JPH06229842A - Molding for detecting heat history - Google Patents

Molding for detecting heat history

Info

Publication number
JPH06229842A
JPH06229842A JP5013290A JP1329093A JPH06229842A JP H06229842 A JPH06229842 A JP H06229842A JP 5013290 A JP5013290 A JP 5013290A JP 1329093 A JP1329093 A JP 1329093A JP H06229842 A JPH06229842 A JP H06229842A
Authority
JP
Japan
Prior art keywords
molding
temperature
molded body
firing
heat history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5013290A
Other languages
Japanese (ja)
Other versions
JP3266352B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Kenichi Shimizu
憲一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01329093A priority Critical patent/JP3266352B2/en
Publication of JPH06229842A publication Critical patent/JPH06229842A/en
Application granted granted Critical
Publication of JP3266352B2 publication Critical patent/JP3266352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the indicated-temperature detecting accuracy of a molding for detecting heat history so as to strictly manage a baking process and, at the same time, to manage baking in a high-temperature region in an inert gas atmosphere by using an unbaked ceramic molding containing Si3N4 and/or SiC and a sintering assistant in a specific composition as the molding. CONSTITUTION:The fluctuation of the burning shrinkage factor of the title molding is reduced and the indicated-temperature detecting accuracy is improved to + or -5 deg.C by setting the mixing ratio of Si3N4 in the molding at >=60mol%. In addition, the molding is made to detect heat history within a temperature of 1,500-2,000 deg.C by setting the mixing ratio of a sintering assistant at <=40mol%. In addition, when the mixing ratio of the sintering assistant of boron, carbon, etc., is set at <=30mol%, the molding can be used in a vacuum or inert gas atmosphere. Then an unbaked molding is formed of a raw material having such a composition by forming chord sections 12 and 22 in complete roundness sections 11 and 11 by pressing and chamfering 14 corner sections, and then, printing a mark 13 indicating the surface side while the particle size, green density, etc., of the raw material are strictly managed. When the molding is formed in such a shape, no warping occurs and the dimensions of the molding can be accurately measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスなどの焼
成工程における熱履歴を検知するためのものであり、特
に窒化珪素や炭化珪素など焼成時における、窒素雰囲気
や、真空または不活性雰囲気中での1500〜2000
℃の温度域での熱履歴検知用成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for detecting a thermal history in a firing process of ceramics or the like, and particularly in firing in a nitrogen atmosphere, a vacuum or an inert atmosphere when firing silicon nitride or silicon carbide. Of 1500-2000
The present invention relates to a molded article for detecting heat history in the temperature range of ° C.

【0002】[0002]

【従来の技術】セラミックスの焼成工程において、温度
プロファイル、焼成炉の種類、炉内のセッティング等に
よって被焼成体の受ける熱履歴は変化する。即ち、焼成
温度が同じでも他の条件が異なれば熱履歴は異なること
となり、この熱履歴を正しく検知する必要があった。
2. Description of the Related Art In the firing process of ceramics, the thermal history of the body to be fired changes depending on the temperature profile, the type of firing furnace, the settings in the furnace, and the like. That is, even if the firing temperature is the same, the thermal history will be different if other conditions are different, and it is necessary to correctly detect this thermal history.

【0003】例えば、実開昭56−29441号公報な
どに示されているゼーゲルコーンを用いて被焼成体の熱
履歴を検知することが行われていた。ゼーゲルコーンと
は、溶倒温度の異なる複数の三角錐状体を支持台上に備
えたものであり、このゼーゲルコーンを被焼成体と共に
焼成した後、各三角錐状体の倒れ方によって、熱履歴を
検知するようになっていた。しかし、これでは正確な検
知ができないことから、現在では使用されることが少な
くなっている。
For example, the thermal history of a body to be fired has been detected by using a Zegel cone as disclosed in Japanese Utility Model Publication No. 56-29441. Zegel cones are provided with a plurality of triangular pyramids having different melting temperatures on a support, and after firing this Zegel cone together with the body to be fired, the thermal history of the triangular pyramids falls, It was supposed to detect. However, since it cannot detect accurately, it is now less used.

【0004】そこで、例えば特開平1−184388号
公報等に示されているように、セラミックスの未焼成成
形体を用いて、この成形体を被焼成体と共に焼成した
後、収縮による寸法変化を測定することによって、熱履
歴を検知することが行われていた。例えば、図2に示す
ようなリング状の成形体20、あるいは図3に示すよう
なシート状の成形体30が用いられていた。
Therefore, as disclosed in, for example, Japanese Unexamined Patent Publication (Kokai) No. 1-184388, an unsintered compact of ceramics is used, and this compact is fired together with the body to be sintered, and then the dimensional change due to shrinkage is measured. By doing so, the thermal history was detected. For example, a ring-shaped molded body 20 as shown in FIG. 2 or a sheet-shaped molded body 30 as shown in FIG. 3 was used.

【0005】なお、このような焼成収縮による寸法変化
を測定する場合、寸法変化は便宜的に温度に変換される
が、この温度は実温を測定したものではなく、熱履歴を
表すものであって、本発明では指示温度と呼ぶこととす
る。
When measuring such a dimensional change due to firing shrinkage, the dimensional change is conveniently converted into a temperature, but this temperature does not represent an actual temperature but represents a thermal history. Therefore, in the present invention, it is referred to as an instruction temperature.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の熱履
歴検知用セラミックス成形体は、Al2 3 またはSi
2 を主成分とし、多量の不純物を含む天然原料からな
るものであったため、焼成収縮率にバラツキがあり、検
知された指示温度の精度が悪かった。
SUMMARY OF THE INVENTION However, the above-mentioned ceramic molded body for thermal history detection has a problem of Al 2 O 3 or Si.
Since it was composed of a natural raw material containing O 2 as a main component and containing a large amount of impurities, there were variations in the firing shrinkage, and the accuracy of the detected indicated temperature was poor.

【0007】また、図2に示すリング状のものでは、体
積が大きいため、焼成炉内で広いスペースを必要とし、
図3に示すシート状のものでは、ソリが発生して正しく
寸法を測定できないなどの問題点があった。
Further, the ring-shaped one shown in FIG. 2 has a large volume, and thus requires a large space in the firing furnace.
The sheet-like material shown in FIG. 3 has a problem that warpage occurs and the dimension cannot be measured correctly.

【0008】これに対し、本出願人は特開平4−653
69号公報に示すように、99.7重量%以上のAl2
3 を含むセラミックス未焼成成形体を熱履歴検知用成
形体とすることを提案したが、これは酸化雰囲気中でし
か使用できなかった。つまり、Al2 3 を主成分とす
る成形体は、窒素、真空、不活性などの雰囲気中では分
解が起こり、焼成収縮率が大きくばらつくため、検知さ
れた指示温度の精度が悪いものであった。
On the other hand, the applicant of the present invention has filed Japanese Patent Application Laid-Open No. 4-653.
As disclosed in Japanese Patent Publication No. 69, 99.7% by weight or more of Al 2
It was proposed that a ceramic green body containing O 3 be used as a thermal history detection body, but it could only be used in an oxidizing atmosphere. In other words, the molded body containing Al 2 O 3 as a main component is decomposed in an atmosphere such as nitrogen, vacuum, or inert gas, and the firing shrinkage greatly varies, so that the detected indicated temperature is inaccurate. It was

【0009】[0009]

【課題を解決するための手段】そこで本発明は、Si3
4 および/またはSiC60モル%以上と、焼結助剤
40モル%以下の組成をもったセラミックス未焼成成形
体を熱履歴検知用成形体としたものである。
Therefore, the present invention is based on Si 3
A ceramic unfired compact having a composition of N 4 and / or SiC of 60 mol% or more and a sintering aid of 40 mol% or less is used as a thermal history detecting compact.

【0010】具体的には、Si3 4 60モル%以上、
希土類酸化物等の焼結助剤40モル%以下の組成をもっ
たセラミックス未焼成成形体を熱履歴検知用成形体と
し、特に窒素雰囲気中で用いることができる。
Specifically, Si 3 N 4 is 60 mol% or more,
A ceramic unfired molded body having a composition of 40 mol% or less of a sintering aid such as a rare earth oxide can be used as a thermal history detection molded body and can be used particularly in a nitrogen atmosphere.

【0011】ここで、Si3 4 を60モル%以上とし
たのは、焼成収縮率のばらつきを小さくし、検知した指
示温度の精度を±5℃とするためである。また、焼結助
剤を40モル%以下としたのは、焼結助剤が40モル%
より多いと、1700℃以下の温度で完全に焼結して緻
密化してしまい、熱履歴を検知できなくなるためであ
り、好ましくは20モル%以下が良い。さらに、焼結助
剤としてはMgOやAl2 3 等を用いてもよいが、収
縮率のばらつきを小さくするためにはY2 3 等の希土
類酸化物を用いることが好ましく、この希土類酸化物を
0.5モル%以上含むことが望ましい。
Here, the reason why Si 3 N 4 is set to 60 mol% or more is to reduce the variation in the firing shrinkage and to make the detected indicated temperature accuracy ± 5 ° C. The reason why the amount of the sintering aid is 40 mol% or less is that the amount of the sintering aid is 40 mol%.
This is because if the amount is more than 1,700 ° C. or less, it will be completely sintered and densified, and the thermal history cannot be detected, and preferably 20 mol% or less. Furthermore, although MgO, Al 2 O 3 or the like may be used as a sintering aid, it is preferable to use a rare earth oxide such as Y 2 O 3 in order to reduce the variation in shrinkage. It is desirable that the content of the product be 0.5 mol% or more.

【0012】また、他の組成として、SiC70モル%
以上、ホウ素や炭素等の焼結助剤30モル%以下の組成
をもったセラミックス未焼成成形体を熱履歴検知用成形
体とし、特に真空または不活性雰囲気中で用いることが
できる。
Another composition is 70 mol% of SiC.
As described above, a ceramic unfired molded body having a composition of 30 mol% or less of a sintering aid such as boron or carbon can be used as a thermal history detection molded body, and can be used particularly in a vacuum or an inert atmosphere.

【0013】ここで、SiCを70モル%以上としたの
は、焼成収縮率のばらつきを小さくし、検知した指示温
度の精度を±5℃とするためである。また、焼結助剤を
30モル%以下としたのは、焼結助剤が30モル%より
多いと、1750℃以下の温度で完全に焼結して緻密化
してしまい、熱履歴を検知できなくなるためであり、好
ましくは15モル%以下が良い。さらに、焼結助剤とし
てはAl2 3 等を用いてもよいが、収縮率のばらつき
を小さくするためにはホウ素、ホウ素化合物、炭素を用
いることが好ましく、ホウ素は0.1モル%以上、炭素
は2モル%以上含むことが望ましい。
Here, the reason why the SiC content is 70 mol% or more is to reduce the variation in the firing shrinkage and to set the accuracy of the detected indicated temperature to ± 5 ° C. The reason why the amount of the sintering aid is 30 mol% or less is that if the amount of the sintering aid is more than 30 mol%, it will be completely sintered and densified at a temperature of 1750 ° C. or less, and the thermal history can be detected. This is because it disappears, and it is preferably 15 mol% or less. Further, although Al 2 O 3 or the like may be used as a sintering aid, it is preferable to use boron, a boron compound, or carbon in order to reduce the variation in shrinkage, and the boron content is 0.1 mol% or more. , Carbon is desirably contained in an amount of 2 mol% or more.

【0014】さらに、他の組成として、Si3 4 およ
びSiCが合計60モル%以上、Y2 3 やAl2 3
等の焼結助剤が40モル%以下の組成をもったセラミッ
クス未焼成成形体を熱履歴検知体とすることもできる。
Further, as another composition, Si 3 N 4 and SiC are contained in a total amount of 60 mol% or more, and Y 2 O 3 and Al 2 O 3 are contained.
It is also possible to use a ceramics unfired molded body having a composition of a sintering aid such as 40 mol% or less as a thermal history detector.

【0015】なお、上記焼結助剤とは、セラミックスの
焼結を促進する成分のことであるが、本発明では、主成
分を成すSi3 4 および/またはSiC以外のすべて
の成分を焼結助剤とする。
Although the above-mentioned sintering aid is a component that promotes the sintering of ceramics, in the present invention, all components other than Si 3 N 4 and / or SiC, which are the main components, are burnt. Use as a co-agent.

【0016】[0016]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0017】図1(a)(b)に示すように、本発明の
熱履歴検知用成形体10は、円板体に平行な弦部12、
12を形成したものであり、残された円弧部は優れた真
円度の測定面11、11としてある。また、表裏を区別
するためのドットあるいはアルファベットなどの刻印に
よる凹部13が片面に形成され、上下面の角部には面取
り14が施されている。
As shown in FIGS. 1 (a) and 1 (b), the heat history detecting molded body 10 of the present invention has a chord portion 12 parallel to the disc body.
12 is formed, and the remaining circular arc portions serve as measurement surfaces 11 having excellent roundness. Further, a recess 13 is formed on one side by marking such as dots or alphabets for distinguishing the front side and the back side, and chamfers 14 are provided on the upper and lower corners.

【0018】さらに、この成形体10は、Si3 4
よび/またはSiC60モル%以上、焼結助剤40モル
%以下の組成からなっており、原料粉末の粒径、成形体
の生密度などを極めて厳密に管理し、プレス成形してな
る、未焼成成形体である。そして、後述するように、あ
る条件の下で焼成温度を変化させて、この成形体10の
焼成後の寸法を測定し、寸法と焼成温度の関係を換算表
として用意しておく。その後、異なる条件で焼成を行う
際に、被焼成体と共にこの成形体10を焼成し、焼成後
の寸法変化を測定することによって、上記換算表より指
示温度を求めることができる。
Further, the compact 10 has a composition of 60 mol% or more of Si 3 N 4 and / or SiC and 40 mol% or less of a sintering aid, and the particle size of the raw material powder, the green density of the compact, etc. It is an unsintered compact obtained by press-molding under extremely strict control. Then, as will be described later, the firing temperature is changed under a certain condition, the dimension after firing of the molded body 10 is measured, and the relationship between the dimension and the firing temperature is prepared as a conversion table. After that, when firing is performed under different conditions, the molded body 10 is fired together with the body to be fired, and the dimensional change after firing is measured, so that the indicated temperature can be obtained from the conversion table.

【0019】なお、前記したように、この指示温度と
は、実際の温度ではなく、熱履歴を便宜的に表したもの
である。即ち、本発明の熱履歴検知用成形体を用いれ
ば、焼成条件が異なる場合でも、指示温度を求めること
によって、熱履歴自体を管理することが可能となる。
As described above, the indicated temperature is not an actual temperature but a thermal history for convenience. That is, by using the heat history detecting molded body of the present invention, it is possible to manage the heat history itself by obtaining the indicated temperature even when the firing conditions are different.

【0020】また、本発明の成形体10は、Si3 4
および/またはSiCを主成分とすることから、窒素、
真空、不活性などの非酸化性雰囲気中において、指示温
度を高精度に検知することができる。
The molded body 10 of the present invention is made of Si 3 N 4
And / or SiC as the main component, so nitrogen,
The indicated temperature can be detected with high accuracy in a non-oxidizing atmosphere such as vacuum or inert atmosphere.

【0021】さらに、本発明の成形体10は、弦部1
2、12をもっていることから、図3に示した従来例に
比べて面積が小さく、焼成炉内で大きなスペースを必要
としない。なお、この弦部12、12は互いに平行でな
くてもよく、一ヶ所のみに形成してもよい。さらに、本
発明の成形体10は、3〜10mm程度の肉厚をもった
プレス成形品であるからソリなどが生じることはなく、
また寸法測定時には図1(a)に示すように、円弧をし
た測定面11、11間を定圧マイクロメータで測定すれ
ばよく、測定位置がずれても同じ直径Dを正確に測定で
きる。
Further, the molded body 10 of the present invention has the chord portion 1
Since it has 2 and 12, it has a smaller area than the conventional example shown in FIG. 3 and does not require a large space in the firing furnace. The string portions 12 and 12 do not have to be parallel to each other and may be formed only at one place. Furthermore, since the molded product 10 of the present invention is a press-molded product having a wall thickness of about 3 to 10 mm, warpage does not occur,
Further, at the time of dimension measurement, as shown in FIG. 1A, a constant pressure micrometer may be used to measure between the arcuate measurement surfaces 11 and 11, and the same diameter D can be accurately measured even if the measurement position is deviated.

【0022】なお、本発明の成形体10の形状について
は、図1に示したものに限らず、密度が均一となるよう
な単純な形状であれば、さまざまなものとすることがで
きる。
The shape of the molded body 10 of the present invention is not limited to the shape shown in FIG. 1, and various shapes can be used as long as the shape has a uniform density.

【0023】実施例1 精製した窒化珪素(Si3 4 )原料に、酸化イットリ
ウム(Y2 3 )を含む焼結助剤を添加し、窒化珪素ボ
ールにより湿式粉砕し、レーザー光散乱法による粒度分
析を行って、平均粒径0.6±0.05μmの範囲とす
る。この原料粉末に6重量%のワックス系バインダーを
添加混合し、噴霧乾燥することによって、流動性の良い
顆粒を得、この顆粒を、空調された成形室にて、図1
(a)(b)に示す形状にプレス成形するが、このき、
成形体の生密度を1.950±0.005g/cm3
範囲内として、本発明の熱履歴検知用成形体を得た。
Example 1 A sintering aid containing yttrium oxide (Y 2 O 3 ) was added to purified silicon nitride (Si 3 N 4 ) raw material, wet-milled with silicon nitride balls, and laser-scattering method was used. Particle size analysis is performed to obtain an average particle size of 0.6 ± 0.05 μm. 1 wt% of a wax-based binder was added to and mixed with the raw material powder, and spray-dried to obtain granules having good fluidity. The granules were placed in an air-conditioned molding chamber as shown in FIG.
Press molding into the shapes shown in (a) and (b).
The green density of the molded body was set within the range of 1.950 ± 0.005 g / cm 3 to obtain the molded body for thermal history detection of the present invention.

【0024】上記原料中の焼結助剤の量を変化させて焼
成したところ、表1に結果を示すように、焼結助剤が4
0モル%より多いものは、1700℃で緻密化してしま
い、これ以上の温度では収縮しないことから、1700
℃以上では使用できなかった。通常の窒化珪素焼成炉の
場合、最低でも1750℃までの測定の必要性があるた
め、結局焼結助剤の量は40モル%以下でなければなら
なかった。また、焼結助剤の量を20モル%以下とすれ
ば、1900℃までの温度域で用いられることもわかっ
た。
When firing was performed while changing the amount of the sintering aid in the above raw materials, as shown in the results in Table 1, the amount of the sintering aid was 4%.
If the content is more than 0 mol%, it will be densified at 1700 ° C. and will not shrink at higher temperatures, so
It could not be used above ℃. In the case of a normal silicon nitride firing furnace, since it is necessary to measure at least 1750 ° C., the amount of the sintering aid must be 40 mol% or less. It was also found that when the amount of the sintering aid was 20 mol% or less, it was used in the temperature range up to 1900 ° C.

【0025】[0025]

【表1】 [Table 1]

【0026】次に上記と全く同様にして、Y2 3 を含
む焼結助剤量が10モル%で、直径Dが22.300m
mの熱履歴検知用成形体10を用意した。この成形体1
0を350℃で1時間脱脂し、厳密に管理校正された焼
成炉を用いて、窒素雰囲気にて、昇温速度200℃/
時、最高焼成温度で2時間保持、降温速度300℃/時
として焼成した。焼成後の成形体10の寸法を、20℃
にて定圧マイクロメータで測定した。
Then, in exactly the same manner as above, the amount of the sintering aid containing Y 2 O 3 was 10 mol%, and the diameter D was 22.300 m.
A heat history detection molded body 10 of m was prepared. This molded body 1
0 was degreased at 350 ° C. for 1 hour, and using a firing furnace that was rigorously controlled and calibrated, in a nitrogen atmosphere, the heating rate was 200 ° C. /
Sometimes, the maximum firing temperature was maintained for 2 hours, and the firing rate was set to 300 ° C./hour for firing. The dimension of the molded body 10 after firing is 20 ° C.
Was measured with a constant pressure micrometer.

【0027】焼成温度(指示温度)をさまざまに変化さ
せて、それぞれ20個の成形体10の焼成を3回繰り返
して行った。この結果は、表2および図4に示す通りで
ある。
The firing temperature (instructed temperature) was variously changed, and the firing of 20 compacts 10 was repeated three times. The results are shown in Table 2 and FIG.

【0028】また、各温度における、寸法のばらつき
(3σ)と、その温度での1℃当たりの寸法変化量(接
線の傾き)から、 指示温度の検知精度=±寸法のばらつき/1℃当たりの
寸法変化量 により、指示温度の検知精度(3σ)を算出した。結果
は、表2に示す通り、1450〜1900℃の範囲内
で、指示温度の検知精度を±5℃以内とすることができ
た。
Further, from the dimensional variation (3σ) at each temperature and the dimensional change amount (tangent slope) per 1 ° C. at that temperature, the detection accuracy of the indicated temperature = ± dimensional variation / per 1 ° C. The detection accuracy (3σ) of the indicated temperature was calculated from the dimensional change amount. As a result, as shown in Table 2, within the range of 1450 to 1900 ° C, the detection accuracy of the indicated temperature could be within ± 5 ° C.

【0029】さらに、表2では指示温度50℃ごとの成
形体の寸法を示しているが、もっと細かな指示温度ごと
の寸法を測定しておくことによって、成形体の寸法と指
示温度の換算表とすることができる。
Further, although Table 2 shows the dimensions of the molded body for each indicated temperature of 50 ° C., a conversion table for the dimensions of the molded body and the indicated temperature can be obtained by measuring the dimensions for each of the finer indicated temperatures. Can be

【0030】[0030]

【表2】 [Table 2]

【0031】また、上記実施例では、熱履歴検知用成形
体10を得るために、原料の粒径0.6±0.05μ
m、成形体の生密度1.950±0.005g/cm3
としたが、いずれもこの値に限定されるものではなく、
さまざまに変化させることができる。通常、粒径につい
ては±0.1μmで管理し、生密度については±0.0
1g/cm3 の範囲内にバラツキを押さえれば、指示温
度の検知精度を±5℃とすることが可能であった。
Further, in the above embodiment, in order to obtain the heat history detecting molded body 10, the grain size of the raw material is 0.6 ± 0.05 μm.
m, green density of molded body 1.950 ± 0.005 g / cm 3
However, neither is limited to this value,
It can be changed in various ways. Normally, the particle size is controlled at ± 0.1 μm, and the raw density is ± 0.0
If the variation was suppressed within the range of 1 g / cm 3 , the indicated temperature detection accuracy could be ± 5 ° C.

【0032】実施例2 精製した金属不純物が500ppm以下のβ−炭化珪素
原料に、焼結助剤として炭化ホウ素(B4 C)を添加
し、炭化珪素ボールにより湿式粉砕し、レーザー光散乱
法による粒度分析を行って、平均粒径0.5±0.05
μmの範囲とする。この原料粉末に熱分解後の炭素が所
定量になるように水溶性フェノール樹脂を添加混合し、
噴霧乾燥することによって、流動性の良い顆粒を得、こ
の顆粒を、空調された成形室にて、図1(a)(b)に
示す形状にプレス成形するが、このとき成形体の生密度
を2.100±0.005g/cm3 の範囲内として、
直径Dが2.300mmの熱履歴検知用成形体を得た。
Example 2 Boron carbide (B 4 C) was added as a sintering aid to a purified β-silicon carbide raw material containing 500 ppm or less of metal impurities, wet-milled with silicon carbide balls, and subjected to a laser light scattering method. Particle size analysis is performed to obtain an average particle size of 0.5 ± 0.05
The range is μm. To this raw material powder, a water-soluble phenolic resin is added and mixed so that the carbon after pyrolysis becomes a predetermined amount,
Granules with good fluidity are obtained by spray drying, and these granules are press-molded in an air-conditioned molding chamber into the shape shown in FIGS. 1 (a) and 1 (b). Within the range of 2.100 ± 0.005 g / cm 3 ,
A heat history detection molded body having a diameter D of 2.300 mm was obtained.

【0033】この成形体10を真空中800℃で1時間
脱脂し、フェノール樹脂を完全に熱分解させた後、厳密
に管理校正された焼成炉を用いて、真空中にて、昇温速
度500℃/時、最高焼成温度で1時間保持、降温速度
800℃/時として焼成した。焼成後の成形体10の寸
法を、20℃にて定圧マイクロメータで測定した。
The molded body 10 was degreased in vacuum at 800 ° C. for 1 hour to completely pyrolyze the phenol resin, and then the temperature was raised to 500 in vacuum by using a firing furnace calibrated strictly. C./hour, the maximum baking temperature was maintained for 1 hour, and the temperature was lowered at 800.degree. C./hour for baking. The dimension of the molded body 10 after firing was measured at 20 ° C. with a constant pressure micrometer.

【0034】焼成温度(指示温度)をさまざまに変化さ
せて、それぞれ20個の成形体10の焼成の焼成を3回
繰り返して行った。この結果は、表3および図5に示す
通りである。
The firing temperature (instructed temperature) was variously changed, and the firing of 20 compacts 10 was repeated three times. The results are shown in Table 3 and FIG.

【0035】また、各温度における、寸法のばらつき
(3σ)と、その温度での1℃当たりの寸法変化量(接
線の傾き)から、 指示温度の検知精度=±寸法のばらつき/1℃当たりの
寸法変化量 により、指示温度の検知精度(3σ)を算出した。結果
は、表3に示す通り、1600〜2000℃の範囲内
で、指示温度の検知精度を±5℃以内とすることができ
た。
From the dimensional variation (3σ) at each temperature and the dimensional change amount (tangent slope) per 1 ° C. at that temperature, the detection accuracy of the indicated temperature = ± dimensional variation / per 1 ° C. The detection accuracy (3σ) of the indicated temperature was calculated from the dimensional change amount. As a result, as shown in Table 3, within the range of 1600 to 2000 ° C, the detection accuracy of the indicated temperature could be within ± 5 ° C.

【0036】さらに、表3では指示温度50℃ごとの成
形体の寸法を示しているが、もっと細かな指示温度ごと
の寸法を測定しておくことによって、成形体の寸法と指
示温度の換算表とすることができる。
Further, although Table 3 shows the dimensions of the molded body for each indicated temperature of 50 ° C., a conversion table for the dimensions of the molded body and the indicated temperature can be obtained by measuring the dimensions for each of the finer indicated temperatures. Can be

【0037】[0037]

【表3】 [Table 3]

【0038】また、上記実施例では、熱履歴検知用成形
体10を得るために、原料の粒径0.5±0.05μ
m、成形体の生密度2.100±0.005g/cm3
としたが、いずれもこの値に限定されるものではなく、
さまざまに変化させることができる。通常、粒径につい
ては±0.1μmで管理し、生密度については±0.0
1g/cm3 の範囲内にバラツキを押さえれば、指示温
度の検知精度を±5℃とすることが可能であった。
Further, in the above embodiment, in order to obtain the heat history detecting molded body 10, the particle diameter of the raw material is 0.5 ± 0.05 μm.
m, green density of molded body 2.100 ± 0.005 g / cm 3
However, neither is limited to this value,
It can be changed in various ways. Normally, the particle size is controlled at ± 0.1 μm, and the raw density is ± 0.0
If the variation was suppressed within the range of 1 g / cm 3 , the indicated temperature detection accuracy could be ± 5 ° C.

【0039】[0039]

【発明の効果】このように本発明によれば、Si3 4
および/またはSiC60モル%以上、焼結助剤40モ
ル%以下の組成をもったセラミックス未焼成成形体を熱
履歴検知用成形体としたことによって、指示温度の検知
精度を±5℃以内と極めて高精度にできることから、焼
成条件が変わっても焼成工程を厳密に管理することがで
き、優れた焼結体を得ることが可能となる。また、特に
窒素、真空、不活性雰囲気中、1500〜2000℃の
温度域での焼成管理を可能とすることができる。
As described above, according to the present invention, Si 3 N 4 is used.
And / or by using a ceramic unfired molded body having a composition of 60 mol% or more of SiC and 40 mol% or less of a sintering aid as a molded body for thermal history detection, the detection accuracy of the indicated temperature is within ± 5 ° C. Since it can be made highly accurate, the firing process can be strictly controlled even if the firing conditions are changed, and an excellent sintered body can be obtained. In addition, it is possible to control firing in a temperature range of 1500 to 2000 ° C., particularly in nitrogen, vacuum, and an inert atmosphere.

【0040】[0040]

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明実施例の熱履歴検知用成形体を
示す平面図、(b)は同図(a)中のX−X線断面図で
ある。
FIG. 1A is a plan view showing a heat history detection molded body according to an embodiment of the present invention, and FIG. 1B is a sectional view taken along line XX in FIG. 1A.

【図2】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 2 is a perspective view showing a conventional molded body for heat history detection.

【図3】従来の熱履歴検知用成形体を示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional molded body for heat history detection.

【図4】本発明の熱履歴検知用成形体における、焼成収
縮率と指示温度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between firing shrinkage and indicated temperature in the heat history detection molded body of the present invention.

【図5】本発明の熱履歴検知用成形体における、焼成収
縮率と指示温度の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the firing shrinkage ratio and the indicated temperature in the heat history detection molded body of the present invention.

【符号の説明】[Explanation of symbols]

10・・・熱履歴検知用成形体 11・・・測定面 12・・・弦部 13・・・凹部 14・・・面取り 10 ... Mold for heat history detection 11 ... Measurement surface 12 ... Chord portion 13 ... Recessed portion 14 ... Chamfer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Si3 4 および/またはSiC60モル
%以上と、焼結助剤40モル%以下の組成をもったセラ
ミックス未焼成成形体からなることを特徴とする熱履歴
検知用成形体。
1. A molded article for thermal history detection, comprising a ceramic unfired molded article having a composition of 60 mol% or more of Si 3 N 4 and / or SiC and 40 mol% or less of a sintering aid.
JP01329093A 1993-01-29 1993-01-29 Molded body for thermal history detection Expired - Fee Related JP3266352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01329093A JP3266352B2 (en) 1993-01-29 1993-01-29 Molded body for thermal history detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01329093A JP3266352B2 (en) 1993-01-29 1993-01-29 Molded body for thermal history detection

Publications (2)

Publication Number Publication Date
JPH06229842A true JPH06229842A (en) 1994-08-19
JP3266352B2 JP3266352B2 (en) 2002-03-18

Family

ID=11829072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01329093A Expired - Fee Related JP3266352B2 (en) 1993-01-29 1993-01-29 Molded body for thermal history detection

Country Status (1)

Country Link
JP (1) JP3266352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Also Published As

Publication number Publication date
JP3266352B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
Badmos et al. Characterization of structural alumina ceramics used in ballistic armour and wear applications
JP2892229B2 (en) Molded body for thermal history detection
JPH06229842A (en) Molding for detecting heat history
JP3170341B2 (en) Molded body for thermal history detection
JPH05240716A (en) Molding for detecting heat history
JP2899920B2 (en) Molded body for thermal history detection
JP2941495B2 (en) Molded body for thermal history detection
JP2958166B2 (en) Molded body for thermal history detection
JPH0672061B2 (en) Molded body for heat history detection
JP4970712B2 (en) Aluminum nitride sintered body, aluminum nitride production method, and aluminum nitride evaluation method
JP3510978B2 (en) Temperature sensing element
Hall Secondary Expansion of High‐Alumina Refractories
JP4762092B2 (en) Thermal history sensor
Tomaszewski Effects of Cr2O3 additions on the sintering and mechanical properties of Al2O3
JP3604128B2 (en) Displacement control type pressure sintering apparatus and pressure sintering method using the same
JP2004224607A (en) Method for manufacturing low thermal expansion ceramic
JP2550848Y2 (en) Sagger for ceramic firing
JPH0967169A (en) Firing jig and production of ceramic substrate formed by using the same
JP2015212675A (en) Compact for heat history detection
JP3084884B2 (en) Method for firing Mn3O4-based porcelain
JP3142663B2 (en) Zirconia kiln tools
JPH1164118A (en) Thermal hysteresis sensor
Love MANUFACTURING FOR QUALITY
JP2020053375A (en) Ceramic substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees