JPH06230239A - Production of optical control device - Google Patents

Production of optical control device

Info

Publication number
JPH06230239A
JPH06230239A JP50A JP1328593A JPH06230239A JP H06230239 A JPH06230239 A JP H06230239A JP 50 A JP50 A JP 50A JP 1328593 A JP1328593 A JP 1328593A JP H06230239 A JPH06230239 A JP H06230239A
Authority
JP
Japan
Prior art keywords
substrate
photoresist
film
diffusion source
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Hirohiko Katsuta
洋彦 勝田
Yuji Kishida
裕司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP50A priority Critical patent/JPH06230239A/en
Publication of JPH06230239A publication Critical patent/JPH06230239A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the process for production of the optical control device capable of forming the fine patterns of metallic films or metallic compd. films with good reproducibility and high accuracy by simple stages. CONSTITUTION:This process for production includes a stage for applying a photoresist 2 on the front surface of a substrate 1, then selectively exposing the prescribed regions of the photoresist from the front surface 1a side of the substrate 1 and exposing the entire surface from the rear surface 1b side of the substrate 1, thereby patterning the photoresist 2 and forming the section of the photoresist 2 into an overhang shape, a stage for depositing and forming the metallic film 5 or the metallic compd. film 5 which is a diffusion source on the photoresist Z and the front surface of the substrate 1 and a stage for dissipating the photoresist 2 from the substrate 1 exclusive of the metallic film 5 or the metallic compd. film 5 which is the diffusion source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信,光センサ,光
情報処理等に用いられる光変調器や光スイッチなどの導
波路型光制御デバイスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a waveguide type optical control device such as an optical modulator and an optical switch used for optical communication, an optical sensor, optical information processing and the like.

【0002】[0002]

【従来の技術】現在、次世代大容量光通信システムの実
用化に伴い、システムの構成要素のひとつである光制御
デバイスの高速化が切望されている。そこで、この高速
性に特徴のある電気光学効果を有する基板を用いた導波
路型光制御デバイスが研究されており、例えばニオブ酸
リチウム(LiNbO3 ;以下、LNという)単結晶基
板に、チタン(Ti)を拡散させて形成したチャンネル
光導波路では、0.1 〜0.2 dB/cm程度といった極めて低
損失なものが得られることから、特にこのような構成に
制御電極を付加した種々の光制御デバイスが盛んに研究
されている。
2. Description of the Related Art Nowadays, with the practical application of a next-generation large-capacity optical communication system, there is a strong demand for speeding up of an optical control device which is one of the constituent elements of the system. Therefore, a waveguide-type optical control device using a substrate having an electro-optical effect characterized by high speed has been studied. For example, a lithium niobate (LiNbO3; hereinafter, referred to as LN) single crystal substrate and titanium (Ti ) Is diffused, a very low loss of about 0.1 to 0.2 dB / cm can be obtained in the channel optical waveguide. Therefore, various optical control devices with control electrodes added to such a structure are actively used. Being researched.

【0003】通常、このような導波路型光制御デバイス
では、拡散源となる金属薄膜のエッチング液が結晶基板
を侵すため、ケミカルエッチングを不要とするリフトオ
フ工程によりパターニングを施す方法が用いられている
(例えば、M.Hatzakis et. al,IBM J.RES.DEVELOP VOL.
24,NO.4,JULY 1980 ,p.452〜p.460 参照)。
Usually, in such a waveguide type optical control device, a method of performing patterning by a lift-off process that does not require chemical etching is used because an etching solution for a metal thin film serving as a diffusion source invades the crystal substrate. (For example, M. Hatzakis et. Al, IBM J. RES.DEVELOP VOL.
24, NO.4, JULY 1980, p.452 to p.460).

【0004】[0004]

【従来技術の課題】上記従来のリフトオフ工程は、基板
上にフォトレジストを被着形成し、これをパターニング
して、パターニングしたフォトレジスト上及び基板上に
金属膜を被着形成し、その後レジストを消失させて電極
を形成するものであるが、金属膜の被着形成時に隣在す
るフォトレジストに金属膜が付着しないように、フォト
レジストをパターニングするとともに、オーバーハング
形状とするために、モノクロベンゼン中にフォトレジス
トを浸漬して変質層を形成することが一般に行われてい
る。
In the above conventional lift-off process, a photoresist is deposited on a substrate, patterned, and a metal film is deposited on the patterned photoresist and the substrate, and then the resist is deposited. The electrode is formed by removing it, but the photoresist is patterned to prevent the metal film from adhering to the adjacent photoresist at the time of depositing the metal film. It is common practice to immerse a photoresist therein to form an altered layer.

【0005】しかしながら、このような方法では工程が
煩雑であり、加えて浸漬時間や液温のコントロールが難
しく、とくに微細なパターンを形成する場合には再現性
に乏しいといった問題があった。
However, such a method has a problem that the steps are complicated and, in addition, it is difficult to control the immersion time and the liquid temperature, and reproducibility is poor particularly when a fine pattern is formed.

【0006】[0006]

【目的】そこで、本発明は上記問題点を解消し、簡便な
工程で金属膜もしくは金属化合物膜の微細なパターンを
再現性良く高精度に形成することができる光制御デバイ
スの製造方法を提供することを目的とする。
[Object] Therefore, the present invention solves the above problems and provides a method for manufacturing a light control device capable of forming a fine pattern of a metal film or a metal compound film with high reproducibility and high accuracy in a simple process. The purpose is to

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光制御デバイスの製造方法は、透光性を有
する誘電体の基板表面上に拡散源となる金属膜もしくは
金属化合物膜を被着形成し、前記拡散源を前記基板中へ
熱拡散させて、この熱拡散領域を光導波路とする導波路
型光制御デバイスの製造方法において、拡散源の被着形
成は、基板の表面上にフォトレジストを塗布した後、該
基板の表面側から所定領域に選択的に露光を行い、かつ
該基板の裏面側から全面に露光を行う工程と、基板を現
像液に浸漬することにより、フォトレジストを所定形状
にパターニングするとともに、該フォトレジストの断面
をオーバーハング形状に形成する工程と、フォトレジス
ト上及び基板の表面上に、拡散源となる金属膜もしくは
金属化合物膜を被着形成する工程と、拡散源となる金属
膜もしくは金属化合物膜を残して、フォトレジストを基
板から消失させる工程と、から成ることを特徴とする。
In order to achieve the above object, a method of manufacturing a light control device according to the present invention comprises a metal film or a metal compound film serving as a diffusion source on the surface of a dielectric substrate having a light-transmitting property. In the method of manufacturing a waveguide type optical control device in which the diffusion source is thermally diffused into the substrate, and the thermal diffusion region serves as an optical waveguide, the diffusion source is deposited on the surface of the substrate. After applying a photoresist on the above, a step of selectively exposing a predetermined area from the front surface side of the substrate, and exposing the entire surface from the back surface side of the substrate, and by immersing the substrate in a developing solution, Patterning the photoresist into a predetermined shape and forming a cross section of the photoresist into an overhang shape, and covering the photoresist and the surface of the substrate with a metal film or a metal compound film serving as a diffusion source. Forming, leaving the metal film or metal compound film becomes a diffusion source, characterized in that it consists of a step of eliminating the photoresist from the substrate.

【0008】[0008]

【実施例】本発明に係る実施例を図面に基づいて詳細に
説明する。まず、透光性を有し両面が光学研磨された厚
さ0.5 〜1.0 mm程度のオプティカルグレイドのLN単結
晶(Zカット;カット面が(001) 面)の誘電体基板(以
下、単に基板ともいう)1を用意し、これを純水, アセ
トン等により超音波洗浄を充分に行う(図1(a) )。
Embodiments of the present invention will be described in detail with reference to the drawings. First, a dielectric substrate (hereinafter simply referred to as a substrate) that is transparent and has both sides optically polished and has an optical grade LN single crystal (Z cut; the cut surface is the (001) plane) with a thickness of about 0.5 to 1.0 mm. 1) is prepared and ultrasonically cleaned with pure water, acetone or the like (FIG. 1 (a)).

【0009】次に、基板1に対してポジ型のフォトレジ
スト(例えば、ヘキストAZ1350J )をスピンコート法に
より塗布して厚さ0.5 〜1.5 μm程度の単層フォトレジ
スト2を形成する(図1(b) )。
Next, a positive photoresist (for example, Hoechst AZ1350J) is applied to the substrate 1 by a spin coating method to form a single layer photoresist 2 having a thickness of about 0.5 to 1.5 μm (see FIG. b)).

【0010】次に、露光機の試料台に基板1を載置し、
所定の開口を有するフォトマスク(石英ガラス板等3a
の上にクロム等3bでパターニングしたもの)3で被覆
したレジスト2の上方から波長約405nmの紫外光4を
照射する(図1(c) )。
Next, the substrate 1 is placed on the sample stand of the exposure machine,
A photomask having a predetermined opening (such as a quartz glass plate 3a
UV light 4 having a wavelength of about 405 nm is irradiated from above the resist 2 coated with 3) which is patterned with chromium or the like 3b) (FIG. 1 (c)).

【0011】次に、露光機の試料台に表裏を逆向けにし
て基板1を載置させ、基板裏面1b側から基板1を通し
てフォトレジスト2の全面に紫外光を照射する(図1
(d) )。基板1を逆向けに載置させる時、基板1の表面
全体が試料台表面に接触しないようリング状のスペーサ
を用いる。すなわち、図2(a) に示すように、フォトレ
ジストは基板表面1a側からの紫外光の照射4aにより
フォトマスクパターンに忠実に露光されるとともに、基
板裏面1b側からの紫外光の全面照射4bにより基板1
側から所定の厚みだけ露光される。ここで、図中21及
び22はそれぞれ紫外光の照射4a及び4bによる被露
光領域を示す。
Next, the substrate 1 is placed on the sample table of the exposure machine with the front and back facing upside down, and the entire surface of the photoresist 2 is irradiated with ultraviolet light from the substrate back surface 1b side through the substrate 1 (FIG. 1).
(d)). When the substrate 1 is mounted upside down, a ring-shaped spacer is used so that the entire surface of the substrate 1 does not contact the surface of the sample table. That is, as shown in FIG. 2 (a), the photoresist is faithfully exposed to the photomask pattern by the irradiation 4a of the ultraviolet light from the substrate front surface 1a side, and the entire surface irradiation 4b of the ultraviolet light from the substrate back surface 1b side is performed. Substrate 1
The side is exposed to a predetermined thickness. Here, reference numerals 21 and 22 in the figure denote exposed areas by irradiation 4a and 4b of ultraviolet light, respectively.

【0012】次に、基板1を現像液に浸漬することによ
り基板1上のフォトレジスト2を所定形状にパターニン
グする(図1(e) )。すなわち、図2(b) に示すよう
に、フォトレジスト2は浸漬時間の経過とともに20
1,202,203,204の形状に順次現像されてい
き、オーバーハング形状が形成される。
Next, the photoresist 1 on the substrate 1 is patterned into a predetermined shape by immersing the substrate 1 in a developing solution (FIG. 1 (e)). That is, as shown in FIG. 2 (b), the photoresist 2 is exposed to 20
The shapes of 1, 202, 203, and 204 are sequentially developed to form an overhang shape.

【0013】図3(a) に示すように、基板表面側からの
紫外線の露光量(通常、露光時間で制御される)によ
り、フォトマスクパターン幅Wm に対するフォトレジス
ト2のパターン幅Wt の精度を制御することができる。
同図より、Wt =Wm となる基板表面1a側からの露光
時間は2.5秒となる。また、図3(b) に示すように、
基板裏面1b側からの紫外線の露光量を変化させること
によりフォトレジスト2の断面形状のオーバーハング量
(ここでは、( Wb −Wt)/2で定義する)をフォトレ
ジスト2のパターン幅Wt とは独立に制御することがで
きる。同図より、基板表面1a側からの露光時間2.5
秒、基板裏面1b側からの露光時間1.0秒で約0.4
μmのオーバーハング量が得られる。
As shown in FIG. 3A, the accuracy of the pattern width Wt of the photoresist 2 with respect to the photomask pattern width Wm is controlled by the exposure amount of ultraviolet rays from the substrate surface side (normally controlled by the exposure time). Can be controlled.
From the figure, the exposure time from the substrate surface 1a side where Wt = Wm is 2.5 seconds. Also, as shown in FIG. 3 (b),
The pattern width Wt of the photoresist 2 is defined as the amount of overhang of the cross-sectional shape of the photoresist 2 (defined here as (Wb-Wt) / 2) by changing the exposure amount of ultraviolet rays from the back surface 1b of the substrate. It can be controlled independently. From the figure, the exposure time from the substrate surface 1a side is 2.5
Seconds, exposure time from the back surface 1b side of the substrate is 1.0 seconds and is about 0.4
An overhang amount of μm can be obtained.

【0014】次に、断面逆台形状のフォトレジスト2a
及び基板1上に、拡散源となるTiの金属膜5a及び5
bを真空蒸着法により、厚さ400〜1000A程度同
時に被着形成する(図1(f) )。しかる後に、フォトレ
ジスト2aをアセトンにより溶解して、この上に被着形
成された金属膜5aを剥離し、拡散源となるパターニン
グされた金属膜5bを形成する(図1(g) )。
Next, a photoresist 2a having an inverted trapezoidal cross section
And the metal films 5a and 5 of Ti serving as diffusion sources on the substrate 1.
b is deposited by vacuum deposition at a thickness of about 400 to 1000 A at the same time (FIG. 1 (f)). Thereafter, the photoresist 2a is dissolved with acetone, and the metal film 5a deposited on the photoresist 2a is peeled off to form a patterned metal film 5b which serves as a diffusion source (FIG. 1 (g)).

【0015】その後、周知の熱拡散法を用いて金属膜5
bを基板1に熱拡散させることにより、光導波路6を形
成する(図1(h) )。なお、基板材料が本実施例のよう
にLN単結晶の場合は、その拡散源となる膜の材質は、
上述したTi以外に例えばCu、TiO2 、MgO等各
種周知の金属もしくは金属化合物が適用でき、基板材料
に応じて適宜変更し実施しうる。
After that, the metal film 5 is formed by using a well-known thermal diffusion method.
The optical waveguide 6 is formed by thermally diffusing b into the substrate 1 (FIG. 1 (h)). When the substrate material is LN single crystal as in the present embodiment, the material of the film serving as the diffusion source is
In addition to the above-mentioned Ti, various well-known metals or metal compounds such as Cu, TiO 2 , and MgO can be applied and can be appropriately changed and implemented according to the substrate material.

【0016】次いで、周知のRFスパッタリング法,C
VD法等により酸化シリコン(SiO2 )膜を基板1上
に成膜し、電気炉を用い加湿酸素雰囲気中にて400〜
600℃程度の温度で5〜20時間程度アニールするこ
とにより、欠陥を低減したSiO2 膜7を形成する(図
1(i) )。
Next, the well-known RF sputtering method, C
A silicon oxide (SiO2) film is formed on the substrate 1 by the VD method or the like, and the temperature is 400 to 400 in a humidified oxygen atmosphere using an electric furnace.
By annealing at a temperature of about 600 DEG C. for about 5 to 20 hours, a SiO2 film 7 with reduced defects is formed (FIG. 1 (i)).

【0017】次に、アルミニウム(Al),チタン(T
i),白金(Pt),金(Au),ニッケル(Ni),
クロム(Cr)等の金属を用いて、SiO2 膜7上の所
定の位置に制御電極8を形成する(図1(J) )。この制
御電極8の形成方法は、例えば周知の真空蒸着法,RF
スパッタリング法等の金属膜成膜法と、通常の半導体デ
バイス作製工程で使用されるフォトリソグラフィ技術に
よる選択エッチング法との組み合わせを用いることがで
きるが、電極材料により上記方法の適用が困難な場合に
は、本実施例の図1(b) 〜(g) に示す工程と同様な方法
を用いることも可能である。
Next, aluminum (Al) and titanium (T
i), platinum (Pt), gold (Au), nickel (Ni),
A control electrode 8 is formed at a predetermined position on the SiO2 film 7 using a metal such as chromium (Cr) (FIG. 1 (J)). The control electrode 8 is formed by, for example, the well-known vacuum deposition method or RF.
It is possible to use a combination of a metal film forming method such as a sputtering method and a selective etching method by a photolithography technique used in a normal semiconductor device manufacturing process, but when it is difficult to apply the above method due to an electrode material. It is also possible to use a method similar to the steps shown in FIGS. 1 (b) to 1 (g) of this embodiment.

【0018】尚、本実施例ではフォトレジストへの露光
に紫外光を用い、さらに基板表面1a側からの露光をフ
ォトマスクを通して行っているが、フォトマスクを用い
ない電子ビーム露光等においても適用でき、本発明の要
旨を逸脱しない範囲内で適宜変更し実施しうる。
In this embodiment, ultraviolet light is used for the exposure of the photoresist, and the exposure from the substrate surface 1a side is performed through the photomask, but it can be applied to electron beam exposure without using the photomask. The invention can be appropriately modified and implemented without departing from the scope of the invention.

【0019】[0019]

【発明の効果】以上のように、本発明の光制御デバイス
の製造方法によれば、基板の両側からの露光量の調節に
より、フォトレジストのパターン精度とその断面のオー
バーハング量をそれぞれ独立に制御できるため、従来困
難であった拡散源となる金属膜もしくは金属化合物膜の
微細なパターンを、単純な工程で精度良くかつ安定に形
成することができ、導波損失の極めて良好な光導波路を
提供することができる。
As described above, according to the method of manufacturing the light control device of the present invention, the pattern accuracy of the photoresist and the overhang amount of the cross section of the photoresist can be independently adjusted by adjusting the exposure amount from both sides of the substrate. Since it can be controlled, it is possible to accurately and stably form a fine pattern of a metal film or a metal compound film, which has been a difficult source in the past, with a simple process. Can be provided.

【0020】さらに、基板の裏面側からフォトレジスト
を全面露光しているため、フォトレジストパターンの断
面オーバーハング量を大きくすることが可能であるの
で、金属膜等の真空蒸着時に、基板を蒸着方向に対し傾
け回転させることにより、拡散源となる金属膜等に厚み
分布をもたせることが容易であり、基板中へのきめ細か
な拡散制御を行うことで、優れた特性を有する光導波路
の提供が可能となる。
Furthermore, since the entire surface of the photoresist is exposed from the back surface side of the substrate, it is possible to increase the cross-sectional overhang amount of the photoresist pattern. By tilting and rotating it, it is easy to give a thickness distribution to the metal film that is the diffusion source. By finely controlling the diffusion into the substrate, it is possible to provide an optical waveguide with excellent characteristics. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(j)はそれぞれ本発明に係る実施例
の各工程を示す断面図である。
1A to 1J are cross-sectional views showing respective steps of an example according to the present invention.

【図2】(a)及び(b)は本発明の原理を示す断面図
である。
2A and 2B are sectional views showing the principle of the present invention.

【図3】(a)及び(b)は本発明に係る露光量とフォ
トレジストパターン幅の関係を示すグラフである。
3A and 3B are graphs showing the relationship between the exposure dose and the photoresist pattern width according to the present invention.

【符号の説明】[Explanation of symbols]

1 ・・・ 基板 2 ・・・ フォト
レジスト 3 ・・・ フォトマスク 4 ・・・ 紫外光 5 ・・・ 金属膜 6 ・・・ 光導波
路 7 ・・・ SiO2 膜 8 ・・・ 制御電
1 ・ ・ ・ Substrate 2 ・ ・ ・ Photoresist 3 ・ ・ ・ Photomask 4 ・ ・ ・ Ultraviolet light 5 ・ ・ ・ Metal film 6 ・ ・ ・ Optical waveguide 7 ・ ・ ・ SiO2 film 8 ・ ・ ・ Control electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透光性を有する誘電体の基板表面上に拡散
源となる金属膜もしくは金属化合物膜を被着形成し、前
記拡散源を前記基板中へ熱拡散させて、この熱拡散領域
を光導波路とする導波路型光制御デバイスの製造方法に
おいて、 前記拡散源の被着形成は、 前記基板の表面上にフォトレジストを塗布した後、該基
板の表面側から所定領域に選択的に露光を行い、かつ該
基板の裏面側から全面に露光を行う工程と、 前記基板を現像液に浸漬することにより、前記フォトレ
ジストを所定形状にパターニングするとともに、該フォ
トレジストの断面をオーバーハング形状に形成する工程
と、 前記フォトレジスト上及び前記基板の表面上に、拡散源
となる金属膜もしくは金属化合物膜を被着形成する工程
と、 前記拡散源となる金属膜もしくは金属化合物膜を残し
て、前記フォトレジストを前記基板から消失させる工程
と、から成ることを特徴とする光制御デバイスの製造方
法。
1. A metal film or a metal compound film serving as a diffusion source is deposited on a substrate surface of a light-transmitting dielectric, and the diffusion source is thermally diffused into the substrate to form the thermal diffusion region. In the method of manufacturing a waveguide type optical control device using as an optical waveguide, the diffusion source is formed by applying a photoresist on the surface of the substrate, and then selectively forming a predetermined region from the surface side of the substrate. Exposing the entire surface from the back surface side of the substrate, and immersing the substrate in a developing solution to pattern the photoresist into a predetermined shape and to form a cross section of the photoresist in an overhang shape. And a step of depositing a metal film or a metal compound film serving as a diffusion source on the photoresist and the surface of the substrate, and a metal film or a gold serving as the diffusion source. Leaving the compound film, method of manufacturing the optical control device, characterized by comprising the photoresist from a step of eliminating from the substrate.
JP50A 1993-01-29 1993-01-29 Production of optical control device Pending JPH06230239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06230239A (en) 1993-01-29 1993-01-29 Production of optical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06230239A (en) 1993-01-29 1993-01-29 Production of optical control device

Publications (1)

Publication Number Publication Date
JPH06230239A true JPH06230239A (en) 1994-08-19

Family

ID=11828932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06230239A (en) 1993-01-29 1993-01-29 Production of optical control device

Country Status (1)

Country Link
JP (1) JPH06230239A (en)

Similar Documents

Publication Publication Date Title
US6015650A (en) Method for forming micro patterns of semiconductor devices
JP2004304097A (en) Pattern forming method, and manufacturing method for semiconductor device
JP2001308002A (en) Method of forming pattern by use of photomask and pattern-forming device
KR100288742B1 (en) Fabrication method for optical waveguide
JPH11125726A (en) Optical waveguide and its manufacture
KR20020024538A (en) Method for Manufacturing of Stamper
CN109655971B (en) Method for preparing micro-nano structure on surface of planar optical waveguide
JPH06230239A (en) Production of optical control device
US5104481A (en) Method for fabricating laser generated I.C. masks
KR101760180B1 (en) Method for forming electrode of optical modulator using backside illumination
JP2023098802A (en) Grating, method for manufacturing the same, and optical waveguide
JPS60188909A (en) Manufacture of grating coupler
JP3157772B2 (en) Repair method of metal wiring
JPS6032844B2 (en) Method of manufacturing optical waveguide
US4239787A (en) Semitransparent and durable photolithography masks
JP2001013056A (en) Formation method for very small opening
JPH022175A (en) Manufacture of thin film transistor
JPS61245161A (en) Manufacture of x-ray mask
JPH11204414A (en) Pattern formation method
JPH11218901A (en) Mask for evanescent light exposure, its production and evanescent light exposure device
JPH0845932A (en) Forming method of electrode provided to projection of substrate
JPH085854A (en) Forming method of ridge
JPH03172845A (en) Formation of semiconductor mask with shift pattern
JPS63237527A (en) Resist peeling method
KR100276877B1 (en) semiconductor mask &manufacturing method thereof