度ポリエチレンを70重量%、シリコーンガムを
30重量%とした以外は実施例1と同じとした。圧送距
離は、水平方向で3.5km、垂直方向で0.9kmで
あった。
Example 3 The same as Example 1 except that the ultra low density polyethylene was 70% by weight and the silicone gum was 30% by weight. The pumping distance was 3.5 km in the horizontal direction and 0.9 km in the vertical direction.

【0019】実施例4 密度0.91、MI9.0のポリプロピレンを40重量
%、動粘度3,000cm2 /Sのシリコーンガムを6
0重量%とした以外は、実施例1と同じとした。圧送距
離は、水平方向で3.0km、垂直方向で0.7kmで
あった。
Example 4 40% by weight of polypropylene having a density of 0.91 and MI 9.0, and 6 parts of a silicone gum having a kinematic viscosity of 3,000 cm 2 / S were used.
Same as Example 1 except 0% by weight. The pumping distance was 3.0 km in the horizontal direction and 0.7 km in the vertical direction.

【0020】実施例5 ポリプロピレンを40重量%、シリコーンガムを60重
量%とした以外は、実施例4と同じとした。圧送距離
は、水平方向で3.2km、垂直方向で0.8kmであ
った。
Example 5 The same as Example 4 except that polypropylene was 40% by weight and silicone gum was 60% by weight. The pumping distance was 3.2 km in the horizontal direction and 0.8 km in the vertical direction.

【0021】比較例1 超低密度ポリエチレンを100重量%とした以外は実施
例1と同じとした。圧送距離は、水平方向で1.0k
m、垂直方向で0.2kmであった。
Comparative Example 1 The same as Example 1 except that the ultra low density polyethylene was 100% by weight. Pumping distance is 1.0k in horizontal direction
m was 0.2 km in the vertical direction.

【0022】比較例2 超低密度ポリエチレンを95重量%とし、シリコーンガ
ムを5重量%とした以外は、実施例1と同じとした。圧
送距離は、水平方向で1.1km、垂直方向で0.3k
mであった。
Comparative Example 2 Same as Example 1 except that the ultra low density polyethylene was 95% by weight and the silicone gum was 5% by weight. The pumping distance is 1.1km in the horizontal direction and 0.3k in the vertical direction.
It was m.

【0023】比較例3 超低密度ポリエチレンを30重量%とし、シリコーンガ
ムを70重量%とした以外は、実施例1と同じとした。
圧送距離は、水平方向で1.3km、垂直方向で0.3
kmであった。
Comparative Example 3 The same as Example 1 except that the ultra low density polyethylene was 30% by weight and the silicone gum was 70% by weight.
The pumping distance is 1.3 km in the horizontal direction and 0.3 in the vertical direction.
It was km.

【0024】比較例4 超低密度ポリエチレンを70重量%とし、オルガノポリ
シロキサンとして変成シリコーンオイルを用い、それを
動粘度90cm2 /S、30重量%とした以外は、実施
例1と同じとした。圧送距離は、水平方向で1.5k
m、垂直方向で0.4kmであった。押出機による押出
しは不能なため、塗布等の手段により被覆した。
Comparative Example 4 Same as Example 1 except that ultra low density polyethylene was 70% by weight, modified silicone oil was used as the organopolysiloxane, and the kinematic viscosity was 90 cm 2 / S and 30% by weight. . Pumping distance is 1.5k in horizontal direction
m, 0.4 km in the vertical direction. Since extrusion by an extruder is impossible, it was coated by means such as coating.

【0025】上記結果を表1にまとめて示す。The above results are summarized in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1からわかるように、実施例ではケーブ
ル外周形状が均一な凹凸状をなしており、圧送距離が大
幅に延びている。また、オルガノポリシロキサンすなわ
ち、シリコーン添加量を増すと、凹凸の差が大きくなり
これに伴って圧送距離が更に延びる傾向にあることがわ
かる。
As can be seen from Table 1, in the embodiment, the outer peripheral shape of the cable has a uniform uneven shape, and the pumping distance is greatly extended. Further, it is understood that when the organopolysiloxane, that is, the amount of silicone added is increased, the difference in the unevenness is increased, and the pumping distance tends to be further extended accordingly.

【0028】一方、比較例を見ると、シリコーン量が少
ないと凹凸部はほとんど現れず、またシリコーンが多過
ぎると形くずれを起こし、圧送距離は短くなることが分
かる。以上の結果から、本実施例によれば、従来の約2
〜3倍の圧送距離を得ることができる。
On the other hand, it can be seen from the comparative example that when the amount of silicone is small, the irregularities hardly appear, and when the amount of silicone is too large, the shape is deformed and the pumping distance is shortened. From the above results, according to the present embodiment, the conventional
A pumping distance of up to 3 times can be obtained.

【0029】なお、上述した本発明の材料は、なにも空
気圧送用光ケーブルの被覆材料のみに特定する必要はな
く、これを電線・ケーブルの被覆材料や医療用器具、さ
らに射出成形などにも適用することができる。
The above-mentioned material of the present invention need not be specified only as a coating material for pneumatic pneumatic optical cables, and may be used as a coating material for electric wires and cables, medical instruments, and injection molding. Can be applied.

【0030】[0030]

【発明の効果】【The invention's effect】

(1)請求項1に記載の空気圧送用光ケーブルによれ
ば、ポリオレフィンとオルガノポリシロキサンとの混合
物からなるケーブル表面に空気抵抗を生じる均一な凹凸
部を設けたので、空気圧送法によりパイプ内にケーブル
を布設する際に、凹凸部の存在により大きな推進力を得
ることができ、均一な凹凸部により低摩擦性を付与で
き、従来と同じ圧送空気圧でより長距離の吹き込み布設
が可能となる。
(1) According to the optical cable for pneumatic feeding according to claim 1, since the cable surface made of a mixture of polyolefin and organopolysiloxane is provided with a uniform uneven portion for generating air resistance, it is provided in the pipe by the pneumatic feeding method. When the cable is laid, a large propulsive force can be obtained due to the presence of the uneven portion, low friction can be imparted due to the uniform uneven portion, and it is possible to lay it for a longer distance with the same compressed air pressure as the conventional one.

【0031】(2)請求項2に記載の空気圧送用光ケー
ブルの製造方法によれば、ポリオレフィンと所定粘度の
オルガノポリシロキサンとを所定成分比で混合した混合
物を押出し被覆するだけで表面加工することなしに、ケ
ーブル表面に均一な凹凸部が設けられるようにしたの
で、周知の押出機で容易に表面加工することができ、生
産性が良好で、加工費等のコストを大幅に低減すること
ができる。
(2) According to the method for producing an optical cable for pneumatic feeding of claim 2, the mixture is prepared by extrusion-coating a mixture of a polyolefin and an organopolysiloxane having a predetermined viscosity in a predetermined component ratio for surface treatment. Since the cable surface is provided with a uniform unevenness, the surface can be easily processed with a known extruder, the productivity is good, and the cost such as processing cost can be significantly reduced. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるケーブル表面を凹凸状と
した均一な突起物を設けた空気圧送用光ケーブル外周の
形状を示す図。
FIG. 1 is a diagram showing a shape of an outer circumference of an optical cable for pneumatic feeding provided with a uniform protrusion having an uneven cable surface according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被覆層 2 凹凸部 3 空気圧送用光ケーブル 1 coating layer 2 uneven portion 3 pneumatic optical cable

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ポリオレフィン40〜90重量%と、オル
ガノポリシロキサン10〜60重量%との混合物からな
る被覆層を有し、その表面に空気抵抗を生じる均一な凹
凸部が形成されていることを特徴とする空気圧送用光ケ
ーブル。
1. A coating layer comprising a mixture of 40 to 90% by weight of a polyolefin and 10 to 60% by weight of an organopolysiloxane, on the surface of which a uniform uneven portion which causes air resistance is formed. A characteristic optical cable for pneumatic transmission.
【請求項2】ポリオレフィン40〜90重量%と、動粘
度が100cm2 /S以上のオルガノポリシロキサン1
0〜60重量%とを混合して混合物を得、この混合物を
押出し被覆することによりケーブル表面に均一な凹凸部
を設けたことを特徴とする空気圧送用光ケーブルの製造
方法。
2. An organopolysiloxane 1 having 40 to 90% by weight of polyolefin and a kinematic viscosity of 100 cm 2 / S or more.
A method for producing an optical cable for pneumatic feeding, characterized in that 0 to 60% by weight is mixed to obtain a mixture, and the mixture is extrusion-coated to provide a uniform uneven portion on the cable surface.
JP5015368A 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same Expired - Fee Related JP3003443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015368A JP3003443B2 (en) 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015368A JP3003443B2 (en) 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06230255A true JPH06230255A (en) 1994-08-19
JP3003443B2 JP3003443B2 (en) 2000-01-31

Family

ID=11886854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015368A Expired - Fee Related JP3003443B2 (en) 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3003443B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839252A (en) * 1987-03-13 1989-06-13 Shindengen Electric Manufacturing Co., Ltd Electrophotographic photoreceptor
US4886720A (en) * 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839252A (en) * 1987-03-13 1989-06-13 Shindengen Electric Manufacturing Co., Ltd Electrophotographic photoreceptor
US4886720A (en) * 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material

Also Published As

Publication number Publication date
JP3003443B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
US5575965A (en) Process for extrusion
CA2290318C (en) Crosslinked compositions containing silane-grafted polyolefins and polypropylene
JP6623260B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
US6794453B2 (en) Crosslinked, predominantly polypropylene-based compositions
CN104870534B (en) For improving foaming characteristic and enhancing the polyolefin-based cable compound preparation of machinability
JP6265875B2 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
KR970702305A (en) SILANE-CROSSLINKABLE, SUBSTANTIALLY LINEAR ETHYLENE POLYMERS AND THEIRUSES
ES2389622T3 (en) Moisture crosslinked polyolefin compositions
TW201236848A (en) Die assembly with cooled die land
CN100538916C (en) Have and comprise polyolefin that contains polar group, hydrolysising silane group and the lv power cable that comprises the insulating barrier of silicon alcohol condensation catalyst
CN108028103A (en) Peelable cable cover(ing) with designed microstructure and the method for being used to prepare the peelable cable cover(ing) with designed microstructure
CN108028102A (en) Peelable cable cover(ing) with designed microstructure and the method for being used to prepare the peelable cable cover(ing) with designed microstructure
CN1098306C (en) High-density polyethylene composition and its pipe material
JP5845595B2 (en) Ethylene polymer pellet and extrusion molding method using the pellet
JPH06230255A (en) Optical cable sent by air pressure and its production
JP7354819B2 (en) Resin compositions, crosslinked resin compositions, molded bodies, wire covering materials, and wires
CN108028101A (en) Peelable cable cover(ing) with designed microstructure and the method for being used to prepare the peelable cable cover(ing) with designed microstructure
CN107258004A (en) The method of the cable cover(ing) of cable cover(ing) and preparation with the microstructure through design with the microstructure through design
US5505992A (en) Hot melt spray cladding of innerduct liner
US5501873A (en) Impact spray cladding of innerduct liner
JP5922599B2 (en) Resin composition for silane cross-linked molded body and molded body using the same
JP2014156570A (en) Production method of silane cross-linked resin molding and molding using the method
JP7230616B2 (en) Tubular bodies, pipes and hoses, and modified ethylene/α-olefin copolymers
CA2382762C (en) Crosslinked compositions containing silane-modified polyolefin blends
JP2000173357A (en) Plastic coated cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees