JPH06230021A - Thermosensible currentmenter and fluidic flow meter using it - Google Patents

Thermosensible currentmenter and fluidic flow meter using it

Info

Publication number
JPH06230021A
JPH06230021A JP5014512A JP1451293A JPH06230021A JP H06230021 A JPH06230021 A JP H06230021A JP 5014512 A JP5014512 A JP 5014512A JP 1451293 A JP1451293 A JP 1451293A JP H06230021 A JPH06230021 A JP H06230021A
Authority
JP
Japan
Prior art keywords
heating element
temperature measuring
temperature
flow velocity
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5014512A
Other languages
Japanese (ja)
Inventor
Makoto Tanabe
誠 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5014512A priority Critical patent/JPH06230021A/en
Publication of JPH06230021A publication Critical patent/JPH06230021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable zero correction while keeping high heat radiation efficiency per unit charged electric power, and improve the measuring accuracy of flow speed extending over the whole flow range. CONSTITUTION:Upper and lower stream side beam temperature detectors Ru, Rd are formed on the upper and lower stream side of a same beam 3 as auxiliary temperature detectors, and as for a main temperature detector Rs and a fluid temperature detector Rf, a first electric bridge circuit 8 is formed together with a balance adjusting resistor so as to make variable heating electric power given to a heating element Rh for making constant the temperature difference between the heating element Rh and the fluid temperature detector Rf. As for the upper and lower stream side beam temperature detectors Ru, Rd, a second electric bridge circuit 9 is formed together with another balance adjusting resistor, so as to enable to detect micro-flow and a no flow condition. Outputs f1, f2 of the first and second bridge electric circuits 8, 9 are held with a digital memory computing circuit 11 and computation processing to search flow velocity following to zero correction is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体、液体等の流体の
流速を計測するための感熱式流速計及びこれを用いたフ
ルイディック流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermosensitive anemometer for measuring the velocity of a fluid such as a gas or a liquid, and a fluidic flowmeter using the same.

【0002】[0002]

【従来の技術】この種の流速計として、従来より種々の
ものがあり、その一方式として感熱式のものがある。こ
の感熱式流速計にも種々のものがあるが、その基本は、
発熱抵抗体を流体中に設置し、発熱抵抗体の発熱量から
流体によって奪われる熱量の変化を検出し、流体の流速
を測定するものである。
2. Description of the Related Art There have been various types of velocity meters of this type, and one of them is a heat sensitive type. There are various thermosensitive anemometers, but the basis is
The heating resistor is installed in the fluid, the change in the amount of heat taken by the fluid from the amount of heat generated by the heating resistor is detected, and the flow velocity of the fluid is measured.

【0003】具体例として、例えば特開昭60−142
268号公報や特開昭61−235726号公報に示さ
れるように、Si基板の一部に異方性エッチング技術を
用いて堀を形成するとともに、この堀上空を跨ぐように
梁を渡し、この梁上に感熱部を形成することで、感熱部
の熱容量を低減させ、基板及び基板支持部に対する熱損
を小さくするようにしたものがある。これによれば、発
熱・測温に要する投入電力を低減することができる。
As a concrete example, for example, JP-A-60-142.
As disclosed in Japanese Patent Laid-Open No. 268 and Japanese Patent Laid-Open No. 61-235726, a moat is formed on a part of a Si substrate by using an anisotropic etching technique, and a beam is passed across the moat. There is a heat-sensitive part formed on the beam to reduce the heat capacity of the heat-sensitive part and reduce heat loss to the substrate and the substrate support part. According to this, it is possible to reduce the input power required for heat generation and temperature measurement.

【0004】ここに、従来の第1の構成では、流体と梁
との温度差を一定にし、2つの梁を同一電力で熱し、流
体への放熱の不均衡さから生ずる梁上流、下流側の温度
差を検出することで、流速を計測する方法が採られる。
この方法では、流れがない場合には、温度差はないの
で、流量ゼロ点では常に出力がゼロになる。また、従来
の第2の構成では、1つの梁のみを熱し、梁と流体との
温度差を一定にするために投入された発熱体投入電力を
出力として検出することで流速を計測する方法が採られ
る。
Here, in the first conventional construction, the temperature difference between the fluid and the beam is made constant, the two beams are heated with the same electric power, and the upstream and downstream sides of the beam are generated due to the imbalance of heat radiation to the fluid. A method of measuring the flow velocity by detecting the temperature difference is adopted.
In this method, when there is no flow, there is no temperature difference, so the output is always zero at the zero flow rate point. Further, in the second conventional configuration, there is a method of measuring the flow velocity by heating only one beam and detecting the electric power supplied to the heating element to make the temperature difference between the beam and the fluid constant as an output. To be taken.

【0005】また、気体、液体等の流体の流量を計測す
る流量計として、特開昭59−68624号公報に示さ
れるような構成よりなるフルイディック流量計がある。
Further, as a flow meter for measuring the flow rate of a fluid such as gas or liquid, there is a fluidic flow meter having a structure as disclosed in Japanese Patent Laid-Open No. 59-68624.

【0006】[0006]

【発明が解決しようとする課題】ところが、梁が2つの
第1の構成例では、発熱体が2つの梁に跨り、2つの梁
を隔てる切れ目に寄るように、上流側と下流側とから離
れるように配置する。このため、流れのない無風時には
発熱体温度に比べ上流側測温体、下流側測温体の温度は
より低くなり、流れ(風)がある時には発熱体温度に比
べて上流側測温体の温度はより低くなり、下流側測温体
の温度はより高くなる。このため、流れの方向では、梁
の断面の温度格差が著しく、実効的な放熱領域は非常に
小さくなってしまう。
However, in the first configuration example in which there are two beams, the heating element is separated from the upstream side and the downstream side so that the heating element extends over the two beams and approaches the cut line that separates the two beams. To arrange. For this reason, the temperature of the upstream temperature measuring element and the temperature of the downstream temperature measuring element are lower than the temperature of the heating element when there is no flow and the temperature of the upstream temperature measuring element is lower than the temperature of the heating element when there is a flow (wind). The temperature becomes lower and the temperature of the downstream temperature sensing element becomes higher. For this reason, in the flow direction, the temperature difference in the cross section of the beam is significant, and the effective heat dissipation area becomes very small.

【0007】一方、梁が1つの第2の構成例では、梁全
体を一様に熱するので、放熱領域は大きくなる。ここ
に、流速感度に大きく関わる特性である放熱効率は、梁
温度が一様に高く、特に上流側における温度が高いこと
が好ましい条件である点を考慮して、同一放熱面積を持
つ第1,2の構成を対比すると、単位投入電力当りの放
熱効率は第2の構成例のほうがよく、第1の構成例では
流速検出感度が第2の構成例より1桁程度悪いものとな
る。しかし、第2の構成例では、流体温度、室温変動、
自然対流変化などで出力にある幅を持った長期的な変動
が生じ得る。このため、何時の出力時に流量がゼロであ
ったかの判断が不明となり、全流量域で計測速度が悪く
なってしまう。
On the other hand, in the second configuration example in which the number of beams is one, the entire beam is heated uniformly, so that the heat radiation area becomes large. Regarding the heat radiation efficiency, which is a characteristic greatly related to the flow velocity sensitivity, in consideration of the fact that it is preferable that the beam temperature is uniformly high, especially the temperature on the upstream side is high, the first and second heat radiation areas having the same heat radiation area are provided. Comparing the two configurations, the heat radiation efficiency per unit input power is better in the second configuration example, and the flow velocity detection sensitivity in the first configuration example is about one digit lower than that in the second configuration example. However, in the second configuration example, fluid temperature, room temperature fluctuation,
Long-term fluctuations with a certain range in output may occur due to natural convection changes. For this reason, it becomes unclear whether the flow rate was zero at the time of output, and the measurement speed deteriorates in the entire flow rate range.

【0008】一方、フルイディック流量計を例えば家庭
用ガスメータに使用する場合、毎時3〜3000リット
ルの流量を計測する必要があるが、特開昭59−686
24号公報に示されるような従来のフルイディック流量
計では毎時3〜300リットル程度の低流量域ではフル
イディック振動が起らず、流量を検出できないものであ
る。
On the other hand, when the fluidic flowmeter is used for a household gas meter, for example, it is necessary to measure a flow rate of 3 to 3000 liters per hour.
In the conventional fluidic flowmeter as disclosed in Japanese Patent No. 24, the fluidic vibration does not occur in the low flow rate region of about 3 to 300 liters per hour, and the flow rate cannot be detected.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明で
は、基板と、この基板の一部に異方性エッチングにより
形成された堀と、この堀を跨いで形成された梁と、電気
抵抗体による発熱体とこの発熱体と一体又は別体とされ
て前記発熱体の温度を計測する測温体とを前記梁上に形
成した感熱部と、前記発熱体及び測温体に重ならずに前
記梁上上流側に形成された電気抵抗体による上流側梁温
度測温体と、前記発熱体及び測温体に重ならずに前記上
流側梁温度測温体と平行で同一長さ及び同一幅で前記梁
上下流側に形成された電気抵抗体による下流側梁温度測
温体と、前記基板上又は基板外部に配設されて流体温度
を計測する流体温度測温体と、前記測温体とこの流体温
度測温体とバランス調整用抵抗体とにより形成されて前
記発熱体と前記流体温度測温体との温度差を一定にする
ために前記発熱体に対して付与する発熱電力を可変させ
る第1の電気ブリッジ回路と、前記上流側梁温度測温体
と前記下流側梁温度測温体と他のバランス調整用抵抗体
とにより形成された第2の電気ブリッジ回路と、これら
の第1,2の電気ブリッジ回路の出力を保持するととも
に流速を求める演算処理を行うデジタルメモリ演算回路
とにより構成した。
According to a first aspect of the present invention, a substrate, a moat formed by anisotropic etching on a part of the substrate, a beam formed across the moat, and an electric resistance. A heat-sensing part formed on the beam with a body heating element and a temperature sensing element that is integrated with or separate from the heating element to measure the temperature of the heating element, and does not overlap the heating element and the temperature sensing element. An upstream beam temperature measuring element formed by an electric resistor formed on the upstream side of the beam, and having the same length in parallel with the upstream beam temperature measuring element without overlapping the heating element and the temperature measuring element; A downstream side beam temperature measuring body having an electric resistance formed with the same width on the upstream side and the downstream side of the beam; a fluid temperature measuring body arranged on the substrate or outside the substrate to measure a fluid temperature; The heating element and the fluid are formed by a heating element, a fluid temperature measuring element, and a balance adjusting resistor. A first electric bridge circuit for varying the heating power applied to the heating element to keep the temperature difference from the temperature measuring element constant, the upstream beam temperature measuring element and the downstream beam temperature measuring element. A second electric bridge circuit formed by a warm body and another balance adjusting resistor, and a digital memory arithmetic circuit that holds the outputs of these first and second electric bridge circuits and performs arithmetic processing for obtaining a flow velocity Composed by and.

【0010】この際、請求項2記載の発明では、梁を、
発熱体と測温体とが形成される中央梁部と、この中央梁
部に対して補助的な複数の細い橋で接続されて上流側梁
温度測温体が形成される小面積な上流梁部と、前記中央
梁部に対して補助的な複数の細い橋で接続されて下流側
梁温度測温体が形成される小面積な下流梁部とに3分割
して形成した。
In this case, according to the second aspect of the invention, the beam is
A central beam portion where a heating element and a temperature measuring element are formed, and a small area upstream beam where an upstream beam temperature measuring element is formed by connecting a plurality of auxiliary thin bridges to the central beam portion. Part and a downstream beam part having a small area connected to the central beam part by a plurality of auxiliary thin bridges to form a downstream beam temperature measuring element.

【0011】また、請求項3記載の発明では、第1,2
の電気ブリッジ回路の出力を保持するとともに流速がゼ
ロ又はゼロ近傍の範囲内の時に流速対発熱体出力の関係
のゼロ点補正をし流速を求める演算処理を行うための参
照データ及び演算プログラムを組込んだROM及びRA
M回路を有するデジタルメモリ演算回路とし、請求項4
記載の発明では、第1,2の電気ブリッジ回路の出力を
保持するとともに逐次流速対発熱体出力の関係のゼロ点
補正をし流速を求める演算処理を行うための参照データ
及び演算プログラムを組込んだROM及びRAM回路を
有するデジタルメモリ演算回路とした。
In the invention according to claim 3, the first and second aspects are provided.
The reference data and calculation program for holding the output of the electric bridge circuit and correcting the zero point of the relationship between the flow velocity and the heating element output to obtain the flow velocity when the flow velocity is within the range of zero or near zero are combined. Embedded ROM and RA
5. A digital memory arithmetic circuit having an M circuit,
In the described invention, the reference data and the calculation program for holding the outputs of the first and second electric bridge circuits and performing the calculation process for sequentially obtaining the flow velocity by performing the zero point correction of the relationship between the flow velocity and the heating element output are incorporated. The digital memory arithmetic circuit has a ROM and a RAM circuit.

【0012】請求項5記載の発明では、フルイディック
振動子のノズル中央、ノズル内壁下部又は天井部の何れ
かの個所に請求項1,2,3又は4記載の感熱式流速計
の基板を設けたフルイディック流量計とした。
According to the invention of claim 5, the substrate of the thermal velocity meter of claim 1, 2, 3 or 4 is provided at any position of the center of the nozzle of the fluidic vibrator, the lower part of the inner wall of the nozzle or the ceiling part. It was a fluidic flow meter.

【0013】[0013]

【作用】請求項1記載の発明においては、同一梁上の上
流側と下流側とに予備測温体として上流側梁温度測温
体、下流側梁温度測温体を形成し、主要な測温体と流体
温度測温体側に関してはバランス調整用抵抗体とともに
第1の電気ブリッジ回路を形成して発熱体と流体温度測
温体との温度差を一定にするために発熱体に対して付与
する発熱電力を可変させるようにし、上流側梁温度測温
体と下流側梁温度測温体とに関しては他のバランス調整
用抵抗体とともに第2の電気ブリッジ回路を形成して微
少な流れと流れのない状態を検出し得るものとして、デ
ジタルメモリ演算回路でこれらの第1,2の電気ブリッ
ジ回路の出力を保持するとともに流速を求める演算処理
を行うので、主出力である発熱体の電圧降下出力の室温
変化、流体温度変化、自然対流等の要素による変動幅を
逐次検出し得るものとなり、高い単位投入電力当りの放
熱効果を保ちつつ、いわゆるゼロ点補正を行うことがで
き、流速測定精度のよいものとなる。
According to the first aspect of the present invention, an upstream beam temperature measuring element and a downstream beam temperature measuring element are formed as preliminary temperature measuring elements on the upstream side and the downstream side on the same beam, and the main temperature measuring elements are formed. As for the heating element and the fluid temperature measuring element side, the first electric bridge circuit is formed together with the balance adjusting resistor to provide the heating element with a constant temperature difference between the heating element and the fluid temperature measuring element. The heating power to be generated is made variable, and a second electric bridge circuit is formed together with other balance adjusting resistors for the upstream beam temperature measuring element and the downstream beam temperature measuring element to form a minute flow and flow. As a device capable of detecting a state in which there is no voltage, the digital memory arithmetic circuit holds the outputs of these first and second electric bridge circuits and performs arithmetic processing for obtaining the flow velocity, so that the voltage drop output of the heating element, which is the main output. Room temperature change, fluid temperature change Will be capable of sequentially detecting a variation width due factors such as natural convection, while maintaining the heat dissipation effect of the high per unit input power, it is possible to perform so-called zero-point correction, becomes good flow rate measurement accuracy.

【0014】特に、請求項2記載の発明においては、上
流側梁温度測温体や下流側梁温度測温体を形成する梁部
を小面積の上流側梁部、下流側梁部として梁の主要部を
なす中央梁部から分割させて形成し、中央梁部に対して
は補助的な細い橋で接続するようにしたので、中央梁部
における放熱特性を保ちつつゼロ点検出の精度が向上す
るものとなる。
In particular, according to the second aspect of the invention, the beam portion forming the upstream side beam temperature measuring element or the downstream side beam temperature measuring element is used as an upstream side beam portion or a downstream side beam portion having a small area. It is formed by dividing it from the central beam part that forms the main part, and it is connected to the central beam part with an auxiliary thin bridge, so the zero point detection accuracy is improved while maintaining the heat dissipation characteristics of the central beam part. It will be done.

【0015】また、請求項3記載の発明においては、所
定の参照データ及び演算プログラムを組込んだROM及
びRAM回路を有するデジタルメモリ演算回路として、
随時、流速対発熱体出力の関係のゼロ点補正を行って流
速を算出するので、流速検出精度が向上するものとな
る。同様に、請求項4記載の発明においては、所定の参
照データ及び演算プログラムを組込んだROM及びRA
M回路を有するデジタルメモリ演算回路として、逐次、
流速対発熱体出力の関係のゼロ点補正を行って流速を算
出するので、流速検出精度が向上するものとなる。
Further, in the invention according to claim 3, as a digital memory arithmetic circuit having a ROM and a RAM circuit in which predetermined reference data and an arithmetic program are incorporated,
Since the zero point correction of the relationship between the flow velocity and the output of the heating element is performed at any time to calculate the flow velocity, the flow velocity detection accuracy is improved. Similarly, in the invention according to claim 4, a ROM and an RA in which predetermined reference data and a calculation program are incorporated.
As a digital memory arithmetic circuit having M circuits,
Since the zero point correction of the relationship between the flow velocity and the output of the heating element is performed to calculate the flow velocity, the flow velocity detection accuracy is improved.

【0016】さらに、請求項5記載の発明においては、
フルイディック流量計のフルイディック振動子のノズル
中央、ノズル内壁下部又は天井部の何れかの個所に上記
のように放熱効率を向上させた感熱式流速計の基板を設
けたので、低流量の計測を低電力で正確に行うことが可
能となる。
Further, in the invention according to claim 5,
Since the substrate of the thermosensitive anemometer with improved heat dissipation efficiency is provided at any of the center of the nozzle of the fluidic oscillator of the fluidic flowmeter, the lower part of the inner wall of the nozzle, or the ceiling, low flow rate measurement is possible. Can be performed accurately with low power.

【0017】[0017]

【実施例】本発明の第一の実施例を図1及び図2に基づ
いて説明する。本実施例は、請求項1及び3記載の発明
に相当する。まず、本実施例の基本構成として、Si
(シリコン)による矩形状の基板1の中央部には、流体
の進入を促す形状、即ち、流れを流体の流れの方向を対
角線方向にとった場合に平面的に見て扁平6角形状の堀
2が形成され、この堀2の中央部付近を跨ぐように梁3
が形成されている。ここに、これらの堀2及び梁3は基
板1の異方性エッチング技術により形成される。さら
に、この梁3上には電気抵抗体による発熱体Rh と、同
じく電気抵抗体による測温体Rs とが相互に入り組むパ
ターン形状にて形成され、梁3外の基板1上に引出され
ている。これらの発熱体Rh と測温体Rs とにより感熱
部4が形成されている。また、前記発熱体Rh から熱的
に最も隔離された基板1上の個所、即ち、堀2より上流
側の基板1上には電気抵抗体による流体温度測温体Rf
が略V字状の所定のパターン形状にて形成されている。
さらに、前記梁3上において、上流側には発熱体Rh や
測温体Rs に重なることなく電気抵抗体による上流側梁
温度測温体Ru が形成され、下流側には発熱体Rh や測
温体Rs に重なることなく電気抵抗体による下流側梁温
度測温体Rd が形成されている。これらの上流側梁温度
測温体Ru と下流側梁温度測温体Rd とは同一のパター
ン形状で梁3の長手方向中心線に対して対称的に形成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. The present embodiment corresponds to the invention described in claims 1 and 3. First, as a basic configuration of this embodiment, Si
The central portion of the rectangular substrate 1 made of (silicon) has a shape that promotes fluid intrusion, that is, a flat hexagonal moat when viewed in plan when the flow direction of the fluid is diagonal. 2 is formed, and a beam 3 is formed so as to straddle the vicinity of the central portion of this moat 2.
Are formed. Here, the moat 2 and the beam 3 are formed by the anisotropic etching technique of the substrate 1. Further, a heating element Rh made of an electric resistor and a temperature measuring element Rs made of an electric resistor are formed on the beam 3 in a mutually intricate pattern, and are drawn out onto the substrate 1 outside the beam 3. There is. The heating element Rh and the temperature measuring element Rs form a heat sensitive portion 4. In addition, at a location on the substrate 1 that is most thermally isolated from the heating element Rh, that is, on the substrate 1 upstream of the moat 2, a fluid temperature measuring element Rf formed by an electric resistor is used.
Are formed in a substantially V-shaped predetermined pattern.
Further, on the beam 3, an upstream beam temperature measuring element Ru formed of an electric resistor is formed on the upstream side without overlapping with the heating element Rh and the temperature measuring element Rs, and on the downstream side, the heating element Rh and the temperature measuring element Ru. A downstream beam temperature measuring element Rd formed by an electric resistor is formed without overlapping the body Rs. The upstream beam temperature measuring element Ru and the downstream beam temperature measuring element Rd have the same pattern shape and are symmetrically formed with respect to the longitudinal center line of the beam 3.

【0018】さらに、発熱体Rh と流体温度測温体Rf
との温度差を一定にする駆動法を実現するように発熱体
Rh に発熱電力を付与するために、測温体Rs と流体温
度測温体Rf とは第1ブリッジ回路5において図示しな
いバランス調整用抵抗体とブリッジ接続され、その出力
側がOPアンプ6を介してRh 駆動回路7に接続される
ことにより第1の電気ブリッジ回路8が形成されてい
る。Rh 駆動回路7の出力は発熱体Rh の両端に接続さ
れ、可変された発熱電力を付与し得るものとされてい
る。即ち、この第1の電気ブリッジ回路8で発熱体Rh
を流体に対して一定の温度差を保つようにこの発熱体R
h に対して付与する発熱電力を可変するものである。ま
た、上流側梁温度測温体Ru と下流側梁温度測温体Rd
とは、図示しない他のバランス調整用抵抗体とブリッジ
接続されて第2の電気ブリッジ回路9が形成されてい
る。即ち、この第2の電気ブリッジ回路9は上流側梁温
度測温体Ru と下流側梁温度測温体Rd との温度差を検
出し、この出力f2 がゼロである点を流速がゼロである
と判断するものである。
Further, the heating element Rh and the fluid temperature measuring element Rf
In order to apply the heating power to the heating element Rh so as to realize a driving method for making the temperature difference between the temperature measuring element Rs and the fluid temperature measuring element Rf balance adjustment (not shown) in the first bridge circuit 5. A first electric bridge circuit 8 is formed by being bridge-connected to the resistor for use and having its output side connected to the Rh drive circuit 7 via the OP amplifier 6. The output of the Rh driving circuit 7 is connected to both ends of the heating element Rh and is capable of giving a variable heating power. That is, in the first electric bridge circuit 8, the heating element Rh
To maintain a constant temperature difference with respect to the fluid.
The heating power applied to h is varied. In addition, the upstream beam temperature measuring element Ru and the downstream beam temperature measuring element Rd
Is bridge-connected to another balance adjusting resistor (not shown) to form a second electric bridge circuit 9. That is, the second electric bridge circuit 9 detects the temperature difference between the upstream side beam temperature measuring element Ru and the downstream side beam temperature measuring element Rd, and the flow velocity is zero at the point where the output f 2 is zero. It is determined that there is.

【0019】これらの第1の電気ブリッジ回路8のRh
駆動回路7の出力f1 と第2の電気ブリッジ回路9の出
力f2 とはA/D変換器10を介してメモリ演算器(デ
ジタルメモリ演算回路)11に入力されている。このメ
モリ演算器11は例えば後述するような参照データ及び
演算ブログラムが組込まれたROM及びRAM回路を含
むものとされ、所定の補正法及びソフトウエアにて、ゼ
ロ点補正処理と流速算出処理とを行うものである。
Rh of these first electric bridge circuits 8
Output f 1 of the drive circuit 7 and the output f 2 of the second electrical bridge circuit 9 is input via an A / D converter 10 memory calculator (digital memory arithmetic circuit) 11. The memory computing unit 11 includes, for example, a ROM and a RAM circuit in which reference data and a computation program, which will be described later, are incorporated, and a zero correction process and a flow velocity calculation process are performed by a predetermined correction method and software. Is to do.

【0020】ここで、より具体的な構成例について説明
する。まず、基板1上面に酸化処理法、スパッタリング
真空成膜法等を用いて、熱絶縁材であるSiO2 層を形
成する。この熱絶縁層はSi34や、金属酸化物である
Ta25、Al23等でもよく、さらには、SiO2
とSi34層とを組合せた多層膜構成としてもよい。膜
厚は0.5〜2μm程度がよい。ついで、このような基
板1にKOH異方性エッチング法により、図1に示すよ
うに流体進入を促す形状を持つ堀2及び梁3を形成す
る。この際、堀2の深さは測定する最少流速でできる熱
境界層以上にする必要があり、ここでは、一例としてフ
ルイディック流量計に対応すべく毎時3リットルの流量
を測定し得るように、深さを150μmとした。
Here, a more specific configuration example will be described. First, an SiO 2 layer, which is a heat insulating material, is formed on the upper surface of the substrate 1 by using an oxidation treatment method, a sputtering vacuum film formation method, or the like. This heat insulating layer may be Si 3 N 4 , metal oxides such as Ta 2 O 5 or Al 2 O 3 , and may have a multilayer film structure in which a SiO 2 layer and a Si 3 N 4 layer are combined. Good. The film thickness is preferably about 0.5 to 2 μm. Then, a moat 2 and a beam 3 having a shape that promotes fluid intrusion as shown in FIG. 1 are formed on the substrate 1 by the KOH anisotropic etching method. At this time, the depth of the moat 2 needs to be equal to or more than the thermal boundary layer formed at the minimum flow velocity to be measured, and here, as an example, a flow rate of 3 liters per hour can be measured so as to correspond to a fluidic flow meter, The depth was 150 μm.

【0021】ついで、発熱体Rh 及び測温体Rs を形成
する梁3の上面に、発熱体層と基板1(梁3)との間の
密着性を向上させるためにTa25層(Ti,Cr,T
a,NiCr,TiN等による層でもよい)を下部密着
強度補強層として形成し、このTa25層の上部であっ
て梁3の中央部に比抵抗の高い金属であるPt(Ni,
W,Ta等でもよく、要は、比抵抗特性に温度依存性を
持つ材料であればよい)による発熱体Rh をパターン形
成する。
Then, a Ta 2 O 5 layer (Ti) is formed on the upper surface of the beam 3 forming the heating element Rh and the temperature measuring element Rs in order to improve the adhesion between the heating element layer and the substrate 1 (beam 3). , Cr, T
a, NiCr, TiN or the like) may be formed as a lower adhesion strength reinforcing layer, and Pt (Ni, Ni, a metal having a high specific resistance) is formed in the upper portion of the Ta 2 O 5 layer and in the center of the beam 3.
The heating element Rh may be formed of W, Ta, or the like, in short, as long as it is a material having a temperature dependence of the specific resistance characteristic).

【0022】さらに、このような発熱体Rh に隣接する
ようにして、この発熱体Rh と同様に抵抗温度係数の高
い材料、例えばPtによる測温体Rs をパターン形成す
る。また、梁3上であって上流側には上流側梁温度測温
体Ru を、下流側には下流側梁温度測温体Rd を、例え
ばPt材料により同じ形状に形成する。一方、この感熱
部4から熱的に隔離された基板1面部分に、例えばPt
による流体温度測温体Rf をパターン形成する。この流
体温度測温体Rf の形成個所としては、流れに対して最
も上流であって、かつ、感熱部4から離れた個所がよ
い。
Further, a temperature measuring element Rs made of a material having a high resistance temperature coefficient, such as Pt, is formed in a pattern so as to be adjacent to the heat generating element Rh. On the beam 3, an upstream beam temperature measuring element Ru is formed on the upstream side and a downstream beam temperature measuring element Rd is formed on the downstream side in the same shape, for example, of Pt material. On the other hand, on the surface of the substrate 1 that is thermally isolated from the heat sensitive portion 4, for example, Pt
The fluid temperature measuring element Rf is formed into a pattern. The fluid temperature measuring element Rf is preferably formed at the most upstream position with respect to the flow and away from the heat sensitive section 4.

【0023】そして、これらの発熱体Rh 、測温体Rs
,Rf ,Ru ,Rd の上面に、保護層との接合性を向
上させるための上部密着強度補強層としてTa25層を
形成する。
Then, these heating element Rh and temperature measuring element Rs
, Rf, Ru, Rd, a Ta 2 O 5 layer is formed as an upper adhesion strength reinforcing layer for improving the bondability with the protective layer.

【0024】これらの密着強度補強層や抵抗層(発熱体
Rh 等)は、蒸着法、電子ビーム蒸着法、或いは、スパ
ッタリング法等の真空成膜法で形成すればよい。形状切
出しは、リフト・オフ法、Arスパッタ・エッチング法
等によればよい。また、上、下の密着強度補強層なるT
25層は、薄い程よいが、抵抗層なるPtとの整合性
を確保するためには100〜700Å程度とするのがよ
い。
These adhesion strength reinforcing layer and resistance layer (heating element Rh, etc.) may be formed by a vacuum film forming method such as a vapor deposition method, an electron beam vapor deposition method, or a sputtering method. The shape cutting may be performed by a lift-off method, an Ar sputtering / etching method, or the like. Also, the upper and lower adhesion strength reinforcing layers T
The thinner the a 2 O 5 layer is, the better, but it is preferable to set the thickness to about 100 to 700 Å in order to ensure the compatibility with Pt which is the resistance layer.

【0025】また、測温体Rs ,Rf ,Ru ,Rd とし
ては、電流・電圧特性の直線性を保てる範囲で駆動する
ため、Pt抵抗層の膜厚は、臨界密度を充分に下回るよ
うにする条件と、抵抗値設定の条件とから、500〜5
000Å程度とするのがよい。さらに、発熱体Rh と測
温体Rs とを覆うようにTa25層による密着強度補強
層を介してSiO2 やSi34による保護層を形成す
る。この保護層は、測温体Rs の感度向上のためには熱
容量を減少させたほうがよいという目的と、量産性を向
上させる目的とからすれば、薄いほうがよいが、保護膜
本来の目的からすれば厚いほうが好ましいといえる。こ
のような観点から、保護膜の膜厚は800〜5000Å
程度とするのがよい。
Further, since the temperature measuring elements Rs, Rf, Ru, and Rd are driven within a range in which the linearity of the current / voltage characteristics can be maintained, the film thickness of the Pt resistance layer should be sufficiently lower than the critical density. 500 to 5 depending on the condition and the condition for setting the resistance value.
It is good to set it to about 000Å. Further, a protective layer made of SiO 2 or Si 3 N 4 is formed so as to cover the heating element Rh and the temperature measuring element Rs via an adhesion strength reinforcing layer made of a Ta 2 O 5 layer. This protective layer is preferably thin for the purpose of reducing the heat capacity in order to improve the sensitivity of the temperature sensing element Rs and for the purpose of improving mass productivity. It can be said that thicker ones are preferable. From this point of view, the thickness of the protective film is 800 to 5000Å
It is good to set the degree.

【0026】このような構成の下、第1,2の電気ブリ
ッジ回路8,9の出力f1 ,f2 はA/D変換器10を
通してメモリ演算器11に取込まれて、保持されるとと
もに、流速がゼロ又はゼロ近傍の範囲にある時に、流速
と発熱体Rh 出力との関係のゼロ点補正を行い、流速を
求める演算処理を行う。この請求項3記載の発明に相当
するゼロ点補正法について、図2を参照して説明する。
まず、上流側梁温度測温体Ru と下流側梁温度測温体R
d を含む第2の電気ブリッジ回路9からの温度差である
出力f2 は、流速ゼロ近傍ではゼロ点を小さく変動する
値である。従って、この変動幅を持った出力f2 をより
大きな離散変換幅を持ったA/D変換器10を通して、
“0”か“1”の補正実行信号にする(図2(b)参
照)。即ち、補正実行信号が“0”になったら、ゼロ点
補正区間とし、発熱体Rh 出力(f1 )は流速uがゼロ
のものであるとし、この値から予めメモリ演算器11の
メモリ中に保持してある流速u=0での校正値(参照デ
ータ)を差引き、差引いた値を校正すべき変動量ΔVと
する。ここに、実際には、流速u=0点からある範囲の
流速域で補正実行信号は“0”になってしまうので(図
2(b)参照)、このゼロ点と認識されてしまう流量域
(ゼロ点補正区間)における発熱体Rh 出力であるf1
の幅Δf1 を予めメモリ中に保持しておき、上記のよう
に算出された変動量ΔVがこの幅Δf1 よりも小さい場
合には、変動量ΔVをゼロにする(即ち、変動がなかっ
たものとする)。そして、次回からの流速計測値から算
出した変動量ΔVを差引き、校正値とする。
Under such a configuration, the outputs f 1 and f 2 of the first and second electric bridge circuits 8 and 9 are taken into the memory calculator 11 through the A / D converter 10 and held therein. When the flow velocity is zero or in the range near zero, the zero point correction of the relationship between the flow velocity and the output of the heating element Rh is performed, and the calculation process for obtaining the flow velocity is performed. A zero point correction method corresponding to the invention of claim 3 will be described with reference to FIG.
First, the upstream beam temperature measuring element Ru and the downstream beam temperature measuring element R
Output f 2 is the temperature difference between the second electrical bridge circuit 9 including the d is, at a flow rate near zero is a value that varies reduce the zero point. Therefore, the output f 2 having this fluctuation width is passed through the A / D converter 10 having a larger discrete conversion width,
The correction execution signal is "0" or "1" (see FIG. 2B). That is, when the correction execution signal becomes “0”, the zero point correction section is set, and the heating element Rh output (f 1 ) has a flow velocity u of zero. From this value, it is stored in the memory of the memory calculator 11 in advance. The held calibration value (reference data) at the flow velocity u = 0 is subtracted, and the subtracted value is used as the variation amount ΔV to be calibrated. Here, in reality, the correction execution signal becomes "0" in the flow velocity range of a certain range from the flow velocity u = 0 point (see FIG. 2B), and therefore the flow rate region that is recognized as this zero point. F 1 which is the output of the heating element Rh in the (zero point correction section)
Of holds the width Delta] f 1 in advance in the memory, if the calculated variation amount ΔV as described above is smaller than the width Delta] f 1, the variation amount ΔV to zero (i.e., there was no change Assumed). Then, the variation amount ΔV calculated from the flow velocity measurement value from the next time is subtracted to obtain a calibration value.

【0027】このように、本実施例によれば、梁3上に
大きくとった放熱面に温度が一定になるように発熱体R
h 及び測温体Rs を形成し、かつ、同一の梁3上の上流
側と下流側とに発熱体Rh の出力変動を検出する目的で
予備測温体として上、下流側梁温度測温体Ru ,Rd を
形成して、他のバランス調整用抵抗体とで第2の電気ブ
リッジ回路9を構成し、上記のような演算処理を行わせ
るようにしたので、主出力である発熱体Rh の電圧降下
出力の室温変化、流体温度変化、自然対流等の要素によ
る変動幅ΔVを逐次検出し得るものとなり、よって、高
い単位投入電力当りの放熱効果を維持しつつ、長期的な
変動に対処し得るゼロ点補正を行うことができ、精度の
高い流速検出が可能となる。この際、感熱部4から基板
1への熱損失で単位投入電力当りの放熱が低下し、この
結果、流速検出感度が低下する問題や、梁3の端部で
は、温度が室温に近い基板1の温度にほぼ等しいので、
梁3の端部への測温体用の抵抗体の配設は測温感度の低
下を招くという問題に対処するため、上記のように図1
に示した梁3形状と抵抗体(発熱体Rh 、測温体Rs,
Rf ,Ru ,Rd )の配設パターンを最適化すること
で、放熱特性とゼロ点検出感度とを、ともに向上させる
ことが可能となる。
As described above, according to this embodiment, the heating element R is arranged so that the temperature becomes constant on the large heat radiation surface on the beam 3.
h and the temperature measuring element Rs are formed, and the upper and lower beam temperature measuring elements are used as preliminary temperature measuring elements for the purpose of detecting the output fluctuation of the heating element Rh on the upstream side and the downstream side on the same beam 3. Since Ru and Rd are formed and the second electric bridge circuit 9 is configured with another balance adjustment resistor to perform the above-described arithmetic processing, the main output of the heating element Rh The fluctuation range ΔV due to factors such as room temperature change of the voltage drop output, fluid temperature change, natural convection, etc. can be detected successively. Therefore, long-term fluctuations can be dealt with while maintaining a high heat dissipation effect per unit input power. The obtained zero point correction can be performed, and the flow velocity can be detected with high accuracy. At this time, heat loss from the heat-sensitive portion 4 to the substrate 1 lowers heat radiation per unit input power, resulting in a decrease in flow velocity detection sensitivity, and at the end of the beam 3, the temperature of the substrate 1 close to room temperature. Is almost equal to the temperature of
In order to deal with the problem that the resistance element for the temperature measuring element is arranged at the end of the beam 3 to lower the temperature measuring sensitivity, as shown in FIG.
The shape of the beam 3 and the resistor (heating element Rh, temperature measuring element Rs,
By optimizing the arrangement pattern of Rf, Ru, Rd), it is possible to improve both the heat radiation characteristics and the zero point detection sensitivity.

【0028】つづいて、本発明の第二の実施例を図3に
より説明する。前記実施例で示した部分と同一部分は同
一符号を用いて示す(以下の実施例でも同様とする)。
本実施例は、請求項4記載の発明に相当し、第1,2の
電気ブリッジ回路8,9の出力f1 ,f2 をA/D変換
器10を通して取込み、保持させるとともに、逐次、流
速と発熱体Rh 出力との関係のゼロ点補正を行いなが
ら、流速を求める演算処理を行うようにした参照データ
と演算プログラムを組込んだROM及びRAM回路を有
するメモリ演算器11としたものである。
Next, a second embodiment of the present invention will be described with reference to FIG. The same parts as those shown in the above-mentioned embodiments are designated by the same reference numerals (the same applies to the following embodiments).
This embodiment corresponds to the invention described in claim 4, and the outputs f 1 and f 2 of the first and second electric bridge circuits 8 and 9 are taken in through the A / D converter 10 and held, and the flow velocity is sequentially increased. The memory arithmetic unit 11 has a ROM and a RAM circuit that incorporates reference data and an arithmetic program for performing arithmetic processing for obtaining the flow velocity while performing a zero point correction of the relationship between the output of the heating element and the output of the heating element Rh. .

【0029】図3は、このようなメモリ演算器11によ
るゼロ点補正法を示すものである。まず、上流側梁温度
測温体Ru と下流側梁温度測温体Rd を含む第2の電気
ブリッジ回路9からの流速uに対する出力f2 は、A/
D変換器10を介してf2 ステップ関数f2<u> に表
される出力関係となる。この出力は小さいので、判定可
能な流速値は粗い離散値になる。一方、第1の電気ブリ
ッジ回路8で駆動される発熱体Rh からの電圧降下値
は、傾きの大きい関数f1(u) で近似的に表される出
力関係をとる。
FIG. 3 shows a zero point correction method by such a memory calculator 11. First, the output f 2 from the second electric bridge circuit 9 including the upstream beam temperature measuring element Ru and the downstream beam temperature measuring element Rd to the flow velocity u is A /
The output relationship is represented by the f 2 step function f 2 <u> via the D converter 10. Since this output is small, the flow velocity value that can be determined is a coarse discrete value. On the other hand, the voltage drop value from the heating element Rh driven by the first electric bridge circuit 8 has an output relationship approximately represented by a function f 1 (u) having a large slope.

【0030】ここに、f2 ステップ関数f2<u> を表
す各ステップi(i=1〜N)間における代表流速値<
u>i を予めメモリ演算器11のメモリ中に保持してお
く。実測時に計測された温度差である出力f2 を基に流
速区間(ステップ)iを見つけ、代表流速値<u>i
検索するためのものである。発熱体Rh の出力電圧値に
相当するf1 関数f1(u) はi番目の流速区間iで
は、 f1(u) =f0i +〔∂f/∂u〕iu + ΔV ………(1) となる。ただし、f0i は区間iでの一次曲線の切片
で、〔∂f/∂u〕iはその傾きを示す。ここで、f0i
と〔∂f/∂u〕iとの値は、予め校正データ(参照デ
ータ)としてメモリ演算器11のメモリ中に保持してお
き、必要に応じて読出す。ΔVは長期に渡る変動量であ
り、f1 関数f1(u) に対して全流速域でほぼ均一に
かかる。この値が判明していないと、計測誤差を生ずる
ものとなる。本実施例のゼロ点補正法では、この変動量
ΔVを、逐次、実際の流速計測時に判定するようにした
ものである。
Here, the representative flow velocity value during each step i (i = 1 to N) representing the f 2 step function f 2 <u>
u> i is held in the memory of the memory calculator 11 in advance. This is for finding the flow velocity section (step) i based on the output f 2 which is the temperature difference measured during the actual measurement, and for searching the representative flow velocity value <u> i . The f 1 function f 1 (u) corresponding to the output voltage value of the heating element Rh is f 1 (u) = f 0i + [∂f / ∂u] i u + ΔV in the i-th flow velocity section i. (1) However, f 0i is the intercept of the linear curve in the section i, and [∂f / ∂u] i indicates its slope. Where f 0i
And [∂f / ∂u] i are stored in advance in the memory of the memory calculator 11 as calibration data (reference data), and are read out as needed. ΔV is a variation amount over a long period of time, and is substantially evenly applied to the f 1 function f 1 (u) in the entire flow velocity region. If this value is not known, a measurement error will occur. In the zero-point correction method of the present embodiment, this variation amount ΔV is sequentially determined at the time of actual flow velocity measurement.

【0031】次いで、i番目の流速区間iに対応するf
1 関数f1(u) の平均傾きである<∂f1/∂u>i
全ての流速区間i=1〜Nに関して予め計測し、メモリ
演算器11のメモリ中に保持しておく。ここに、本発明
者らの研究によれば、変動量ΔVは、流速uに対して依
存性が殆どなく、短期間では一定であることが判明し
た。つまり、実際に使用する感熱流速計測素子のサンプ
リングステップ間隔Δtは、数ミリ秒から数分で行われ
るので、(2)式のようになり、
Next, f corresponding to the i-th flow velocity section i
<∂f 1 / ∂u> i , which is the average slope of one function f 1 (u), is measured in advance for all the flow velocity sections i = 1 to N and stored in the memory of the memory calculator 11. Here, according to the research conducted by the present inventors, it has been found that the fluctuation amount ΔV has little dependence on the flow velocity u and is constant in a short period of time. That is, since the sampling step interval Δt of the heat-sensitive flow velocity measuring element actually used is performed from several milliseconds to several minutes, it is expressed by the equation (2),

【数1】 ΔVは一定であると考えても支障ないものとなる。[Equation 1] Even if it is considered that ΔV is constant, there is no problem.

【0032】実際の流速計測時には、計測データである
出力f1 ,f2 を基に、メモリに保持された上記の校正
データを用い、変動量ΔVを見積り、流速値を絞り込む
演算処理法を採る。つまり、第n回目のサンプリングで
出力f2 に対応する流速区間がi番であるとすると、メ
モリ検索により、その区間iの代表流速値<u>i と出
力f1 の傾き〔∂f/∂u〕i と切片f0iとが参照デー
タとして読出される。
At the time of actually measuring the flow velocity, an arithmetic processing method is adopted in which the variation amount ΔV is estimated and the flow velocity value is narrowed down by using the above-mentioned calibration data stored in the memory based on the measured data outputs f 1 and f 2. . That is, if the flow velocity section corresponding to the output f 2 in the n-th sampling is number i, the representative flow velocity value <u> i of the section i and the slope [∂f / ∂ ] of the output f 1 are searched by memory search. u] i and the intercept f 0i are read as reference data.

【外1】 [Outer 1]

【数2】 のように見積られる。[Equation 2] Is estimated as.

【0033】[0033]

【外2】 対応する流速区間がj番であるとすると、メモリ中か
ら、出力f1 の傾き〔∂f/∂u〕j と切片f0jとが参
照データとして検索され、これらを(1)(3)式
[Outside 2] Assuming that the corresponding flow velocity section is number j, the slope [∂f / ∂u] j of the output f 1 and the intercept f 0j are searched as reference data from the memory, and these are expressed by equations (1) and (3).

【外3】 をメモリ演算器11で演算プログラムに従い行う。[Outside 3] Is performed by the memory calculator 11 according to a calculation program.

【数3】 [Equation 3]

【0034】[0034]

【外3】 値<u>i の差が、ΔVより大きくなってしまい、上述
した補正処理を行うと、却って誤差が大きくなってしま
う。そこで、流速区間iでの発熱体Rh の最大出力f
1maxと代表流速値<u>i との最大差をδfmaxiと置
き、予め区間番号で参照できる形でメモリに保持してお
く。(3)式の演算処理で求められた変動量ΔVが、最
大差δfmaxiより小さければそのまま(4)式の処理を
実行するが、逆に、最大差δfmaxiより大きければ変動
量ΔVをゼロと見做して同処理を行う。
[Outside 3] The difference between the values <u> i becomes larger than ΔV, and when the above-described correction processing is performed, the error becomes rather large. Therefore, the maximum output f of the heating element Rh in the flow velocity section i
The maximum difference between 1max and the representative flow velocity value <u> i is set as δf maxi, and is stored in the memory in advance so that it can be referred to by the section number. If the fluctuation amount ΔV obtained by the calculation process of the formula (3) is smaller than the maximum difference δf maxi , the process of the formula (4) is executed as it is. On the contrary, if the fluctuation amount ΔV is larger than the maximum difference δf maxi , the fluctuation amount ΔV is zero. The same process is performed by considering that.

【0035】このようなメモリへの参照データの書込
み、保持、読出し及び演算処理を逐次行うことにより、
傾きが大きく流速uに対して感度の高い発熱体Rh 出力
を保ちながら、長期的な大きな変動要素を逐次除去し得
るものとなり、流速検出の正確さが増すものとなる。
By sequentially performing the writing, holding, reading and arithmetic processing of the reference data in such a memory,
While maintaining the output of the heating element Rh having a large slope and high sensitivity to the flow velocity u, long-term large fluctuation factors can be successively removed, and the accuracy of flow velocity detection can be increased.

【0036】さらに、本発明の第三の実施例を図4によ
り説明する。本実施例は、梁3付近の構成を工夫したも
ので、基板1と梁3との接続点に貫通穴12が形成され
ている。これらの貫通穴12の形状は、熱損失低減と強
度と放熱面積の確保との兼ね合いで決まる。また、これ
らの貫通穴12は図示のように基板1の縁に渡るように
形成すると、放熱面積を減少させることなく、熱損特性
も向上させ得る。ここでは、一例として、貫通穴12を
梁3の両端に2つずつ形成し、梁3の上流側と下流側と
で対称となるようにした。ここに、貫通穴12は、長さ
Lhole=100μm、幅Whole=80μmの矩形穴とし
たが、このような形状に限られるものではない。
Further, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, the structure around the beam 3 is devised, and a through hole 12 is formed at a connection point between the substrate 1 and the beam 3. The shape of these through holes 12 is determined by a balance between reduction of heat loss, strength, and securing of a heat radiation area. Further, if these through holes 12 are formed so as to extend to the edge of the substrate 1 as shown in the drawing, the heat loss characteristics can be improved without reducing the heat radiation area. Here, as an example, two through holes 12 are formed at both ends of the beam 3 so that the upstream side and the downstream side of the beam 3 are symmetrical. Here, the through hole 12 is a rectangular hole having a length Lhole = 100 μm and a width Whole = 80 μm, but the shape is not limited to such a shape.

【0037】この他の各部の寸法について説明すると、
まず、梁3に関しては、全長Lb =1200μm、全幅
Wb =250μmとされている。発熱体Rh (測温体R
s も同じ)に関しては、長さLh =800μm、その幅
Wh =190μmとされている。上、下流側梁温度測温
体Ru ,Rd に関しては、長さLu =Ld =800μm
(=Lh )、幅Wu =Wd =23μmとされている。
Explaining the dimensions of the other parts,
First, regarding the beam 3, the total length Lb = 1200 μm, full width Wb = 250 μm. Heating element Rh (Temperature measuring element R
s is the same), the length Lh = 800 μm, its width Wh = 190 μm. Regarding the upper and lower beam temperature measuring elements Ru and Rd, the length Lu = Ld = 800 μm
(= Lh ), And the width Wu = Wd = 23 μm.

【0038】もっとも、これらの各寸法に関して、梁3
の全長Lb は750μm以上1500μm以下、その全
幅Wb は150μm以上300以下であり、このように
全長Lb に対して発熱体Rh の長さLh が80%以下、
全幅Wb に対して発熱体Rhの幅Wh が80%以下、全
長Lb に対して上、下流側梁温度測温体Ru ,Rd の長
さLu ,Ld が80%以下であれば、極端に放熱特性及
び梁3の強度特性が損なわれることはないので、これら
の範囲内の寸法にて形成すればよい。また、発熱体Rh
と測温体Rs との配設に関しては、図示のものと、上流
側と下流側とで入替えてもよい。
However, for each of these dimensions, the beam 3
Total length of Lb Is 750 μm or more and 1500 μm or less, its full width Wb Is 150 μm or more and 300 or less, and thus the total length Lb With respect to the length Lh of the heating element Rh Is 80% or less,
Full width Wb Against the width Wh of the heating element Rh Is 80% or less, full length Lb On the other hand, if the lengths Lu and Ld of the upstream and downstream beam temperature measuring elements Ru and Rd are 80% or less, the heat radiation characteristic and the strength characteristic of the beam 3 are not extremely deteriorated. It may be formed with the inner dimensions. Also, the heating element Rh
The arrangement of the temperature measuring element Rs and the temperature measuring element Rs may be interchanged between the upstream side and the downstream side as illustrated.

【0039】また、本発明の第四の実施例を図5により
説明する。本実施例は、請求項2記載の発明に相当し、
梁3の構成を工夫したものである。まず、同図(a)に
示す構成を説明する。概略的には、マスク処理、エッチ
ング処理により、梁3を流れの方向に3分割したもので
ある。即ち、発熱体Rh と測温体Rs とを形成するため
の中央梁部13を確保し、この中央梁部13の上流側に
は上流側梁温度測温体Ru を形成するための小面積の上
流梁部14を補助的な複数の細い橋15で接続して設
け、中央梁部13の下流側には下流側梁温度測温体Rd
を形成するための小面積の下流梁部16を補助的な複数
の細い橋17で接続して設けたものである。これらの形
状は、中央梁部13を中心に流れ方向に対称的とされて
いる。
A fourth embodiment of the present invention will be described with reference to FIG. This embodiment corresponds to the invention described in claim 2,
The structure of the beam 3 is devised. First, the configuration shown in FIG. Schematically, the beam 3 is divided into three in the flow direction by masking and etching. That is, the central beam portion 13 for forming the heating element Rh and the temperature measuring element Rs is secured, and the upstream side of the central beam portion 13 has a small area for forming the upstream beam temperature measuring element Ru. The upstream beam portion 14 is provided by connecting with a plurality of auxiliary thin bridges 15, and the downstream beam temperature measuring element Rd is provided on the downstream side of the central beam portion 13.
The downstream beam portion 16 having a small area for forming the above is connected by a plurality of auxiliary thin bridges 17. These shapes are symmetrical with respect to the central beam portion 13 in the flow direction.

【0040】このような梁3の3分割構成によれば、放
熱特性とゼロ点検出感度との、一層の向上が可能とな
る。即ち、上、下流側梁温度測温体Ru ,Rd を配設す
るための上流梁部14、下流梁部16を独立させて形成
し、これらを放熱面である中央梁部13と補助的な細い
橋15,17で連結し、上流梁部14、下流梁部16の
面積を小さく設定しているので、熱容量を低減させるこ
とができる。さらに、無風時には橋15,17を介した
中央梁部13からの伝熱により上流梁部14、下流梁部
16は速やかに熱せられて対称な高い温度を示し、上、
下流側梁温度測温体Ru ,Rd を含む第2の電気ブロッ
ク回路9の出力はゼロとなる。一方、風が起り始める
と、中央梁部13から空気を隔てて配置されているの
で、上、下流側梁温度測温体Ru ,Rd の上流梁部1
4、下流梁部16における放熱速度は、幅の狭い橋1
5,17を介する中央梁部13からの伝熱速度よりも速
くなる。このため、無風時は高温に熱せられた上、下流
側梁温度測温体Ru ,Rd の温度は、独立した上流梁部
14、下流梁部16を持たない場合よりも急激に降下す
るものとなる。そして、上流梁部14、下流梁部16の
熱容量と放熱面積は小さいので、風の強度が更に増して
も感度特性は速く鈍くなってしまうか、飽和状態に達し
てしまう。よって、本実施例のように、上、下流側梁温
度測温体Ru ,Rd に対して独立した梁部を設けること
で、特に、流速がゼロの時と、小さい流速の時との出力
差を大きくすることができ、中央梁部13における放熱
特性を維持しつつ、ゼロ点検出の精度を高めることがで
きる。
According to such a three-divided structure of the beam 3, it is possible to further improve the heat dissipation characteristics and the zero point detection sensitivity. That is, the upper beam portion 14 and the lower beam portion 16 for arranging the upper and lower beam temperature measuring elements Ru and Rd are independently formed, and these are formed with the central beam portion 13 which is a heat radiating surface and an auxiliary member. Since the bridges 15 and 17 are connected to each other and the areas of the upstream beam portion 14 and the downstream beam portion 16 are set to be small, the heat capacity can be reduced. Further, when there is no wind, the upstream beam portion 14 and the downstream beam portion 16 are quickly heated by heat transfer from the central beam portion 13 via the bridges 15 and 17, and exhibit symmetrical high temperature.
The output of the second electric block circuit 9 including the downstream side beam temperature measuring elements Ru and Rd becomes zero. On the other hand, when the wind begins to occur, since the air is placed away from the central beam portion 13, the upstream and downstream beam portions 1 of the upper and lower beam temperature measuring elements Ru and Rd are measured.
4, the heat dissipation rate in the downstream beam section 16 is 1
It becomes faster than the heat transfer rate from the central beam portion 13 via the Nos. 5 and 17. For this reason, the temperature of the downstream beam temperature measuring elements Ru and Rd is heated to a high temperature when there is no wind, and the temperature of the downstream beam temperature measuring elements Ru and Rd drops more rapidly than in the case where the independent upstream beam portion 14 and the downstream beam portion 16 are not provided. Become. Further, since the heat capacity and the heat radiation area of the upstream beam portion 14 and the downstream beam portion 16 are small, even if the wind strength is further increased, the sensitivity characteristic will be quickly dulled or will reach a saturated state. Therefore, as in the present embodiment, by providing independent beam portions for the upper and lower beam temperature measuring elements Ru and Rd, the output difference between when the flow velocity is zero and when the flow velocity is small is provided. Can be increased, and the accuracy of zero point detection can be improved while maintaining the heat dissipation characteristics of the central beam portion 13.

【0041】同図(b)も基本的には同じであるが、例
えば図4に示したような梁3をベースとし、これを中央
梁部18とし、このような中央梁部18の上流側、下流
側を各々細い橋19を介して突出させて上流梁部20、
下流梁部21を形成して3分割したものである。
Although FIG. 2B is also basically the same, for example, a beam 3 as shown in FIG. 4 is used as a base and this is used as a central beam portion 18, and the upstream side of such a central beam portion 18 is used. , The downstream side is projected through the thin bridge 19, and the upstream beam portion 20,
The downstream beam portion 21 is formed and divided into three parts.

【0042】何れにしても、上流梁部14,20、下流
梁部16,21の放熱面積は、少なくとも中央梁部1
3,18の半分以下、好ましくは、1/4以下1/15
以上に設定される。
In any case, the heat radiation areas of the upstream beam portions 14 and 20 and the downstream beam portions 16 and 21 are at least the central beam portion 1.
Half of 3,18 or less, preferably 1/4 or less 1/15
The above is set.

【0043】さらに、本発明の第五の実施例を図6によ
り説明する。本実施例は、前述した実施例構成による感
熱式流速計22をフルイディック流量計23に利用した
ものである。まず、フルイディック流量計23の基本構
造を説明すると、流入管24から排出管25を結ぶ経路
上に、セットリングスペース26、流路縮小部27、ノ
ズル28、流路拡大部29を順に設け、かつ、流路拡大
部29中に誘振子30とエンドブロック31とを備えて
構成されている。エンドブロック31の背後は排出空間
32とされている。これにより、流路上流側からの管状
の流れはセットリングスペース26で2次元的な流れに
整流され、流路縮小部27によりさらに整流されて円滑
にノズル28に向かう。このノズル28で整流されたジ
ェット流は、誘振子30に当たることにより左右に分れ
るが、エンドブロック31に至るまでの流路拡大部29
の空間において、ある流量を越えると誘振子30の背後
にできる渦の不安定性によって、左又は右に偏った流れ
を形成する。そのため、エンドブロック31にぶつかっ
た流れは、エンドブロック31前面に沿い、ノズル28
の出口に達し、ジェット流に直角的にぶつかる。このた
め、その脇から帰還した流れによってジェット流の方向
を最初の偏流とは反対方向に偏らせる。これにより、反
対側では再び同様のことが起こり、結果としてノズル2
8を出る流れは規則的に交互に流れの方向を変化させ
る。この規則的に方向を変化させる振動の周波数は、流
量の増加に対して直線的に増加する。
Further, a fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the thermosensitive anemometer 22 according to the above-mentioned embodiment is used as a fluidic flowmeter 23. First, the basic structure of the fluidic flow meter 23 will be described. On the path connecting the inflow pipe 24 and the discharge pipe 25, a set ring space 26, a flow channel contracting unit 27, a nozzle 28, and a flow channel expanding unit 29 are provided in order. In addition, the flow path expanding section 29 is provided with a pendulum 30 and an end block 31. Behind the end block 31 is a discharge space 32. As a result, the tubular flow from the upstream side of the flow channel is rectified into a two-dimensional flow in the set ring space 26, further rectified by the flow channel contracting section 27, and smoothly flows toward the nozzle 28. The jet flow rectified by the nozzle 28 is divided into left and right when it hits the pendulum 30, but the flow path expanding portion 29 up to the end block 31.
In the above space, when the flow rate exceeds a certain value, the instability of the vortex formed behind the exciter 30 forms a flow biased to the left or the right. Therefore, the flow colliding with the end block 31 follows the front surface of the end block 31 along the nozzle 28.
Reach the exit of and hit the jet at right angles. Therefore, the direction of the jet flow is biased in the direction opposite to the initial drift by the flow returning from that side. This causes the same on the other side again, resulting in nozzle 2
The flow exiting 8 changes its direction in a regular and alternating manner. The frequency of this regular directional vibration increases linearly with increasing flow rate.

【0044】しかして、本実施例ではこのようなフルイ
ディック流量計23において、感熱式流速計22の基板
1等の素子部分を適宜支持手段を介してノズル28中央
部に配設させている。このような感熱式流速計22は前
述した実施例の何れによるものでもよい。また、設置箇
所としても、ノズル28の中央部に限らず、例えばノズ
ル28の内壁下部とか、ノズル28の天井部等であって
もよい。
In this embodiment, however, in such a fluidic flowmeter 23, the element portion such as the substrate 1 of the thermal velocity meter 22 is arranged in the central portion of the nozzle 28 through an appropriate supporting means. Such a heat-sensitive anemometer 22 may be of any of the embodiments described above. Also, the installation location is not limited to the central portion of the nozzle 28, and may be, for example, the lower portion of the inner wall of the nozzle 28, the ceiling portion of the nozzle 28, or the like.

【0045】本実施例によれば、感熱式流速計22が高
い放熱効果を示すとともに引出線等の突起がないことか
ら、毎時3〜300リットルといった長期間にわたる低
流量域の場合でもその流速測定ができたものである。こ
れにより、ガスメータとして、毎時3〜3000リット
ルの全流量域の測定が可能となったものである。
According to the present embodiment, since the thermosensitive anemometer 22 has a high heat dissipation effect and has no protrusion such as a lead wire, the flow velocity can be measured even in a low flow rate range of 3 to 300 liters per hour for a long time. Was created. As a result, the gas meter can measure the entire flow rate range of 3 to 3000 liters per hour.

【0046】[0046]

【発明の効果】請求項1記載の発明によれば、同一梁上
の上流側と下流側とに予備測温体として上流側梁温度測
温体、下流側梁温度測温体を形成し、主要な測温体と流
体温度測温体側に関してはバランス調整用抵抗体ととも
に第1の電気ブリッジ回路を形成して発熱体と流体温度
測温体との温度差を一定にするために発熱体に対して付
与する発熱電力を可変させるようにし、上流側梁温度測
温体と下流側梁温度測温体とに関しては他のバランス調
整用抵抗体とともに第2の電気ブリッジ回路を形成して
微少な流れと流れのない状態を検出し得るものとして、
デジタルメモリ演算回路でこれらの第1,2のブリッジ
電気回路の出力を保持するとともに流速を求める演算処
理を行うように構成したので、主出力である発熱体の電
圧降下出力の室温変化、流体温度変化、自然対流等の要
素による変動幅を逐次検出できるものとなり、よって、
高い単位投入電力当りの放熱効果を保ちつつ、いわゆる
ゼロ点補正を行うことができ、流速測定精度のよいもの
となる。
According to the invention described in claim 1, the upstream beam temperature measuring element and the downstream beam temperature measuring element are formed as the preliminary temperature measuring elements on the upstream side and the downstream side on the same beam. Regarding the main temperature measuring element and the fluid temperature measuring element side, the first electric bridge circuit is formed together with the balance adjusting resistor to form a first heating element in order to make the temperature difference between the heating element and the fluid temperature measuring element constant. The heating power to be applied to the upstream beam temperature measuring element and the downstream beam temperature measuring element are made small by forming a second electric bridge circuit together with other balance adjusting resistors. What can detect flow and no flow,
Since the digital memory arithmetic circuit is configured to hold the outputs of the first and second bridge electric circuits and perform the arithmetic processing for obtaining the flow velocity, the room temperature change of the voltage drop output of the heating element, which is the main output, and the fluid temperature. It becomes possible to sequentially detect the fluctuation range due to factors such as change and natural convection.
The so-called zero point correction can be performed while maintaining a high heat dissipation effect per unit input power, and the flow velocity measurement accuracy is good.

【0047】特に、請求項2記載の発明によれば、上流
側梁温度測温体や下流側梁温度測温体を形成する梁部を
小面積の上流側梁部、下流側梁部として梁の主要部をな
す中央梁部から分割させて形成し、中央梁部に対しては
補助的な細い橋で接続するようにしたので、中央梁部に
おける放熱特性を保ちつつ、一層、ゼロ点検出の精度を
向上させることができる。
In particular, according to the second aspect of the invention, the beam portion forming the upstream beam temperature measuring element or the downstream beam temperature measuring element is used as an upstream beam portion or a downstream beam portion having a small area. It is formed by dividing it from the central beam part that forms the main part of the main beam, and is connected to the central beam part by an auxiliary thin bridge. The accuracy of can be improved.

【0048】また、請求項3又は4記載の発明によれ
ば、所定の参照データ及び演算プログラムを組込んだR
OM及びRAM回路を有するデジタルメモリ演算回路と
して、随時、又は逐次、流速対発熱体出力の関係のゼロ
点補正を行って流速を算出するようにしたので、流速検
出精度を向上させることができる。
Further, according to the invention of claim 3 or 4, the R in which the predetermined reference data and the operation program are incorporated.
As the digital memory arithmetic circuit having the OM and RAM circuits, the flow velocity is calculated by performing the zero point correction of the relation between the flow velocity and the heating element output at any time or sequentially, so that the flow velocity detection accuracy can be improved.

【0049】さらに、請求項5記載の発明によれば、フ
ルイディック流量計のフルイディック振動子のノズル中
央、ノズル内壁下部又は天井部の何れかの個所に上記の
ように放熱効率を向上させた感熱式流速計を設けたの
で、低流量の計測を低電力で正確に行うことが可能とな
る。
Further, according to the invention of claim 5, the heat dissipation efficiency is improved as described above at any of the center of the fluidic oscillator of the fluidic flowmeter, the lower part of the inner wall of the nozzle or the ceiling. Since the thermosensitive anemometer is provided, it is possible to accurately measure a low flow rate with low power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】そのゼロ点補正法を説明するための特性図であ
る。
FIG. 2 is a characteristic diagram for explaining the zero-point correction method.

【図3】本発明の第二の実施例のゼロ点補正法を説明す
るための特性図である。
FIG. 3 is a characteristic diagram for explaining a zero point correction method according to a second embodiment of the present invention.

【図4】本発明の第三の実施例を示す平面的構成図であ
る。
FIG. 4 is a plan configuration diagram showing a third embodiment of the present invention.

【図5】本発明の第四の実施例を示す平面的構成図であ
る。
FIG. 5 is a plan configuration diagram showing a fourth embodiment of the present invention.

【図6】本発明の第五の実施例を示す水平断面図であ
る。
FIG. 6 is a horizontal sectional view showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 堀 3 梁 4 感熱部 8 第1の電気ブリッジ回路 9 第2の電気ブリッジ回路 11 デジタルメモリ演算回路 13 中央梁部 14 上流梁部 15 橋 16 下流梁部 17 橋 18 中央梁部 19 橋 20 上流梁部 21 下流梁部 28 ノズル Rh 発熱体 Rs 測温体 Rf 流体温度測温体 Ru 上流側梁温度測温体 Rd 下流側梁温度測温体1 Substrate 2 Moat 3 Beam 4 Heat Sensitive Section 8 First Electrical Bridge Circuit 9 Second Electrical Bridge Circuit 11 Digital Memory Arithmetic Circuit 13 Central Beam Section 14 Upstream Beam Section 15 Bridge 16 Downstream Beam Section 17 Bridge 18 Central Beam Section 19 Bridge 20 Upstream Beam 21 Downstream Beam 28 Nozzle Rh Heating element Rs Thermometer Rf Fluid temperature measuring element Ru Upstream beam temperature sensor Rd Downstream beam temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板の一部に異方性エッチ
ングにより形成された堀と、この堀を跨いで形成された
梁と、電気抵抗体による発熱体とこの発熱体と一体又は
別体とされて前記発熱体の温度を計測する測温体とを前
記梁上に形成した感熱部と、前記発熱体及び測温体に重
ならずに前記梁上上流側に形成された電気抵抗体による
上流側梁温度測温体と、前記発熱体及び測温体に重なら
ずに前記上流側梁温度測温体と平行で同一長さ及び同一
幅で前記梁上下流側に形成された電気抵抗体による下流
側梁温度測温体と、前記基板上又は基板外部に配設され
て流体温度を計測する流体温度測温体と、前記測温体と
この流体温度測温体とバランス調整用抵抗体とにより形
成されて前記発熱体と前記流体温度測温体との温度差を
一定にするために前記発熱体に対して付与する発熱電力
を可変させる第1の電気ブリッジ回路と、前記上流側梁
温度測温体と前記下流側梁温度測温体と他のバランス調
整用抵抗体とにより形成された第2の電気ブリッジ回路
と、これらの第1,2の電気ブリッジ回路の出力を保持
するとともに流速を求める演算処理を行うデジタルメモ
リ演算回路とよりなることを特徴とする感熱式流速計。
1. A substrate, a moat formed on a part of the substrate by anisotropic etching, a beam formed across the moat, a heating element made of an electric resistor, and the heating element integrated with or separately from the heating element. A heat sensing part formed on the beam as a body for measuring the temperature of the heating element, and an electric resistance formed on the beam upstream side without overlapping the heating element and the temperature sensing element. It is formed on the upstream and downstream sides of the beam in parallel with the upstream beam temperature measuring body without overlapping with the upstream beam temperature measuring body by the body and in parallel with the upstream beam temperature measuring body and having the same length and width. Downstream beam temperature thermometer using an electric resistor, a fluid temperature thermometer which is arranged on or outside the substrate to measure a fluid temperature, the temperature thermometer and the fluid temperature thermometer, and balance adjustment And a resistor for use to form a constant temperature difference between the heating element and the fluid temperature measuring element. It is formed by a first electric bridge circuit that varies the heating power applied to the heating element, the upstream beam temperature measuring element, the downstream beam temperature measuring element, and other balance adjusting resistors. And a digital memory arithmetic circuit that holds the outputs of the first and second electric bridge circuits and that performs arithmetic processing for obtaining the flow velocity.
【請求項2】 梁を、発熱体と測温体とが形成される中
央梁部と、この中央梁部に対して補助的な複数の細い橋
で接続されて上流側梁温度測温体が形成される小面積な
上流梁部と、前記中央梁部に対して補助的な複数の細い
橋で接続されて下流側梁温度測温体が形成される小面積
な下流梁部とに3分割して形成したことを特徴とする請
求項1記載の感熱式流速計。
2. An upstream side beam temperature measuring element is constructed by connecting the beam to a central beam section where a heating element and a temperature measuring element are formed and a plurality of thin bridges auxiliary to the central beam section. Divided into three parts: a small area upstream beam part to be formed and a small area downstream beam part where a downstream side beam temperature measuring element is formed by being connected to the central beam part by a plurality of auxiliary thin bridges. The thermosensitive anemometer according to claim 1, wherein the thermosensitive anemometer is formed.
【請求項3】 第1,2の電気ブリッジ回路の出力を保
持するとともに流速がゼロ又はゼロ近傍の範囲内の時に
流速対発熱体出力の関係のゼロ点補正をし流速を求める
演算処理を行うための参照データ及び演算プログラムを
組込んだROM及びRAM回路を有するデジタルメモリ
演算回路としたことを特徴とする請求項1又は2記載の
感熱式流速計。
3. The arithmetic processing for holding the outputs of the first and second electric bridge circuits and correcting the zero point of the relationship between the flow velocity and the heating element output when the flow velocity is zero or in the range near zero is performed. 3. A thermosensitive anemometer according to claim 1, wherein the thermosensitive anemometer is a digital memory arithmetic circuit having a ROM and a RAM circuit in which reference data and an arithmetic program for the above are incorporated.
【請求項4】 第1,2の電気ブリッジ回路の出力を保
持するとともに逐次流速対発熱体出力の関係のゼロ点補
正をし流速を求める演算処理を行うための参照データ及
び演算プログラムを組込んだROM及びRAM回路を有
するデジタルメモリ演算回路としたことを特徴とする請
求項1又は2記載の感熱式流速計。
4. A reference data and a calculation program for holding the outputs of the first and second electric bridge circuits and performing a calculation process to obtain a flow velocity by sequentially correcting the zero point of the relationship between the flow velocity and the heating element output. 3. A thermosensitive anemometer according to claim 1, wherein the thermosensitive anemometer is a digital memory arithmetic circuit having a ROM and a RAM circuit.
【請求項5】 フルイディック振動子のノズル中央、ノ
ズル内壁下部又は天井部の何れかの個所に請求項1,
2,3又は4記載の感熱式流速計の基板を設けたことを
特徴とするフルイディック流量計。
5. The fluidic vibrator according to claim 1, wherein the nozzle center, the nozzle inner wall lower portion, or the ceiling portion is provided.
A fluidic flowmeter, comprising the substrate of the heat-sensitive anemometer described in 2, 3, or 4.
JP5014512A 1993-02-01 1993-02-01 Thermosensible currentmenter and fluidic flow meter using it Pending JPH06230021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5014512A JPH06230021A (en) 1993-02-01 1993-02-01 Thermosensible currentmenter and fluidic flow meter using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5014512A JPH06230021A (en) 1993-02-01 1993-02-01 Thermosensible currentmenter and fluidic flow meter using it

Publications (1)

Publication Number Publication Date
JPH06230021A true JPH06230021A (en) 1994-08-19

Family

ID=11863141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5014512A Pending JPH06230021A (en) 1993-02-01 1993-02-01 Thermosensible currentmenter and fluidic flow meter using it

Country Status (1)

Country Link
JP (1) JPH06230021A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955524A3 (en) * 1998-05-05 2000-09-20 Pierburg Aktiengesellschaft Mass air flow sensor
JP2002022512A (en) * 2000-07-12 2002-01-23 Ricoh Co Ltd Flow sensor and composite type flowmeter
US6494090B1 (en) 1998-05-05 2002-12-17 Pierburg Ag Air-mass sensor
EP1762851A2 (en) 2005-09-07 2007-03-14 Hitachi, Ltd. Flow sensor with metal film resistor
US7284424B2 (en) 2001-07-26 2007-10-23 Hitachi, Ltd. Thermal air flow rate measuring apparatus and its flowmeter and internal combustion engine and thermal air flow rate measuring method using it
EP1870681A2 (en) * 2006-06-21 2007-12-26 Hitachi, Ltd. Thermal type flow rate measuring apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955524A3 (en) * 1998-05-05 2000-09-20 Pierburg Aktiengesellschaft Mass air flow sensor
US6494090B1 (en) 1998-05-05 2002-12-17 Pierburg Ag Air-mass sensor
JP2002022512A (en) * 2000-07-12 2002-01-23 Ricoh Co Ltd Flow sensor and composite type flowmeter
US7284424B2 (en) 2001-07-26 2007-10-23 Hitachi, Ltd. Thermal air flow rate measuring apparatus and its flowmeter and internal combustion engine and thermal air flow rate measuring method using it
EP1762851A2 (en) 2005-09-07 2007-03-14 Hitachi, Ltd. Flow sensor with metal film resistor
US7404320B2 (en) 2005-09-07 2008-07-29 Hitachi, Ltd. Flow sensor using a heat element and a resistance temperature detector formed of a metal film
EP2293084A1 (en) 2005-09-07 2011-03-09 Hitachi, Ltd. Flow sensor with metal film resistor
USRE43660E1 (en) 2005-09-07 2012-09-18 Hitachi, Ltd. Flow sensor using a heat element and a resistance temperature detector formed of a metal film
EP1870681A2 (en) * 2006-06-21 2007-12-26 Hitachi, Ltd. Thermal type flow rate measuring apparatus
EP1870681A3 (en) * 2006-06-21 2013-02-27 Hitachi, Ltd. Thermal type flow rate measuring apparatus

Similar Documents

Publication Publication Date Title
EP2623942B1 (en) Thermal flow rate sensor
JP3945385B2 (en) Flow sensor and flow measurement method
JP3175887B2 (en) measuring device
EP2233896B1 (en) Thermal-type flowmeter
US5852239A (en) Flow sensor having an intermediate heater between two temperature-sensing heating portions
JPH08201327A (en) Heat conductivity meter
US7287424B2 (en) Thermal type flow measurement apparatus having asymmetrical passage for flow rate measurement
JPH06230021A (en) Thermosensible currentmenter and fluidic flow meter using it
JP2571720B2 (en) Flowmeter
JPH0829224A (en) Flow rate detection device
JP3293469B2 (en) Thermal flow sensor
US6279394B1 (en) Mass air flow meter
JPH06300605A (en) Thermal microbridge type current meter and fluidic flowmeter
JP3454265B2 (en) Thermal flow sensor
JP2562076B2 (en) Flow sensor
JP3238984B2 (en) Heat-sensitive microbridge flowmeter
JPH07174600A (en) Flow-velocity sensor and flow-velocity measuring apparatus
JP2686878B2 (en) Combined sensor device
JPH11271120A (en) Heat-sensitive flow velocity sensor and heat-sensitive flow velocity detector
JPH07190822A (en) Heat-sensitive flow velocity sensor
JPH0222516A (en) Flow sensor
JP2002174541A (en) Thermal-type device for measuring quantity of flow
JPH08159834A (en) Thermo-sensitive flow meter
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JP3577902B2 (en) Thermal flow sensor