JP3003443B2 - Optical cable for pneumatic feeding and method of manufacturing the same - Google Patents

Optical cable for pneumatic feeding and method of manufacturing the same

Info

Publication number
JP3003443B2
JP3003443B2 JP5015368A JP1536893A JP3003443B2 JP 3003443 B2 JP3003443 B2 JP 3003443B2 JP 5015368 A JP5015368 A JP 5015368A JP 1536893 A JP1536893 A JP 1536893A JP 3003443 B2 JP3003443 B2 JP 3003443B2
Authority
JP
Japan
Prior art keywords
weight
optical cable
cable
mixture
organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5015368A
Other languages
Japanese (ja)
Other versions
JPH06230255A (en
Inventor
一史 木村
義史 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP5015368A priority Critical patent/JP3003443B2/en
Publication of JPH06230255A publication Critical patent/JPH06230255A/en
Application granted granted Critical
Publication of JP3003443B2 publication Critical patent/JP3003443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、パイプ内に圧送空気吹
流し工法を用いて布設される空気圧送用光ケーブル及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical cable for pneumatic transmission laid in a pipe by a method of blowing air under pressure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】光ケーブル布設のために構造物中にパイ
プを予備配設することが行われている。このようなパイ
プ配設は、メタルケーブルの配線ダクトを利用したり、
あるいは電力供給用幹線ケーブルに光ファイバ布設用パ
イプを添設したりするものである。この予備配設したパ
イプ内に光ケーブルを挿入布設する手段として、圧送空
気を用いる圧送空気吹流し工法が提案されている。
2. Description of the Related Art Preliminary arrangement of pipes in a structure for laying optical cables has been performed. Such pipe arrangements use metal cable wiring ducts,
Alternatively, an optical fiber laying pipe is attached to the power supply trunk cable. As a means for inserting and laying an optical cable into the pre-arranged pipe, there has been proposed a compressed air blowing method using compressed air.

【0003】[0003]

【発明が解決しようとする課題】圧送空気吹流し工法に
おいては、光ケーブルが空気流に乗ってパイプ内を端末
まで搬送されて行けば理想的な布設を行うことができ
る。しかし、パイプは全長に亘って常に直線配置されて
いるとは限らず、一部曲線配置されているのが通常であ
る。また、光ケーブル自体に巻き癖もあって、光ケーブ
ルがパイプの内面に接触したりして抵抗を受ける。この
ため、内面が平滑なポリエチレンパイプなどを使用する
が、それでも光ケーブルを圧送空気により吹流し布設で
きる長さは、通常、水平方向で約1km程度、垂直方向
で約100m程度である。
In the pressurized air blowing method, ideal laying can be performed if the optical cable is carried to the terminal inside the pipe by riding the air flow. However, the pipes are not always arranged linearly over the entire length, and are usually partially curved. Also, the optical cable itself has a curl, and the optical cable receives resistance due to contact with the inner surface of the pipe. For this reason, a polyethylene pipe or the like having a smooth inner surface is used. However, the length of the optical cable which can be blown by the compressed air and laid is usually about 1 km in the horizontal direction and about 100 m in the vertical direction.

【0004】しかし、布設効率を上げるために、それ以
上の長さが布設できることが要請される。その要請に応
えるには空気流量を増大させ、入力圧力をより一層増大
させる方法もあるが、パイプの材料等を考慮した場合、
このような方法には限界がある。たとえば圧力を例にと
れば、1kmの吹き込みを行うには入力圧力は8気圧以
上必要であり、これをさらに上昇することは、パイプ破
損等の好ましくない事態を招く。
However, in order to increase the installation efficiency, it is required that a longer length can be installed. To meet the demand, there is a method of increasing the air flow rate and further increasing the input pressure, but when considering the material of the pipe,
Such methods have limitations. For example, taking the pressure as an example, in order to blow 1 km, the input pressure needs to be 8 atm or more, and if this pressure is further increased, an undesirable situation such as breakage of a pipe is caused.

【0005】そこで、これを解決する一つの方法とし
て、光ケーブルの外周に空気流に対して大きな抵抗を生
じさせる凹凸構造を持たせる方法が検討されている。し
かし、機械的にせよ化学的にせよ、光ケーブルをこのよ
うな凹凸形状に表面加工することは、量産化の点で困難
であり、これを敢えて実現しようとする場合には、光ケ
ーブルの大幅なコストアップが予想される。
Therefore, as one method for solving this problem, a method of providing a concave-convex structure on the outer periphery of an optical cable to generate a large resistance to an air flow has been studied. However, it is difficult to surface-treat an optical cable to such an uneven shape, whether mechanically or chemically, in terms of mass production. Up is expected.

【0006】本発明の目的は、ケーブル表面に、より大
きな推進力と低摩擦性を付与することによって、上述し
た従来技術の欠点を解消し、ケーブルの圧送距離を大幅
に向上させることが可能な空気圧送用光ケーブルを提供
することにある。また、本発明の目的は、上記したケー
ブルの量産化、低コスト化が可能な空気圧送用光ケーブ
ルの製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the above-mentioned drawbacks of the prior art and to greatly improve the cable feeding distance by imparting a greater propulsive force and lower friction to the cable surface. An object of the present invention is to provide an optical cable for pneumatic feeding. Another object of the present invention is to provide a method of manufacturing an optical cable for pneumatic transmission, which enables mass production and cost reduction of the above-described cable.

【0007】[0007]

【課題を解決するための手段】本発明の空気圧送用光ケ
ーブル3は、図1に示すように、エチレン系コポリマ又
はポリプロピレン40〜90重量%と、オルガノポリシ
ロキサン10〜60重量%との混合物からなる被覆層1
を有し、その表面に空気抵抗を生じる均一な凹凸部2が
形成されているものである。なお、光ケーブルには光フ
ァイバも含まれる。
As shown in FIG. 1, an optical cable 3 for pneumatic feeding according to the present invention comprises an ethylene copolymer or
Is a coating layer 1 composed of a mixture of 40 to 90% by weight of polypropylene and 10 to 60% by weight of an organopolysiloxane.
And a uniform uneven portion 2 that generates air resistance is formed on the surface thereof. The optical cable includes an optical fiber.

【0008】また、本発明の空気圧送用光ケーブルの製
造方法は、エチレン系コポリマ又はポリプロピレン40
〜90重量%と、動粘度が100cm2 /S以上のオル
ガノポリシロキサン10〜60重量%とを混合して混合
物を得、この混合物を押出し被覆することによりケーブ
ル表面に均一な凹凸部を設けた方法である。
Further, the optical cable for pneumatic feeding of the present invention is manufactured.
The production method is an ethylene copolymer or polypropylene 40.
To 90% by weight and 10 to 60% by weight of an organopolysiloxane having a kinematic viscosity of 100 cm 2 / S or more to obtain a mixture. The mixture was extruded and coated to provide a uniform uneven portion on the cable surface. Is the way .

【0009】上記エチレン系コポリマとしては、エチレ
ン酢酸ビニル共重合体、エチレンメチルアクリレート、
エチレンメチルメタアクリレート、エチレンエチルアク
リレート、エチレンプロピレンゴム、エチレン−プロピ
レン−ジエン三元共重合体や、超低密度ポリエチレン
があげられる
The ethylene copolymer includes ethylene vinyl acetate copolymer, ethylene methyl acrylate,
Ethylene methyl methacrylate, ethylene ethyl acrylate, ethylene propylene rubber, ethylene-propylene-diene terpolymer , ultra-low density polyethylene, etc.
Is raised .

【0010】このようなエチレン系コポリマ又はポリプ
ロピレンを40〜90重量%としたのは、40重量%未
満では均一な凹凸部が得られず、逆に90重量%を越え
ると、エチレン系コポリマ又はポリプロピレン自体の平
滑な外観に近く、ほとんど凹凸形状にならないからであ
る。
Such an ethylene copolymer or polyp
When propylene is used in an amount of 40 to 90% by weight, if the amount is less than 40% by weight, a uniform uneven portion cannot be obtained. If the amount exceeds 90% by weight, the smooth appearance of the ethylene copolymer or polypropylene itself is close to that of the propylene. This is because it does not become a shape.

【0011】オルガノポリシロキサンは、シリコーン
、シリコーンオイル、変成シリコーンオイル等であ
る。オルガノポリシロキサンを10〜60重量%とした
のは、10重量%未満では凹凸部が得られず、60重量
%を越えると形くずれを起こし凹凸部が均一にならない
からである。特に、オルガノポリシロキサンは、動粘度
が低いとブリードが激しく、押出機内で滑りが生じて押
出しできないため、動粘度100cm2 /S以上とする
必要がある。
The organopolysiloxane is a silicone resin.
System , silicone oil, modified silicone oil and the like. The reason why the content of the organopolysiloxane is 10 to 60% by weight is that if the content is less than 10% by weight, no unevenness is obtained, and if the content is more than 60% by weight, the shape is lost and the unevenness is not uniform. In particular, when the kinematic viscosity of the organopolysiloxane is low, bleeding is severe, and slippage occurs in the extruder, so that the extruder cannot be extruded. Therefore, the kinematic viscosity needs to be 100 cm 2 / S or more.

【0012】[0012]

【作用】エチレン系コポリマ又はポリプロピレン40〜
90重量%と、オルガノポリシロキサン10〜60重量
%とをバンバリーミキサ等で温度約130〜150℃で
混練して得られた混合物を用いる。この混合物を押出機
により約120〜150℃で溶融押出して光ケーブルに
被覆する。この際、相溶性の悪いシリコーンポリマがプ
レートアウトし、ケーブル表面を均一な凹凸形状とす
る。
[Effect] Ethylene copolymer or polypropylene 40 ~
A mixture obtained by kneading 90% by weight and 10 to 60% by weight of an organopolysiloxane with a Banbury mixer at a temperature of about 130 to 150 ° C is used. The mixture is melt-extruded at about 120 to 150 ° C. by an extruder and coated on an optical cable. At this time, the silicone polymer having poor compatibility is plated out, and the cable surface is made to have a uniform uneven shape.

【0013】この凹凸形状は、押出速度を変えること
で、その大きさや粗さをコントロールできる。また、シ
リコーン成分が、接触摩擦抵抗を小さくし、圧送距離を
延長させる効果を発揮する。これらの光ケーブルは、電
子線や紫外線等を照射したり、有機過酸化物を用いて周
知の方法で架橋しても良い。また、これらの混合物に必
要に応じ、滑剤や、酸化防止剤、充填剤、発泡剤、着色
剤、架橋剤等を適量加えてもよい。
The size and roughness of the uneven shape can be controlled by changing the extrusion speed. In addition, the silicone component has the effect of reducing the contact friction resistance and extending the pumping distance. These optical cables may be irradiated with electron beams, ultraviolet rays, or the like, or may be cross-linked by a known method using an organic peroxide. If necessary, a proper amount of a lubricant, an antioxidant, a filler, a foaming agent, a coloring agent, a crosslinking agent, and the like may be added to these mixtures.

【0014】このようにして上記各成分の混合物を押出
し被覆するだけで、ケーブル表面に流体との抵抗を増大
させる凹凸部を容易に形成することができ、光ファイバ
を量産することができる。これによって光ケーブルの圧
送距離が大幅に向上する。また、各成分割合や押出速度
により、容易に表面の粗さをコントロールできる。
By simply extruding and coating the mixture of each of the above-described components, it is possible to easily form an uneven portion on the cable surface to increase the resistance to the fluid, and mass-produce optical fibers. As a result, the distance over which the optical cable is pumped is greatly improved. In addition, the surface roughness can be easily controlled by the proportion of each component and the extrusion speed.

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。ここで
は、エチレン系コポリマ又はポリプロピレンとして超低
密度ポリエチレン(溶解度パラメータ(SP)値:7.
9)及びポリプロピレン(SP値:8.1)を用い、ま
たオルガノポリシロキサンとしてシリコーンゴム(SP
値:7.3)を用いた。
Embodiments of the present invention will be described below. Here, as ethylene copolymers or polypropylene ultra low density polyethylene (solubility parameter (SP) value: 7.
9) and polypropylene (SP value: 8.1), and silicone rubber (SP) as an organopolysiloxane.
Value: 7.3) was used.

【0016】実施例1 密度0.90、メルトインデックス(MI)0.8の超
低密度ポリエチレン90重量%と、動粘度3,000c
2 /Sのシリコーンゴム10重量%とを120℃に保
持された8インチオープンロールを用いて混練して混合
物を得た。得られた混合物を40mm押出機で温度13
0℃、線速80m/minで押し出して、表1の最下欄
に示すケーブルの外周形状をもつ空気圧送用の光ケーブ
ルを得た。圧送距離は、水平方向で2.2km、垂直方
向で0.6kmであった。
Example 1 90% by weight of ultra low density polyethylene having a density of 0.90 and a melt index (MI) of 0.8, and a kinematic viscosity of 3,000 c
10% by weight of m 2 / S silicone rubber was kneaded using an 8-inch open roll maintained at 120 ° C. to obtain a mixture. The resulting mixture was extruded at a temperature of 13 with a 40 mm extruder.
It was extruded at 0 ° C. and a linear velocity of 80 m / min to obtain an optical cable for air pressure transmission having the outer peripheral shape of the cable shown in the lowermost column of Table 1. The pumping distance was 2.2 km in the horizontal direction and 0.6 km in the vertical direction.

【0017】実施例2 超低密度ポリエチレンを80重量%、シリコーンゴム
20重量%とした以外は実施例1と同じとした。圧送距
離は、水平方向で3.3km、垂直方向で0.8kmで
あった。
Example 2 The procedure of Example 1 was repeated except that the ultra low density polyethylene was 80% by weight and the silicone rubber was 20% by weight. The pumping distance was 3.3 km in the horizontal direction and 0.8 km in the vertical direction.

【0018】実施例3 超低密度ポリエチレンを70重量%、シリコーンゴム
30重量%とした以外は実施例1と同じとした。圧送距
離は、水平方向で3.5km、垂直方向で0.9kmで
あった。
Example 3 Example 3 was the same as Example 1 except that the ultra low density polyethylene was 70% by weight and the silicone rubber was 30% by weight. The pumping distance was 3.5 km in the horizontal direction and 0.9 km in the vertical direction.

【0019】実施例4 密度0.91、MI9.0のポリプロピレンを40重量
%、動粘度3,000cm2 /Sのシリコーンゴムを6
0重量%とした以外は、実施例1と同じとした。圧送距
離は、水平方向で3.0km、垂直方向で0.7kmで
あった。
Example 4 40% by weight of polypropylene having a density of 0.91 and MI of 9.0, and 6 parts of silicone rubber having a kinematic viscosity of 3,000 cm 2 / S.
It was the same as Example 1 except that it was 0% by weight. The pumping distance was 3.0 km in the horizontal direction and 0.7 km in the vertical direction.

【0020】実施例5 ポリプロピレンを40重量%、シリコーンゴムを60重
量%とした以外は、実施例4と同じとした。圧送距離
は、水平方向で3.2km、垂直方向で0.8kmであ
った。
Example 5 Same as Example 4 except that polypropylene was 40% by weight and silicone rubber was 60% by weight. The pumping distance was 3.2 km in the horizontal direction and 0.8 km in the vertical direction.

【0021】比較例1 超低密度ポリエチレンを100重量%とした以外は実施
例1と同じとした。圧送距離は、水平方向で1.0k
m、垂直方向で0.2kmであった。
Comparative Example 1 The procedure was the same as in Example 1 except that the ultra low density polyethylene was changed to 100% by weight. Pumping distance is 1.0k in horizontal direction
m, 0.2 km in the vertical direction.

【0022】比較例2 超低密度ポリエチレンを95重量%とし、シリコーン
を5重量%とした以外は、実施例1と同じとした。圧
送距離は、水平方向で1.1km、垂直方向で0.3k
mであった。
COMPARATIVE EXAMPLE 2 Silicone rubber was prepared by adding 95% by weight of ultra low density polyethylene.
Except that the arm 5 wt% was the same as in Example 1. The pumping distance is 1.1 km in the horizontal direction and 0.3 km in the vertical direction
m.

【0023】比較例3 超低密度ポリエチレンを30重量%とし、シリコーン
を70重量%とした以外は、実施例1と同じとした。
圧送距離は、水平方向で1.3km、垂直方向で0.3
kmであった。
COMPARATIVE EXAMPLE 3 Silicone resin was added to ultra-low density polyethylene at 30% by weight.
The same procedure as in Example 1 was carried out except that the weight was 70% by weight.
The pumping distance is 1.3 km in the horizontal direction and 0.3 in the vertical direction.
km.

【0024】比較例4 超低密度ポリエチレンを70重量%とし、オルガノポリ
シロキサンとして変成シリコーンオイルを用い、それを
動粘度90cm2 /S、30重量%とした以外は、実施
例1と同じとした。圧送距離は、水平方向で1.5k
m、垂直方向で0.4kmであった。押出機による押出
しは不能なため、塗布等の手段により被覆した。
Comparative Example 4 The same procedure as in Example 1 was carried out except that the ultra-low density polyethylene was 70% by weight, the modified silicone oil was used as the organopolysiloxane, and the kinematic viscosity was 90 cm 2 / S and 30% by weight. . Pumping distance is 1.5k in horizontal direction
m and 0.4 km in the vertical direction. Since extrusion by an extruder was not possible, coating was performed by means such as coating.

【0025】上記結果を表1にまとめて示す。The above results are summarized in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】表1からわかるように、実施例ではケーブ
ル外周形状が均一な凹凸状をなしており、圧送距離が大
幅に延びている。また、オルガノポリシロキサンすなわ
ち、シリコーン添加量を増すと、凹凸の差が大きくなり
これに伴って圧送距離が更に延びる傾向にあることがわ
かる。
As can be seen from Table 1, in the embodiment, the outer peripheral shape of the cable has a uniform uneven shape, and the distance for pressure feeding is greatly extended. In addition, it can be seen that when the amount of the organopolysiloxane, ie, silicone, is increased, the difference in unevenness is increased, and the pumping distance tends to be further increased accordingly.

【0028】一方、比較例を見ると、シリコーン量が少
ないと凹凸部はほとんど現れず、またシリコーンが多過
ぎると形くずれを起こし、圧送距離は短くなることが分
かる。以上の結果から、本実施例によれば、従来の約2
〜3倍の圧送距離を得ることができる。
On the other hand, according to the comparative example, it can be seen that when the amount of silicone is small, the uneven portion hardly appears, and when the amount of silicone is too large, the shape is deformed, and the pumping distance is shortened. From the above results, according to the present embodiment, about 2
Up to three times the pumping distance can be obtained.

【0029】なお、上述した本発明の材料は、なにも空
気圧送用光ケーブルの被覆材料のみに特定する必要はな
く、これを電線・ケーブルの被覆材料や医療用器具、さ
らに射出成形などにも適用することができる。
It should be noted that the above-mentioned material of the present invention does not need to be specified only for the coating material of the optical cable for pneumatic transmission, but is also applicable to the coating material of electric wires and cables, medical instruments, and injection molding. Can be applied.

【0030】[0030]

【発明の効果】(1)請求項1に記載の空気圧送用光ケ
ーブルによれば、エチレン系コポリマ又はポリプロピレ
とオルガノポリシロキサンとの混合物からなるケーブ
ル表面に空気抵抗を生じる均一な凹凸部を設けたので、
空気圧送法によりパイプ内にケーブルを布設する際に、
凹凸部の存在により大きな推進力を得ることができ、均
一な凹凸部により低摩擦性を付与でき、従来と同じ圧送
空気圧でより長距離の吹き込み布設が可能となる。
According to the first aspect of the present invention, an ethylene-based copolymer or polypropylene is used.
The surface of the cable made of a mixture of rubber and organopolysiloxane is provided with uniform irregularities that create air resistance.
When laying a cable in a pipe by the air pressure method,
A large propulsion force can be obtained due to the presence of the uneven portion, a low friction property can be imparted by the uniform uneven portion, and a long-distance blowing can be laid with the same pressure air pressure as before.

【0031】(2)請求項2に記載の空気圧送用光ケー
ブルの製造方法によれば、エチレン系コポリマ又はポリ
プロピレンと所定粘度のオルガノポリシロキサンとを所
定成分比で混合した混合物を押出し被覆するだけで表面
加工することなしに、ケーブル表面に均一な凹凸部が設
けられるようにしたので、周知の押出機で容易に表面加
工することができ、生産性が良好で、加工費等のコスト
を大幅に低減することができる。
(2) According to the method for manufacturing an optical cable for pneumatic feeding according to the second aspect, an ethylene copolymer or a polymer is used.
Since a mixture of propylene and an organopolysiloxane having a predetermined viscosity at a predetermined component ratio was extruded and coated, without performing surface processing, a uniform uneven portion was provided on the cable surface. Surface processing can be easily performed, productivity is good, and costs such as processing costs can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるケーブル表面を凹凸状と
した均一な突起物を設けた空気圧送用光ケーブル外周の
形状を示す図。
FIG. 1 is a view showing an outer shape of an optical cable for pneumatic transmission provided with a uniform protrusion having an uneven surface on a cable according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被覆層 2 凹凸部 3 空気圧送用光ケーブル DESCRIPTION OF SYMBOLS 1 Coating layer 2 Uneven part 3 Optical cable for pneumatic feeding

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 6/44 G02B 6/46 H02G 1/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 6/44 G02B 6/46 H02G 1/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エチレン系コポリマ又はポリプロピレン
0〜90重量%と、オルガノポリシロキサン10〜60
重量%との混合物からなる被覆層を有し、その表面に空
気抵抗を生じる均一な凹凸部が形成されていることを特
徴とする空気圧送用光ケーブル。
1. An ethylene copolymer or polypropylene 4.
0 to 90% by weight, and organopolysiloxane 10 to 60%
An optical cable for pneumatic feeding, comprising: a coating layer made of a mixture with the same by weight and a uniform uneven portion which generates air resistance on the surface thereof.
【請求項2】エチレン系コポリマ又はポリプロピレン
0〜90重量%と、動粘度が100cm2 /S以上のオ
ルガノポリシロキサン10〜60重量%とを混合して混
合物を得、この混合物を押出し被覆することによりケー
ブル表面に均一な凹凸部を設けたことを特徴とする空気
圧送用光ケーブルの製造方法。
2. An ethylene copolymer or polypropylene 4.
A mixture is obtained by mixing 0 to 90% by weight and 10 to 60% by weight of an organopolysiloxane having a kinematic viscosity of 100 cm 2 / S or more, and the mixture is extruded and coated to provide uniform uneven portions on the cable surface. A method for manufacturing an optical cable for pneumatic feeding, characterized in that:
JP5015368A 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same Expired - Fee Related JP3003443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015368A JP3003443B2 (en) 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015368A JP3003443B2 (en) 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06230255A JPH06230255A (en) 1994-08-19
JP3003443B2 true JP3003443B2 (en) 2000-01-31

Family

ID=11886854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015368A Expired - Fee Related JP3003443B2 (en) 1993-02-02 1993-02-02 Optical cable for pneumatic feeding and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3003443B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223755A (en) * 1987-03-13 1988-09-19 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
US4886720A (en) * 1987-08-31 1989-12-12 Minolta Camera Kabushiki Kaisha Photosensitive medium having a styryl charge transport material

Also Published As

Publication number Publication date
JPH06230255A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US5575965A (en) Process for extrusion
US6794453B2 (en) Crosslinked, predominantly polypropylene-based compositions
CA2971180C (en) Cable jackets having designed microstructures and methods for making cable jackets having designed microstructures
US6455637B1 (en) Crosslinked compositions containing silane-modified polyolefins and polypropylenes
CN100538916C (en) Have and comprise polyolefin that contains polar group, hydrolysising silane group and the lv power cable that comprises the insulating barrier of silicon alcohol condensation catalyst
KR102646332B1 (en) Strippable cable jacket with designed microstructure and method for manufacturing the strippable cable jacket with designed microstructure
JP3003443B2 (en) Optical cable for pneumatic feeding and method of manufacturing the same
JP2004029815A (en) Buffered optical fiber and method of manufacturing the same
CN108028103A (en) Peelable cable cover(ing) with designed microstructure and the method for being used to prepare the peelable cable cover(ing) with designed microstructure
CN1098306C (en) High-density polyethylene composition and its pipe material
US5367030A (en) Process for crosslinking thermoplastic silane polymers
CN111004467A (en) Preparation of high-toughness and high-resilience silane crosslinked polyethylene material
KR102620044B1 (en) Strippable cable jacket with designed microstructure and method for manufacturing the strippable cable jacket with designed microstructure
CA1120633A (en) Moisture crosslinking thermoplastic elastomer
CA2971177C (en) Cable jackets having designed microstructures and methods for making cable jackets having designed microstructures
CN114167563A (en) Low-shrinkage central tube type air-blowing micro cable
NL8203114A (en) SHAPED SHORT-LENGTH SHRINKAGE OBJECT, SUCH AS CRIMPING HOOD, CRIMPING HOSE, CRIMPING CUFF AND THE LIKE.
EP3573078B1 (en) Cable jacket having designed microstructures
WO2004074900B1 (en) Blowing of optical fiber cables into ducts
US5501873A (en) Impact spray cladding of innerduct liner
CN117434671B (en) Full-dry loose tube optical unit, preparation method thereof and optical cable
JP3540535B2 (en) Optical fiber unit
JP2000173357A (en) Plastic coated cable
JP2002133962A (en) Manufacturing method of cross-linked polyethylene wire and cable
CA2382762C (en) Crosslinked compositions containing silane-modified polyolefin blends

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees