JPH06229742A - Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously - Google Patents

Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously

Info

Publication number
JPH06229742A
JPH06229742A JP3470693A JP3470693A JPH06229742A JP H06229742 A JPH06229742 A JP H06229742A JP 3470693 A JP3470693 A JP 3470693A JP 3470693 A JP3470693 A JP 3470693A JP H06229742 A JPH06229742 A JP H06229742A
Authority
JP
Japan
Prior art keywords
measured
measurement
outer diameter
distance
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3470693A
Other languages
Japanese (ja)
Inventor
Kazuo Yamamoto
一男 山本
Yoshihiro Sakagami
芳博 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3470693A priority Critical patent/JPH06229742A/en
Publication of JPH06229742A publication Critical patent/JPH06229742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To allow the highly accurate simultaneous measurement of curvature, outer diameter, and circularity of a tubular item by taking advantage of common points in the measurement of curvature and outer diameter. CONSTITUTION:A tubular item 1 to be measured is supported from below at two points separated from each other in the axial direction. The item 1 is then scanned by means of a distance detector using a laser beam 7 while being rotated one or more turn in the circumferential direction. The distances L1, L2 from a reference point S on the outside of the item 1 to the opposite edges P1, P2 on the surface of the item 1 are then determined based on the scanning speed V and the scanning times T0, T1, T2. Outer diameter D and the distance L0 from the reference point S and the center 0 are determined based on the measurements L1, L2. Curvature of the item 1 is determined based on the maximum and minimum measurements of the distance L0. The circularity of the item 1 is determined based on the variation of outer diameter in the circumferential direction caused by rotation of the item 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パイプや機械軸などの
円筒状物体の曲りと外径と真円度を測定する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the bending, outer diameter and roundness of a cylindrical object such as a pipe or a machine shaft.

【0002】[0002]

【従来の技術】パイプや機械軸などのような長尺の円筒
状物体の品質検査では、曲りの測定、外径の測定及び真
円度の測定が必須である。従来、パイプや機械軸などの
円筒状物体の曲りを測定する方法としては、人力により
測定物の両端に糸を張って測定物と糸との間隙を測定し
て曲りとする方法がある。自動で曲りを測定する方法と
しては、測定物を軸方向の2カ所で下方から支持し、円
周方向に1回転以上回転させながら基準点から測定物表
面までの距離を連続的に測定し、距離測定値の最大値と
最小値との差を求めて自動で曲りを測定するものがあ
る。
2. Description of the Related Art In quality inspection of long cylindrical objects such as pipes and machine shafts, it is essential to measure bending, measuring outer diameter and measuring roundness. Conventionally, as a method for measuring the bending of a cylindrical object such as a pipe or a machine shaft, there is a method in which a thread is stretched at both ends of the object to be measured by human power and a gap between the object and the thread is measured to measure the bending. As a method of automatically measuring the bend, the object to be measured is supported from below at two locations in the axial direction, and the distance from the reference point to the surface of the object to be measured is continuously measured while rotating one or more revolutions in the circumferential direction. There is one that automatically measures the bend by obtaining the difference between the maximum value and the minimum value of the distance measurement values.

【0003】また、円筒状物体の外径測定に関しては、
これまでいくつかの自動測定方法が発案され実用化され
ている。レーザーなどの光を帯状に測定物に照射し、測
定物の影になる部分の幅を測定物の反対側にある検出器
で検出することによって、測定物の外径を測定する方法
や、測定物を挟むように既知の距離離れて対向する2カ
所の基準点から測定物表面までの距離を測定し、基準点
間の距離から2つの距離測定値を差し引くことによっ
て、測定物の外径を求める方法などがある。
Regarding the outer diameter measurement of a cylindrical object,
So far, several automatic measurement methods have been proposed and put into practical use. A method of measuring the outer diameter of a measurement object by irradiating the measurement object with a band of light such as a laser and detecting the width of the shadowed area of the measurement object with a detector on the opposite side of the measurement object. Measure the distance from two reference points facing each other with a known distance to sandwich the object to the surface of the object, and subtract the two distance measurement values from the distance between the reference points to determine the outer diameter of the object. There are ways to ask.

【0004】さらに、真円度測定については、測定物の
円周方向の複数点の外径を測定して、それらの測定値の
変動から計算で求めていた。
Further, in the roundness measurement, the outer diameters of a plurality of points in the circumferential direction of the object to be measured are measured and calculated from the fluctuation of the measured values.

【0005】[0005]

【発明が解決しようとする課題】パイプや機械軸などの
ような長尺の円筒状物体の品質検査では、曲りの測定、
外径の測定及び真円度の測定が必須である。しかし、従
来、曲り測定と外径及び真円度測定とは、曲り測定が測
定物の軸方向の測定であるのに対し、外径及び真円度測
定が測定物の断面方向の測定であることから、別の場所
或いは別の装置で測定されており、測定に必要な人員数
や設備費用などの点で問題があった。
In the quality inspection of a long cylindrical object such as a pipe or a machine shaft, bending measurement,
It is essential to measure the outer diameter and the roundness. However, conventionally, the bending measurement and the outer diameter and circularity measurement are measurements in the axial direction of the measurement object, whereas the bending measurement is measurement in the axial direction of the measurement object. Therefore, the measurement is performed in another place or another device, and there is a problem in terms of the number of personnel required for the measurement, facility cost, and the like.

【0006】そこで本発明は、曲り測定と外径測定との
共通点を利用して、円筒状の測定物に対して曲りと外径
と真円度を同時にかつ高精度に測定することができる方
法を提供することを目的とする。
Therefore, according to the present invention, the curvature, the outer diameter, and the roundness can be simultaneously and highly accurately measured for a cylindrical object by utilizing the common points of the bending measurement and the outer diameter measurement. The purpose is to provide a method.

【0007】[0007]

【課題を解決するための手段】このための本発明による
円筒状物体の曲りと外径と真円度の同時測定方法は、円
筒状測定物を軸方向の離れた2カ所で下方から円周方向
に回転可能に支持するとともに、前記測定物の軸方向の
1点或いは複数の位置でその測定物の外側に位置する基
準点と、この基準点を通る直線と平行な2つの直線が前
記測定物の表面に接する2つの測定点とを設定し、前記
測定物を1回転以上にわたって円周方向の位置を変えな
がら、前記基準点から前記測定物表面の2つの測定点ま
での距離を、前記基準点から前記2つの接線に下ろした
垂線の長さとして測定し、この測定値から前記測定物の
曲りと外径と真円度を同時に求めるものである。
For this purpose, a method for simultaneously measuring the bending, outer diameter, and roundness of a cylindrical object according to the present invention is such that the cylindrical object is measured from below at two axially distant circumferences. Is rotatably supported, and a reference point located outside the measurement object at one or a plurality of positions in the axial direction of the measurement object, and two straight lines parallel to the straight line passing through the reference point are used for the measurement. Two measurement points in contact with the surface of the object are set, and the distance from the reference point to the two measurement points on the surface of the object is changed by changing the position of the object in the circumferential direction for one rotation or more. The length of a perpendicular line drawn from the reference point to the two tangents is measured, and the bending, outer diameter, and roundness of the measured object are simultaneously obtained from the measured values.

【0008】[0008]

【作用】本発明を実施例の符号を参照して説明すると、
測定物1の外側の基準点Sから測定物1の表面の2つの
測定点(エッジ)P1 、P2 までの距離L1 、L2 を測
定する。この2つの距離測定値L1 、L2 から、測定物
1の測定位置での外径Dと基準点Sから測定物1の断面
内の中心Oまでの距離LO とを求める。測定物1を円周
方向に1回転以上にわたって回転させながら、上記のよ
うにして、測定物1の外径Dと基準点Sから測定物1の
中心Oまでの距離LO とを連続的に測定する。距離LO
の測定値の最大値と最小値とから、測定物1の曲りを求
めることができる。そして、測定物1を円周方向に回転
させて外径測定を行っているので、測定物1の円周方向
の外径値の変化から測定物1の真円度を求めることがで
きる。これによって、測定物1の曲り、外径、真円度を
同時に測定することができる。
The present invention will be described with reference to the reference numerals of the embodiments.
Distances L 1 and L 2 from a reference point S outside the object 1 to two measuring points (edges) P 1 and P 2 on the surface of the object 1 are measured. From these two distance measurement values L 1 and L 2 , the outer diameter D at the measurement position of the measurement object 1 and the distance L o from the reference point S to the center O in the cross section of the measurement object 1 are obtained. As described above, the outer diameter D of the measurement object 1 and the distance L O from the reference point S to the center O of the measurement object 1 are continuously measured while rotating the measurement object 1 in the circumferential direction for one rotation or more. taking measurement. Distance L O
The bending of the measured object 1 can be obtained from the maximum value and the minimum value of the measured values of. Since the outer diameter of the measurement object 1 is measured by rotating the measurement object 1 in the circumferential direction, the roundness of the measurement object 1 can be obtained from the change in the outer diameter value of the measurement object 1 in the circumferential direction. As a result, the bending, outer diameter, and roundness of the measurement object 1 can be measured at the same time.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1及び図2は実施例においてパイプの曲
りと外径と真円度を測定する状態を示す概略図である。
FIG. 1 and FIG. 2 are schematic views showing a state in which the bend, outer diameter and roundness of a pipe are measured in the embodiment.

【0011】測定物1は、ターニングローラー2によっ
て軸方向の2カ所を下方から支持されるとともに、円周
方向に回転可能な構造となっている。ターニングローラ
ー2は電動式であることが望ましいが、手動式でもかま
わない。ターニングローラー2には、測定物1の円周方
向の回転角度を検出する角度検出器5が設置されてい
る。
The object to be measured 1 is supported by a turning roller 2 at two axial positions from below and is rotatable in the circumferential direction. The turning roller 2 is preferably an electric type, but may be a manual type. The turning roller 2 is provided with an angle detector 5 for detecting the rotation angle of the measurement object 1 in the circumferential direction.

【0012】測定物1を軸方向の2カ所で支持するの
は、3カ所以上で支持すると測定物1が本来持っている
曲りが矯正されてしまい、正確に曲りを測定できなくな
るからである。このように長手方向の2カ所で下方から
支持された測定物1の長手方向の形状は、測定物1が本
来持っている曲りに加えて、測定物1の自重による鉛直
方向のたわみの影響を受けるが、後で説明する方法で、
自重によるたわみの影響を受けずに測定物1が本来持っ
ている曲りを精度よく測定することが可能である。
The reason why the object to be measured 1 is supported at two positions in the axial direction is that if the object to be measured 1 is supported at three or more positions, the bending originally possessed by the object to be measured 1 is corrected and the bending cannot be measured accurately. As described above, the shape in the longitudinal direction of the measurement object 1 supported from below at two locations in the longitudinal direction is affected by the bending in the measurement object 1 originally, and also the influence of the vertical deflection due to the weight of the measurement object 1. I will receive it, but I will explain it later,
It is possible to accurately measure the bend originally possessed by the object to be measured 1 without being affected by the deflection due to its own weight.

【0013】距離検出器3は、ターニングローラー2で
支持された測定物1を挟み込むように配置されており、
距離検出器3からの信号はデータ処理装置4により処理
される。
The distance detector 3 is arranged so as to sandwich the measurement object 1 supported by the turning roller 2,
The signal from the distance detector 3 is processed by the data processing device 4.

【0014】図3〜図5は距離検出器3の計測原理を説
明するものである。
3 to 5 illustrate the measuring principle of the distance detector 3.

【0015】図3に示すように、レーザー光投光部3a
と受光部3bとが測定物1を挟み込むように両側に配置
されている。光源6から出たスポット状のレーザー光7
はポリゴンミラー8で扇状に走査され、その後レンズ9
で平行かつ等速度で測定物1に走査され、測定物1の反
対側にあるレンズ10で集光されて受光素子11で受光
される。
As shown in FIG. 3, the laser light projecting portion 3a is provided.
And the light receiving portion 3b are arranged on both sides so as to sandwich the measurement object 1. Spot-shaped laser light 7 emitted from the light source 6
Is scanned in a fan shape by the polygon mirror 8, and then the lens 9
Then, the object to be measured 1 is scanned in parallel at a constant speed, and is condensed by the lens 10 on the opposite side of the object to be measured 1 and received by the light receiving element 11.

【0016】受光された信号を電気信号に変換すると、
図4に示すようにレーザーが測定物1で遮光される時間
だけ信号はゼロになる。このとき、レーザーの走査開始
時間をT0 、レーザーが測定物1で遮光され始める時間
をT1 、レーザーの測定物での遮光が終了する時間をT
2 とする。
When the received signal is converted into an electric signal,
As shown in FIG. 4, the signal becomes zero only during the time when the laser is shielded by the measurement object 1. At this time, the scanning start time of the laser is T 0 , the time when the laser starts to be shielded by the measurement object 1 is T 1 , and the time when the shielding of the laser by the measurement object is completed is T 1.
Set to 2 .

【0017】図5に示すように、レーザーを平行に一定
速度Vで走査した場合には、レーザー走査速度に時間を
乗ずることにより、レーザーの走査距離が求められるの
で、レーザーの走査開始点を基準点Sとした場合の測定
物1の両エッジP1 、P2 までの距離L1 、L2 は、 L1 =V×(T1 −T0 ) L2 =V×(T2 −T0 ) で求められる。
As shown in FIG. 5, when the laser is scanned in parallel at a constant speed V, the laser scanning distance is obtained by multiplying the laser scanning speed by time. Therefore, the laser scanning start point is used as a reference. The distances L 1 and L 2 to both edges P 1 and P 2 of the measured object 1 when the point S is set are L 1 = V × (T 1 −T 0 ) L 2 = V × (T 2 −T 0 ) Is required.

【0018】この2つの距離測定値から、測定物1の軸
方向のある位置での外径値Dと基準点Sから断面内の中
心Oまでの距離LO とを、それぞれ次式で求めることが
できる。 D=L2 −L1O =(L1 +L2 )/2
[0018] be obtained from the two distance measurements, the distance L O from the outer diameter value D and the reference point S at a certain position axially of the measuring object 1 to the center O of the cross section, in the following equations You can D = L 2 −L 1 L O = (L 1 + L 2 ) / 2

【0019】この場合の距離検出器としては、上記の方
式の他にも、三角測量方式の距離検出方式などで測定物
を両側から距離検出器を結ぶ線が測定物の中心を通るよ
うに挟み込み、2つの基準点、例えば距離検出器の計測
原点から測定物表面までの距離を測定する方式等が使用
可能である。この場合には2つの基準点間の距離が予め
既知である必要がある。
As the distance detector in this case, in addition to the above-mentioned method, a distance measuring method such as a triangulation method is used to sandwich the object to be measured so that the line connecting the distance detectors from both sides passes through the center of the object to be measured. Two reference points, for example, a method of measuring the distance from the measurement origin of the distance detector to the surface of the object to be measured can be used. In this case, the distance between the two reference points needs to be known in advance.

【0020】次に、上述した距離検出器3を使って、測
定物1の曲り測定と外径及び真円度測定とを同時に行う
方法を説明する。
Next, a method of simultaneously performing the bending measurement of the object 1 and the outer diameter and roundness measurement using the distance detector 3 described above will be described.

【0021】距離検出器3の配置位置は、距離検出方向
が基準点Sと測定物1の中心Oを結ぶ方向であれば、測
定物1の円周方向のどの方向でもかまわないが、以下で
は説明を簡単にするために鉛直方向に距離検出を行うも
のとする。また、測定物1の長手方向に対する距離検出
器3の設置位置は、測定物1の曲りが複雑な形状をして
いる場合には、長手方向の複数の位置に配置するのが良
いが、測定物1の曲りが単純な形状をしている場合に
は、長手方向の2カ所の測定物支持位置の中央付近の1
カ所に配置すると、精度良く曲りを求めることができ
る。以下では、測定物1の曲り形状が単純な円弧状であ
るとして、距離検出器3を1カ所に配置した例で説明す
る。
The position of the distance detector 3 may be any direction in the circumferential direction of the measuring object 1 as long as the distance detecting direction connects the reference point S and the center O of the measuring object 1. In order to simplify the explanation, it is assumed that distance detection is performed in the vertical direction. Further, the installation position of the distance detector 3 with respect to the longitudinal direction of the measured object 1 is preferably arranged at a plurality of positions in the longitudinal direction when the curved object 1 has a complicated shape. If the bending of the object 1 has a simple shape, the 1 near the center of the two measurement object supporting positions in the longitudinal direction.
By arranging it in one place, it is possible to accurately determine the bend. In the following, an example in which the distance detector 3 is arranged at one place will be described assuming that the curved shape of the measured object 1 is a simple arc shape.

【0022】2台のターニングローラー2で測定物1を
下方から支持し、測定物1を円周方向に1回転以上にわ
たって回転させながら、上記の方法によって、距離検出
器3で、測定物1の外径Dと距離測定基準点Sから測定
物断面内の中心Oまでの距離LO とを連続的に測定す
る。測定値の例を図6に示す。
The measuring object 1 is supported from below by two turning rollers 2, and the measuring object 1 is rotated by one or more revolutions in the circumferential direction by the distance detector 3 by the above method. and the distance L O from the outer diameter D and the distance reference point S to the center O of the workpiece in the cross-section continuously measured. An example of the measured value is shown in FIG.

【0023】LO の測定値の最大値をLO MAX 、最小値
をLO MIN とすると、ターニングローラー2で支持され
た区間の測定物1のその位置での曲りMが次式で求めら
れる。 M=(LO MAX −LO MIN )/2
[0023] L O maximum value L O MAX measurements, when the minimum value is L O MIN, the bend M at the position of the measurement object 1 in the supported section by turning the roller 2 can be calculated using the following expression . M = (L O MAX -L O MIN) / 2

【0024】長尺の測定物1を下方から2点支持すると
自重によってたわみを生じるが、このたわみは測定物1
を円周方向に回転させると常に鉛直方向を向いているた
め、測定物1の断面中心までの距離LO の変化には影響
しない。回転によってLO が変化するのは曲りによる測
定物1の振れ回りによるものである。
When the long measuring object 1 is supported at two points from below, the bending occurs due to its own weight.
When the is rotated in the circumferential direction, it always faces the vertical direction, so that it does not affect the change in the distance L o to the cross-sectional center of the measured object 1. The change in L O due to rotation is due to the whirling of the measured object 1 due to bending.

【0025】また、この方法によれば、測定物1を円周
方向に回転させて外径測定を行うので、測定物1の円周
方向1周分の外径測定値を記憶しておき、それらを比較
することによって、測定物1の円周方向の外径値の変
化、すなわち測定物1の真円度を容易に求めることが可
能である。
Further, according to this method, since the measured object 1 is rotated in the circumferential direction to measure the outer diameter, the measured value of the outer diameter for one round in the circumferential direction of the measured object 1 is stored, By comparing them, the change in the outer diameter value of the measurement object 1 in the circumferential direction, that is, the roundness of the measurement object 1 can be easily obtained.

【0026】従って、この方法によって、測定物1の曲
り、外径、真円度を同時に測定することが可能である。
Therefore, with this method, it is possible to simultaneously measure the bending, outer diameter, and roundness of the object 1.

【0027】図7に本実施例における測定動作のフロー
チャートを示す。
FIG. 7 shows a flow chart of the measuring operation in this embodiment.

【0028】ターニングローラー2の間隔を測定物1の
長さに合わせてセットする。測定物1をターニングロー
ラー2上に載せ、距離検出器3を2台のターニングロー
ラー2の中間点にセットする。外径測定をスタートす
る。外径測定は一定サンプリング間隔で連続的に行う。
ターニングローラー2を周方向に回転させ、測定物1の
外径測定位置を変化させる。この位置で外径測定を行
う。この回転と測定の操作とを測定物1が周方向に1回
転以上するまで行う。測定物1の回転角度は回転角度検
出器5にて検出する。外径測定は測定物1の回転を止め
てその都度行っても良いし、回転させながら行っても良
い。測定値をデータ処理装置4に取り込み、前記のデー
タ処理を行って曲りと外径と真円度を求める。
The interval between the turning rollers 2 is set according to the length of the object 1. The measurement object 1 is placed on the turning roller 2, and the distance detector 3 is set at the midpoint between the two turning rollers 2. Start outer diameter measurement. The outer diameter is measured continuously at regular sampling intervals.
The turning roller 2 is rotated in the circumferential direction to change the outer diameter measurement position of the measurement object 1. The outer diameter is measured at this position. This rotation and the operation of measurement are performed until the measurement object 1 makes one rotation or more in the circumferential direction. The rotation angle of the measurement object 1 is detected by the rotation angle detector 5. The outer diameter measurement may be performed each time the rotation of the object to be measured 1 is stopped, or may be performed while rotating. The measured values are taken into the data processing device 4, and the data processing described above is performed to obtain the bend, the outer diameter, and the roundness.

【0029】距離測定のサンプリング周期は、レーザー
距離計を検出器として使用した場合10ms程度となる
が、できるだけサンプリング間隔を短くして多くのデー
タを取り込み、平均化などの処理を施したほうが測定精
度は良くなる。また、測定物1の周方向の移動ピッチも
できるだけ細かくしたほうが精度の面で良い。但し、デ
ータを多く取れば取るほどデータ処理時間が長くかかる
ので、適当なデータ数に設定しなければならない。
The sampling cycle for distance measurement is about 10 ms when a laser rangefinder is used as a detector, but it is better to shorten the sampling interval as much as possible to capture a large amount of data and perform processing such as averaging. Will get better. Further, it is better in terms of accuracy that the movement pitch in the circumferential direction of the object to be measured 1 is made as fine as possible. However, the more data is taken, the longer the data processing time is, so it is necessary to set an appropriate number of data.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
パイプや機械軸などのような長尺の円筒状物体の品質検
査などの際に、従来別々の場所或いは個別の装置で測定
していた測定物の曲りと外径と真円度を、同時にかつ高
精度に測定することが可能となり、測定に必要な人員数
や設備費用などを大幅に削減することができる。
As described above, according to the present invention,
At the time of quality inspection of long cylindrical objects such as pipes and machine axes, the bending and outer diameter and roundness of the measured objects, which were conventionally measured at different places or individual devices, can be measured at the same time. It is possible to measure with high accuracy, and it is possible to greatly reduce the number of personnel required for measurement and equipment costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において測定物の曲りと外径と
真円度を測定する状態を示す概略正面図である。
FIG. 1 is a schematic front view showing a state in which the bending, outer diameter, and roundness of a measurement object are measured in an example of the present invention.

【図2】上記実施例における概略側面図である。FIG. 2 is a schematic side view of the above embodiment.

【図3】上記実施例における距離検出器の計測原理を説
明する要部の構成図である。
FIG. 3 is a configuration diagram of a main part for explaining a measurement principle of the distance detector in the above embodiment.

【図4】上記計測原理を説明するレーザー受光時の信号
レベルを表すグラフである。
FIG. 4 is a graph showing a signal level at the time of receiving a laser, which explains the measurement principle.

【図5】上記計測原理を説明する要部のレーザー走査状
態を示す図である。
FIG. 5 is a diagram showing a laser scanning state of a main part for explaining the measurement principle.

【図6】上記実施例において測定物の回転に伴う距離測
定基準点から測定物中心までの距離の変化を表すグラフ
である。
FIG. 6 is a graph showing a change in the distance from the distance measurement reference point to the center of the measurement object according to the rotation of the measurement object in the above example.

【図7】上記実施例における測定動作のフローチャート
である。
FIG. 7 is a flowchart of a measurement operation in the above embodiment.

【符号の説明】[Explanation of symbols]

1 測定物 2 ターニングローラー 3 距離検出器 3a 投光部 3b 受光部 4 データ処理装置 5 角度検出器 6 光源 7 レーザー光 8 ポリゴンミラー 9 レンズ 10 レンズ 11 受光素子 1 Measured Object 2 Turning Roller 3 Distance Detector 3a Light Emitting Section 3b Light Receiving Section 4 Data Processing Device 5 Angle Detector 6 Light Source 7 Laser Light 8 Polygon Mirror 9 Lens 10 Lens 11 Photosensitive Element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒状測定物を軸方向の離れた2カ所で
下方から円周方向に回転可能に支持するとともに、前記
測定物の軸方向の1点或いは複数の位置でその測定物の
外側に位置する基準点と、この基準点を通る直線と平行
な2つの直線が前記測定物の表面に接する2つの測定点
とを設定し、 前記測定物を1回転以上にわたって円周方向の位置を変
えながら、前記基準点から前記測定物表面の2つの測定
点までの距離を、前記基準点から前記2つの接線に下ろ
した垂線の長さとして測定し、この測定値から前記測定
物の曲りと外径と真円度を同時に求めることを特徴とす
る円筒状物体の曲りと外径と真円度の同時測定方法。
1. A cylindrical measurement object is rotatably supported from below at two axially distant locations, and at the outside of the measurement object at one or a plurality of positions in the axial direction of the measurement object. A reference point located at, and two measurement points at which two straight lines parallel to a straight line passing through the reference point are in contact with the surface of the object to be measured, and the position of the object to be measured in the circumferential direction for one rotation or more is set. While changing, the distance from the reference point to the two measurement points on the surface of the object to be measured is measured as the length of a perpendicular line drawn from the reference point to the two tangent lines, and from the measured value, the bending of the object is measured. A method for simultaneously measuring the bending of a cylindrical object and the outer diameter and the roundness, which is characterized by simultaneously obtaining the outer diameter and the roundness.
JP3470693A 1993-01-29 1993-01-29 Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously Pending JPH06229742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3470693A JPH06229742A (en) 1993-01-29 1993-01-29 Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3470693A JPH06229742A (en) 1993-01-29 1993-01-29 Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously

Publications (1)

Publication Number Publication Date
JPH06229742A true JPH06229742A (en) 1994-08-19

Family

ID=12421802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3470693A Pending JPH06229742A (en) 1993-01-29 1993-01-29 Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously

Country Status (1)

Country Link
JP (1) JPH06229742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096160A (en) * 2006-10-06 2008-04-24 Meishin Electric Co Ltd Tool for determining bending of elongated columnar object
JP2013104719A (en) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal External surface bend measuring-method for steel pipe
JP2013232342A (en) * 2012-04-27 2013-11-14 Furukawa Electric Co Ltd:The Crimp shape information acquisition method and crimp shape information acquisition apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147306A (en) * 1985-12-20 1987-07-01 Mitsutoyo Mfg Corp Apparatus for measuring shape of round shaft shaped member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147306A (en) * 1985-12-20 1987-07-01 Mitsutoyo Mfg Corp Apparatus for measuring shape of round shaft shaped member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096160A (en) * 2006-10-06 2008-04-24 Meishin Electric Co Ltd Tool for determining bending of elongated columnar object
JP2013104719A (en) * 2011-11-11 2013-05-30 Nippon Steel & Sumitomo Metal External surface bend measuring-method for steel pipe
JP2013232342A (en) * 2012-04-27 2013-11-14 Furukawa Electric Co Ltd:The Crimp shape information acquisition method and crimp shape information acquisition apparatus

Similar Documents

Publication Publication Date Title
US4895449A (en) Gauge for measuring a cross-sectional dimension deviation on an elongate object
JPH0225121B2 (en)
CA2091727A1 (en) Method and an apparatus for sensing of wheel parameters in a wheel balancing machine
WO2021189734A1 (en) Method and device for measuring straightness of pipe end of steel pipe
US4589082A (en) Nuclear fuel rod straightness measuring system and method
JP6616226B2 (en) Roundness measuring method and roundness measuring apparatus for welded steel pipe
JPH06229742A (en) Method for measuring curvature, outer diameter, and circularity of tubular item simultaneously
US5113591A (en) Device for measuring out-of-roundness
JP2017191013A (en) Thickness measurement device, thickness evaluation device, thickness measurement method, and thickness evaluation method
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
JP2501237B2 (en) Device for measuring outer diameter and wall thickness of steel pipe ends
JPH0387606A (en) Method and device for measuring automatically tubular article
US4690556A (en) Capillary bore straightness inspection
JPH0422444B2 (en)
JPS63121705A (en) Instrument for measuring outer diameter and center position of pipe
JPH0271107A (en) Apparatus for measuring profile and wall thickness of end part of steel pipe
JPS6358134A (en) Pipe inner surface shape measuring apparatus
JPH05180627A (en) Scanning inspection apparatus for shape in tube
JPH0572146A (en) Optical type surface defect detector
JPH01232203A (en) Shape measuring instrument for tube body
Vazquez et al. New fiber optic laser probe for the automatic inspection of cracks in the inner side of heat exchanger tubes of nuclear power plants
JPS6252404A (en) Rotary type dimension measuring method and apparatus
JPS5927210A (en) Method and device for measuring size of shape steel
JPH03120406A (en) Optical tube internal diameter measuring instrument

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970121