JPH06228704A - Contact material for vacuum bulb and its production - Google Patents

Contact material for vacuum bulb and its production

Info

Publication number
JPH06228704A
JPH06228704A JP5018270A JP1827093A JPH06228704A JP H06228704 A JPH06228704 A JP H06228704A JP 5018270 A JP5018270 A JP 5018270A JP 1827093 A JP1827093 A JP 1827093A JP H06228704 A JPH06228704 A JP H06228704A
Authority
JP
Japan
Prior art keywords
powder
arc
component
contact material
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5018270A
Other languages
Japanese (ja)
Other versions
JP3597544B2 (en
Inventor
Keisei Seki
経世 関
Isao Okutomi
功 奥冨
Atsushi Yamamoto
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1827093A priority Critical patent/JP3597544B2/en
Priority to US08/069,104 priority patent/US5409519A/en
Priority to DE69330598T priority patent/DE69330598T2/en
Priority to EP93304964A priority patent/EP0609601B1/en
Priority to CN94100518A priority patent/CN1044529C/en
Priority to KR1019940001966A priority patent/KR0125624B1/en
Publication of JPH06228704A publication Critical patent/JPH06228704A/en
Application granted granted Critical
Publication of JP3597544B2 publication Critical patent/JP3597544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To obtain a contact material for vacuum bulb capable of reducing the frequency of occurrence of restrike by forming the contact material for vacuum bulb by bending specific percentages of arc-resisting components, such as Ta, auxiliary components, such as Cr, and conductive components, such as Cu. CONSTITUTION:The contact material for vacuum bulb is constituted of arc- resisting components consisting of 25 to <75vol.% of at least one element among Ta, Nb, W, and Mo, auxiliary components consisting of <=75vol.%, in total with the above arc-resisting components, of at least one element among Cr, Ti, Y, Zr, Co, and V, and the balance conductive components consisting of Cu and/or Ag. This contact material is obtained, e.g. by mixing arc-resisting component powder and auxiliary component powder, sintering the resulting powder mixture in a vacuum atmosphere to form a skeleton, and then infiltrating the conductive components into the skeleton in a vacuum atmosphere. By this method, the high reliability contact material for vacuum bulb where probability of occurrence of restrike is reduced can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空バルブ用接点材料
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum valve and a manufacturing method thereof.

【0002】[0002]

【従来の技術】真空バルブ用接点材料に要求される特性
としては、耐溶着・耐電圧・遮断に対する各性能で示さ
れる基本三要件と、この他に温度上昇・接触抵抗が低く
安定していることが重要な要件となっている。しかしな
がら、これらの要件のなかには、相反するものがある関
係上、単一金属によって全ての要件を満足させることは
不可能である。このため、実用されている多くの接点材
料においては、不足する性能を相互に補えるような2種
以上の元素を組合わせ、かつ、大電流用または高耐圧用
などのように特定の用途に合った接点材料の開発が行わ
れているが、さらに強まる要求特性に対しては、いまだ
に満足できない点もあるのが実状である。最近の顕著な
傾向として、リアクトル回路・コンデンサ回路等への適
用回路の拡大があげられ、それに伴う接点材料の開発・
改良が急務となっている。特に、コンデンサ回路には、
通常回路の2倍の電圧が印加される関係上、接点の耐電
圧特性、特に再点弧発生の抑制という問題が浮上してき
た。
2. Description of the Related Art As the characteristics required for a contact material for a vacuum valve, there are three basic requirements indicated by performances such as welding resistance, withstand voltage and interruption, and in addition, temperature rise and contact resistance are low and stable. Is an important requirement. However, it is impossible to satisfy all the requirements with a single metal because some of these requirements conflict with each other. For this reason, in many practically used contact materials, two or more kinds of elements that complement each other in insufficient performance are combined and suitable for a specific application such as for large current or high breakdown voltage. Although contact materials have been developed, the fact is that there are still some points that are still unsatisfactory for the ever-increasing required characteristics. As a recent remarkable trend, the expansion of the application circuit to the reactor circuit, the capacitor circuit, etc. can be mentioned, and the development of contact materials
There is an urgent need for improvement. Especially in the capacitor circuit,
Due to the fact that a voltage that is twice that of the normal circuit is applied, the problem of withstanding voltage characteristics of the contacts, especially the suppression of re-ignition has emerged.

【0003】これに対応するために、従来では一般的に
耐圧に優れている高融点材料であるW・Mo・Ta・N
bと導電成分であるCuとから構成された接点材料を適
用してきた。
In order to deal with this, W.Mo.Ta.N, which is a high melting point material which is generally excellent in withstand voltage, has hitherto been used.
A contact material composed of b and Cu which is a conductive component has been applied.

【0004】[0004]

【発明が解決しようとする課題】このようなCu−W等
の接点材料は、ある程度の高耐圧分野には適応できる
が、より苛酷な高耐圧領域、及び突入電流を伴う回路に
おいては再点弧の発生という問題がある。この発生要因
は、耐弧材料が導電成分と充分に濡れないために耐弧材
の粒子と導電成分の密着強度が不十分となることに起因
する。
Although such contact materials such as Cu-W can be applied to a high withstand voltage field to some extent, they are re-ignition in a more severe high withstand voltage region and a circuit involving an inrush current. There is a problem of occurrence of. The cause of this is that the arc-resistant material is not sufficiently wet with the conductive component, so that the adhesion strength between the particles of the arc-resistant material and the conductive component becomes insufficient.

【0005】つまり、電極が開極状態にもかかわらず、
耐弧材粒子が電荷を帯びて接点表面から放出されたり、
濡れ不十分のために発生する接点内部のポアからガスが
突出したりして再点弧が発生する。さらには、投入時に
発生する高周波電流等による局所的な溶着が発生した場
合に前述の耐弧材料と導電成分の界面強度が弱いことと
局所的なポアの存在のため、電極引き外し時に接点表面
に移転を生じ、それが電界集中等を引起こし再点弧を発
生させる場合もある。再点弧が発生すると回路系統の事
故にまで波及し、例えば停電の要因ともなってしまう。
That is, despite the electrode being in the open state,
The arc-resistant particles are charged and discharged from the contact surface,
Gas may protrude from the pores inside the contacts that are generated due to insufficient wetting, and re-ignition occurs. Furthermore, when local welding due to high-frequency current generated at the time of turning on occurs, the interface strength between the arc-resistant material and the conductive component is weak and the presence of local pores causes the contact surface to come off when the electrode is removed. In some cases, relocation occurs, which causes electric field concentration and the like to cause re-ignition. If the re-ignition occurs, it will spread to the accident of the circuit system and cause a power failure, for example.

【0006】以上のように、再点弧の発生原因は耐弧材
料が導電成分と充分に濡れないために耐弧材の粒子と導
電成分の密着強度が十分ではないことであり、このため
この界面強度を向上させることと内部ポアを低減させる
ことにより、再点弧の発生頻度を低減することが重要に
なる。本発明の目的は、再点弧発生頻度を低減させる真
空バルブ用接点材料及びその製造方法を提供することに
ある。
As described above, the cause of re-ignition is that the arc-resistant material is not sufficiently wet with the conductive component, and therefore the adhesion strength between the particles of the arc-resistant material and the conductive component is not sufficient. It is important to reduce the frequency of restriking by improving the interfacial strength and reducing the internal pores. An object of the present invention is to provide a contact material for a vacuum valve and a method for manufacturing the same, which reduces the frequency of re-ignition.

【0007】[0007]

【課題を解決するための手段および作用】上記目的を達
成するために本発明は、耐弧成分と導電成分の密着性を
強化するために、耐弧成分と導電成分にさらにCr,T
i,Y,Zr,Co,Vのうち少なくとも1種を添加す
ることを要旨とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention further enhances the adhesion between the arc resistant component and the conductive component by further adding Cr, T to the arc resistant component and the conductive component.
The gist is to add at least one of i, Y, Zr, Co, and V.

【0008】すなわち、接点材料として耐弧成分と導電
成分にさらにTi・Cr・Zr・Y・Co・Vのうち少
なくとも1種を添加することにより、耐弧成分と導電成
分の密着力が向上するのは、従来使用されていたW等の
耐弧材料はCuと全く固溶及び反応しないために十分な
界面強度を得られなかったのに対し、本発明の接点材料
は耐弧材料とも反応し且つ導電成分にも反応する補助成
分を添加するためである。それ故に、耐弧成分と導電成
分はより密に接合されることになり、耐弧粒子の表面か
らの放出・溶着発生時の著しい凹凸の発生・接点内部の
ポアの低減が実現され、再点弧の発生を抑制することが
できる。
That is, by adding at least one of Ti, Cr, Zr, Y, Co, and V to the arc resistant component and the conductive component as the contact material, the adhesion between the arc resistant component and the conductive component is improved. In contrast, the conventional arc-resistant materials such as W could not obtain sufficient interfacial strength because they did not form a solid solution and react with Cu, whereas the contact material of the present invention also reacted with arc-resistant materials. This is because an auxiliary component that reacts with the conductive component is added. Therefore, the arc-resistant component and the conductive component are bonded more closely, and the discharge of arc-resistant particles from the surface, the occurrence of remarkable irregularities when welding occurs, and the reduction of pores inside the contact point are realized. The generation of arcs can be suppressed.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は真空バルブの断面図、図2は真空バルブの
電極部分の拡大図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a vacuum valve, and FIG. 2 is an enlarged view of an electrode portion of the vacuum valve.

【0010】図1において、遮断室1は、絶縁材料によ
りほぼ円筒上に形成された絶縁容器2と、この両端に封
止金具3a・3bを介して設けた金属製の蓋体4a・4
bとで真空に保たれ構成されている。
In FIG. 1, a shut-off chamber 1 includes an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and metal lids 4a and 4 provided on both ends of the insulating container 2 via sealing metal fittings 3a and 3b.
It is configured to be kept in a vacuum with b.

【0011】遮断室1内には、導電棒5・6の対向する
端部に取付けられた一対の電極7・8が配設され、例え
ば上部の電極7を固定電極、下部の電極8を可動電極と
している。この電極8の導電棒6にはベローズ9が取付
けられ、遮断室1内を真空密に保持しながら電極8の軸
方向の移動を可能にしている。このベローズ9の上部に
は金属製のアークシールド10が設けられ、べローズ9
がアーク蒸気で覆われることを防止している。また、電
極7・8を覆うように遮断室1内に金属製のアークシー
ルド11が設けられ、これにより絶縁容器2がアーク蒸
気で覆われることを防止している。
A pair of electrodes 7 and 8 attached to opposite ends of the conductive rods 5 and 6 are arranged in the shutoff chamber 1. For example, the upper electrode 7 is a fixed electrode and the lower electrode 8 is movable. It is used as an electrode. A bellows 9 is attached to the conductive rod 6 of the electrode 8 to allow the electrode 8 to move in the axial direction while keeping the shut-off chamber 1 vacuum-tight. An arc shield 10 made of metal is provided on the upper portion of the bellows 9.
Are protected from being covered with arc vapor. Further, a metal arc shield 11 is provided in the shut-off chamber 1 so as to cover the electrodes 7 and 8, and thereby the insulating container 2 is prevented from being covered with arc vapor.

【0012】一方、電極8は図2に示すように、導電棒
6にロウ付け部12によって固定されるか、又はかしめ
によって圧着接続されている。接点13aは、電極8に
ロウ付け14によって取付けられる。なお、電極7につ
いてもほぼ同様である。
On the other hand, as shown in FIG. 2, the electrode 8 is fixed to the conductive rod 6 by the brazing portion 12 or is crimped by caulking. The contact 13a is attached to the electrode 8 by brazing 14. The same applies to the electrode 7.

【0013】次に、本発明の接点の製造方法の一例につ
いて説明する。接点材料の製造方法には、大別すると、
耐弧粉末等で構成したスケルトンに導電成分を溶かし流
し込む溶浸法と、所定の配合で混合した粉末を成型・焼
結する焼結法がある。
Next, an example of the method of manufacturing the contact of the present invention will be described. The contact material manufacturing methods are roughly classified into
There are an infiltration method in which a conductive component is melted and poured into a skeleton made of arc-resistant powder and the like, and a sintering method in which powder mixed with a predetermined composition is molded and sintered.

【0014】本発明の製造方法は、従来のものと比較し
て次の点に特徴がある。すなわち、溶浸法の場合には、
耐弧粉末及び第3元素粉末(補助成分粉末)の混合粉末
にて、例えば真空雰囲気にて焼結してスケルトンを製作
し、そのスケルトンに、例えば真空雰囲気にて導電成分
を溶浸して接点を製作する点である。また、耐弧粉末で
のみ製作したスケルトンに第3元素を添加した導電成分
を溶浸するとによっても接点を製造できる。焼結法の場
合は、所定量配合した耐弧粉末・導電粉末・第3元素粉
末の混合粉末を例えば真空中に焼結して接点を製作する
点である。また、溶浸法・焼結法のいづれの場合も、耐
弧成分粉末に第3元素を表面被覆した粉末及び耐弧元素
と第3元素との合金粉末を用いても接点の製造は可能で
ある。次に、後述する具体的な実施例を得た評価方法、
及び評価条件について説明する。
The manufacturing method of the present invention is characterized by the following points as compared with the conventional method. That is, in the case of the infiltration method,
A skeleton is manufactured by, for example, sintering in a vacuum atmosphere with a mixed powder of arc-resistant powder and a third element powder (auxiliary component powder), and a conductive component is infiltrated into the skeleton in a vacuum atmosphere to form a contact. This is the point of production. The contact can also be manufactured by infiltrating a skeleton made of only arc-resistant powder with a conductive component containing the third element. In the case of the sintering method, the contact is manufactured by, for example, sintering a mixed powder of a predetermined amount of arc-resistant powder, conductive powder, and third element powder in vacuum. In either case of the infiltration method or the sintering method, it is possible to manufacture contacts by using a powder obtained by coating the arc-resistant component powder with the surface of the third element or an alloy powder of the arc-resistant element and the third element. is there. Next, an evaluation method for obtaining a specific example described later,
The evaluation conditions will be described.

【0015】前述したような背景から、再点弧発生頻度
にて本発明接点及び従来接点との比較を行った。径30
mm、厚さ5mmの円板状接点片をディマンタブル形真
空バルブに装着し、6KVx500Aの回路を2000
回遮断した時の再点弧発生頻度を測定し、2台の遮断器
(バルブとして6本)を測定し、再点弧発生率で示し
た。接点の装着に際しては、ベーキング加熱(450℃
x30分)のみを行い、ろう材の使用ならびにこれに伴
う加熱は行わなかった。
Against the background as described above, the contacts of the present invention and the conventional contacts were compared at the frequency of re-ignition. Diameter 30
mm-thick, 5 mm-thick disc-shaped contact piece is attached to a demantable vacuum valve, and a 6KVx500A circuit is installed in 2000.
The frequency of re-ignition when the circuit was interrupted once was measured, and two circuit breakers (six valves) were measured and shown as the rate of re-ignition. When attaching the contacts, bake (450 ° C
x 30 minutes), and the brazing filler metal and the heating associated therewith were not performed.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】なお、表1〜表3の製造では単一金属粉末
を使用。溶浸法のスケルトンは、耐弧粉末、補助成分粉
末のみで製作し、溶浸材には、無酸素銅、及び真空溶解
Ag/Cu合金を使用した。 実施例1−3、比較例1−2(表1参照)
In the production of Tables 1 to 3, a single metal powder is used. The skeleton of the infiltration method was made only of arc resistant powder and auxiliary component powder, and oxygen-free copper and vacuum-melted Ag / Cu alloy were used as the infiltration material. Example 1-3, Comparative example 1-2 (see Table 1)

【0021】耐弧材料のNb含有量を25体積%一定と
して、補助成分のCr添加量を0.1,25,50,6
5体積%を接点を製造した(各々、比較例1、実施例
1,2,3、比較例2)。Nb粉末とCr粉末の混合粉
末を原料粉末とした。比較例1と実施例1は、焼結法に
て製造した。具体的には、Nb粉末・Cr粉末・Cu粉
末を混合・成型した後、所定の温度で焼結して製作し
た。実施例2,3,比較例2は、溶浸法にて製造した。
具体的には、Nb粉末とCr粉末を混合・成型・焼結
し、スケルトンを製作する。次いで、無酸素銅を溶浸し
て試験片とした。これらの試験片を加工し、ディマンタ
ブルチャンバに組込み再点弧発生確率を測定した。
With the Nb content of the arc-resistant material being constant at 25% by volume, the amount of Cr added as an auxiliary component is 0.1, 25, 50, 6
A contact of 5% by volume was manufactured (Comparative Example 1, Examples 1, 2, 3 and Comparative Example 2, respectively). A mixed powder of Nb powder and Cr powder was used as the raw material powder. Comparative Example 1 and Example 1 were manufactured by the sintering method. Specifically, it was manufactured by mixing and molding Nb powder, Cr powder, and Cu powder, and then sintering at a predetermined temperature. Examples 2, 3 and Comparative Example 2 were manufactured by the infiltration method.
Specifically, Nb powder and Cr powder are mixed, molded, and sintered to produce a skeleton. Then, oxygen-free copper was infiltrated into a test piece. These test pieces were processed and incorporated into a demantable chamber to measure the probability of re-ignition.

【0022】その結果、表1に示すように、Cr無添加
の比較例1は、再点弧発生確率が1−2%であったのに
対して、Crを1,25,50%添加した実施例1,
2,3は0.5−0.8%であり、改善傾向を示した。
Crを65%添加した比較例2も再点弧発生確率は0.
8%と改善されたが、導電成分が少ないためか接触抵抗
が大きく実用には困難な状態であった。なお、Cr無添
加の溶浸法によるNb−Cu接点も比較のために製作す
ることを試みたが、表面酸化の影響のためか溶浸できな
かった。 実施例4−6、比較例3−4(表2参照)
As a result, as shown in Table 1, in Comparative Example 1 in which Cr was not added, the probability of re-ignition was 1-2%, while 1,25,50% of Cr was added. Example 1,
Nos. 2 and 3 were 0.5-0.8% and showed an improvement tendency.
Also in Comparative Example 2 in which Cr was added by 65%, the probability of re-ignition was 0.
Although it was improved to 8%, the contact resistance was large and it was difficult to put it to practical use probably because the conductive component was small. An Nb-Cu contact made by the infiltration method without Cr addition was also manufactured for comparison, but could not be infiltrated probably due to the influence of surface oxidation. Example 4-6, Comparative Example 3-4 (see Table 2)

【0023】補助成分のTi添加量を1体積%一定とし
て、耐弧成分のTa含有量を15,25,50,70,
90体積%の接点を製造した(各々、比較例3、実施例
4,5,6、比較例4)。接点の製造方法は、比較例3
と実施例4は前述の比較例1、実施例1と同じ焼結法で
あり、実施例5,6と比較例4は実施例2と同様の溶浸
法である。いずれの試験片も再点弧発生確率は、0.5
−0.8%であり、改善が見られるが、Ta含有量15
%の比較例3は遮断能力の低下が著しく、また、Ta含
有量90%の比較例4は前述の比較例2と同様に接触抵
抗が大きく実用のバルブに組込めるものではなかった。 実施例7−8(表3参照)
With the addition amount of Ti of the auxiliary component being constant at 1% by volume, the Ta content of the arc-resistant component is 15, 25, 50, 70,
90% by volume of contacts were manufactured (Comparative Example 3, Examples 4, 5, 6 and Comparative Example 4, respectively). The manufacturing method of the contact is Comparative Example 3
And Example 4 are the same sintering methods as those of Comparative Examples 1 and 1 described above, and Examples 5, 6 and Comparative Example 4 are the same infiltration methods as those of Example 2. The probability of re-ignition for all test pieces was 0.5.
-0.8%, showing improvement, but Ta content 15
%, Comparative Example 3 had a significant decrease in the blocking ability, and Comparative Example 4 having a Ta content of 90% had a large contact resistance like the above Comparative Example 2 and could not be incorporated into a practical valve. Examples 7-8 (see Table 3)

【0024】表1ではNb−Cr−Cu系、表2ではT
a−Ti−Cu系の例について述べたが、耐弧材料とし
てNb・TaばかりではなくW・Mo、補助成分として
Cr・TiばかりではなくY・Zr・Co・V、またC
uの代わりに導電成分となりうるAgを使用しても同様
に再点弧発生確率を低減できる。実施例7は50体積%
W−5%Co−30%Cu−15%Agの接点を溶浸法
にて製作したものであり、実施例8は25%W−25%
Mo−Y−1%Zr−Cuの接点を溶浸法にて製作した
ものである。いずれの接点も再点弧発生確率が0.8
%、0.5%と小さく有益であることが確認できた。
Table 1 shows Nb-Cr-Cu system, and Table 2 shows T.
An example of the a-Ti-Cu system has been described, but not only Nb / Ta but also W / Mo as an arc-resistant material, and Y / Zr / Co / V and C as well as Cr / Ti as auxiliary components.
Even if Ag which can be a conductive component is used instead of u, the probability of re-ignition can be similarly reduced. Example 7 is 50% by volume
A contact of W-5% Co-30% Cu-15% Ag was manufactured by the infiltration method, and Example 8 was 25% W-25%.
The contact of Mo-Y-1% Zr-Cu is manufactured by the infiltration method. Probability of re-ignition is 0.8 at each contact
It was confirmed to be as small as 0.5% and 0.5% and useful.

【0025】以上の実施例の検討結果から、本実施例の
組成だけでなく、耐弧材料にTa・Nb・Mo・W、補
助成分にCr・Ti・Y・Zr・Co・V、導電成分に
Cu・Agを用いることにより再点弧発生頻度を低減で
きることは明らかである。 実施例9−12(表4参照)
From the examination results of the above examples, not only the composition of this example but also Ta, Nb, Mo, W as the arc-resistant material, Cr, Ti, Y, Zr, Co, V as the auxiliary component, and the conductive component It is obvious that the frequency of re-ignition can be reduced by using Cu.Ag for the. Examples 9-12 (see Table 4)

【0026】次に、製造方法について検討する。実施例
9はNb粉末とCr粉末を9:1の割合で配合・混合し
た後、無酸素銅を溶浸して接点を製作したものである。
実施例10はNb粉末のみでスケルトンを製作した後、
予め製作しておいた2%Cr−Cu合金を溶浸したもの
である。実施例11はNb/Cuの合金粉末とCu粉末
を混合焼結しスケルトンを製作したものに、新たに無酸
素銅を溶浸したものである。実施例12はCrにてNb
粉末を表面被覆したものをCu粉末と混合・成型した後
焼結を施し接点を製作したものである。これら接点の再
点弧発生確率はいずれも0.5−0.8%であり、良好
な結果であった。
Next, the manufacturing method will be examined. In Example 9, Nb powder and Cr powder were mixed and mixed at a ratio of 9: 1, and then oxygen-free copper was infiltrated to produce a contact.
In Example 10, after manufacturing a skeleton using only Nb powder,
It is an infiltrated 2% Cr-Cu alloy produced in advance. Example 11 is a skeleton produced by mixing and sintering Nb / Cu alloy powder and Cu powder, and newly infiltrating oxygen-free copper. Example 12 is Cr with Nb
The contact is manufactured by mixing and molding the surface-coated powder with Cu powder and sintering the mixture. The probability of re-ignition of these contacts was 0.5-0.8%, which was a good result.

【0027】これらの種々の製造方法により製作した接
点材料の断面組織を光学顕微鏡及び電子顕微鏡にて観察
すると、いずれも耐弧材料の周囲を補助成分が包囲する
傾向にあり、補助成分が耐弧材料と導電成分との結合の
役目を果たしていることが確認できた。特に、この傾向
は溶浸法にて製造した接点材料に顕著に認められた。そ
の結果が焼結法により製造した接点材料の再点弧発生確
率が大体0.8%であるのに対して、溶浸法にて製作し
た接点材料のそれが0.5%であることにも反映してい
るように推定できる。従って、焼結法にて接点材料を製
作する場合には、焼結温度を導電成分の融点以上にする
ことが望ましく、融点に満たない場合にも、なるべく融
点に近付けた方が再点弧発生の抑制に有効である。ただ
し、焼結法のものにおいても、再点弧発生確率の低減に
は十分なものである。
When observing the cross-sectional structure of the contact material manufactured by these various manufacturing methods with an optical microscope and an electron microscope, the auxiliary component tends to be surrounded by the arc resistant material, and the auxiliary component has the arc resistant property. It was confirmed that the material plays a role of binding between the material and the conductive component. In particular, this tendency was remarkably recognized in the contact material manufactured by the infiltration method. The result shows that the probability of re-ignition of the contact material produced by the sintering method is about 0.8%, whereas that of the contact material produced by the infiltration method is 0.5%. It can be estimated that it also reflects. Therefore, when manufacturing the contact material by the sintering method, it is desirable to set the sintering temperature to the melting point of the conductive component or higher. Even if the melting point is lower than the melting point, it is better to approach the melting point as much as possible to cause re-ignition. It is effective in suppressing. However, the sintering method is also sufficient for reducing the probability of re-ignition.

【0028】また、断面組織観察を導電マトリクスに向
けると、導電成分マトリクス内部の所々に補助成分が溶
融あるいは折出した部分が観察され、補助成分と導電成
分が強固に接合されていることが確認できた。この現象
も、溶浸法の接点材料に顕著に認められた。
When the cross-sectional structure was observed toward the conductive matrix, the melted or broken portion of the auxiliary component was observed in various places inside the conductive component matrix, and it was confirmed that the auxiliary component and the conductive component were firmly bonded. did it. This phenomenon was also remarkably observed in the contact material by the infiltration method.

【0029】以上の実施例の検討結果から、本発明の製
造方法は本実施例のみに限定されず、本実施例の部分的
な組合わせによっても同様の結果が得られるのは明白で
ある。
From the examination results of the above examples, it is apparent that the manufacturing method of the present invention is not limited to this example, and similar results can be obtained by a partial combination of the examples.

【0030】[0030]

【発明の効果】以上のように本発明によれば、補助成分
により耐弧成分と導電成分の密着強度が向上するので、
再点弧発生確率を低減した高信頼性の真空バルブ用接点
材料及びその製造方法を得ることができる。
As described above, according to the present invention, the auxiliary component improves the adhesion strength between the arc-resistant component and the conductive component.
It is possible to obtain a highly reliable contact material for a vacuum valve having a reduced probability of re-ignition and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の真空バルブ用接点材料を適用した真
空バルブの断面図。
FIG. 1 is a sectional view of a vacuum valve to which a contact material for a vacuum valve of the present invention is applied.

【図2】 [図1]の部分拡大断面図。FIG. 2 is a partially enlarged sectional view of FIG.

【符号の説明】[Explanation of symbols]

7、8……電極、13a、13b……接点 7, 8 ... Electrodes, 13a, 13b ... Contacts

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01H 33/66 B 8121−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01H 33/66 B 8121-5G

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 25体積%以上で75体積%未満であっ
てTa,Nb,W,Moのうち少なくとも1種からなる
耐弧成分と、この耐弧成分との合量が75体積%以下で
あってCr,Ti,Y,Zr,Co,Vのうち少なくと
も1種からなる補助成分と、残部がCuまたはAgの少
なくとも1種からなる導電成分とを有する真空バルブ用
接点材料。
1. An arc-resistant component comprising 25% by volume or more and less than 75% by volume and comprising at least one of Ta, Nb, W, and Mo, and the total amount of the arc-resistant component is 75% by volume or less. A contact material for a vacuum valve, which has an auxiliary component made of at least one of Cr, Ti, Y, Zr, Co, and V, and a conductive component made of at least one of Cu or Ag.
【請求項2】 前記補助成分が前記耐弧成分の周囲を包
囲するように形成されるとともに、前記導電成分は導電
成分マトリクスとして含有されることを特徴とする請求
項1記載の真空バルブ用接点材料。
2. The contact for a vacuum valve according to claim 1, wherein the auxiliary component is formed so as to surround the arc-proof component, and the conductive component is contained as a conductive component matrix. material.
【請求項3】 前記耐弧成分と前記補助成分とを合金に
するとともに、前記導電成分は導電成分マトリクスとし
て含有されることを特徴とする請求項1記載の真空バル
ブ用接点材料。
3. The contact material for a vacuum valve according to claim 1, wherein the arc resistant component and the auxiliary component are alloyed and the conductive component is contained as a conductive component matrix.
【請求項4】 25体積%以上で75体積%未満であっ
てTa,Nb,W,Moのうち少なくとも1種からなる
耐弧成分粉末と、この耐弧成分粉末との合量が75体積
%以下であってCr,Ti,Y,Zr,Co,Vのうち
少なくとも1種からなる補助成分粉末との混合粉末また
は複合粉末でスケルトンを製作し、このスケルトンに溶
浸材を溶浸させたことを特徴とする真空バルブ用接点材
料の製造方法。
4. The arc-resisting component powder, which is 25 vol% or more and less than 75 vol% and is made of at least one of Ta, Nb, W, and Mo, and the total amount of the arc-resisting component powder is 75 vol%. The following is a skeleton made of a mixed powder or a composite powder with an auxiliary component powder consisting of at least one of Cr, Ti, Y, Zr, Co, and V, and the infiltration material is infiltrated into the skeleton. A method for manufacturing a contact material for a vacuum valve, comprising:
【請求項5】 前記スケルトンは、前記耐弧成分粉末と
補助成分粉末との混合粉末または複合粉末、及び導電成
分粉末で製作されることを特徴とする請求項4記載の真
空バルブ用接点材料の製造方法。
5. The contact material for a vacuum valve according to claim 4, wherein the skeleton is made of a mixed powder or a composite powder of the arc resistant component powder and an auxiliary component powder, and a conductive component powder. Production method.
【請求項6】 前記溶浸材は、CuまたはAgの少なく
とも1種であることを特徴とする請求項4または請求項
5のいずれかに記載の真空バルブ用接点材料の製造方
法。
6. The method of manufacturing a contact material for a vacuum valve according to claim 4, wherein the infiltrant is at least one of Cu and Ag.
【請求項7】 前記溶浸材は、Cr,Ti,Y,Zr,
Co,Vのうち少なくとも1種を含有したCuまたはA
gの少なくとも1種であることを特徴とする請求項4ま
たは請求項5のいずれかに記載の真空バルブ用接点材料
の製造方法。
7. The infiltrant is Cr, Ti, Y, Zr,
Cu or A containing at least one of Co and V
6. The method for producing a contact material for a vacuum valve according to claim 4, wherein the contact material is at least one of g.
【請求項8】 25体積%以上で75体積%未満であっ
てTa,Nb,W,Moのうち少なくとも1種からなる
耐弧成分粉末と、この耐弧成分粉末との合量が75体積
%以下であってCr,Ti,Y,Zr,Co,Vのうち
少なくとも1種からなる補助成分粉末との混合粉末また
は複合粉末に、残部のCuまたはAgの少なくとも1種
からなる導電成分粉末を混合した後、成型して焼結した
ことを特徴とする真空バルブ用接点材料の製造方法。
8. The arc-resisting component powder, which is 25 vol% or more and less than 75 vol% and is made of at least one of Ta, Nb, W, and Mo, and the total amount of the arc-resisting component powder is 75 vol%. The following is mixed with a mixed powder or a composite powder with an auxiliary component powder consisting of at least one of Cr, Ti, Y, Zr, Co and V, and the balance of a conductive component powder consisting of at least one of Cu or Ag. A method of manufacturing a contact material for a vacuum valve, which is characterized by being formed and then sintered.
【請求項9】 前記複合粉末は、前記耐弧成分粉末を補
助成分粉末で被覆したものであることを特徴とする請求
項4,請求項5または請求項8のいずれかに記載の真空
バルブ用接点材料の製造方法。
9. The vacuum valve according to claim 4, wherein the composite powder is obtained by coating the arc resistant component powder with an auxiliary component powder. Method of manufacturing contact material.
JP1827093A 1993-02-05 1993-02-05 Contact material for vacuum valve and manufacturing method thereof Expired - Fee Related JP3597544B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1827093A JP3597544B2 (en) 1993-02-05 1993-02-05 Contact material for vacuum valve and manufacturing method thereof
US08/069,104 US5409519A (en) 1993-02-05 1993-05-28 Contact material for vacuum valve
DE69330598T DE69330598T2 (en) 1993-02-05 1993-06-24 Contact material for vacuum switches and manufacturing processes therefor
EP93304964A EP0609601B1 (en) 1993-02-05 1993-06-24 Contact material for vacuum interrupter and method of making the same
CN94100518A CN1044529C (en) 1993-02-05 1994-01-20 Contacts material for vacuum valve and method of manufacturing the same
KR1019940001966A KR0125624B1 (en) 1993-02-05 1994-02-03 Contact material for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1827093A JP3597544B2 (en) 1993-02-05 1993-02-05 Contact material for vacuum valve and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06228704A true JPH06228704A (en) 1994-08-16
JP3597544B2 JP3597544B2 (en) 2004-12-08

Family

ID=11966968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1827093A Expired - Fee Related JP3597544B2 (en) 1993-02-05 1993-02-05 Contact material for vacuum valve and manufacturing method thereof

Country Status (6)

Country Link
US (1) US5409519A (en)
EP (1) EP0609601B1 (en)
JP (1) JP3597544B2 (en)
KR (1) KR0125624B1 (en)
CN (1) CN1044529C (en)
DE (1) DE69330598T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015644A (en) * 2000-06-29 2002-01-18 Toshiba Corp Contact material for vacuum circuit breaker, its manufacturing method and vacuum circuit breaker
JP2006233298A (en) * 2005-02-25 2006-09-07 Toshiba Corp Contact material for vacuum valve and its production method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051867C (en) * 1997-08-14 2000-04-26 北京有色金属研究总院 Process for mfg. micro and special shaped contactor belt having super thin electric contacting layer
JP4404980B2 (en) 1999-02-02 2010-01-27 芝府エンジニアリング株式会社 Vacuum valve
CA2422301C (en) * 2001-07-18 2006-08-22 Nec Schott Components Corporation Thermal fuse
CN1300816C (en) * 2004-04-14 2007-02-14 山东晨鸿电工有限责任公司 High voltage vacuum arc-extinguishing room contact material and its preparing method
CN1316047C (en) * 2005-02-06 2007-05-16 陈晓 Copper-tungsten-carbon-titanium-rare earth alloy material and production thereof
DE112017001814B4 (en) * 2016-03-29 2021-10-07 Mitsubishi Electric Corporation CONTACT ELEMENT, METHOD OF MANUFACTURING THE SAME AND VACUUM CIRCUIT BREAKERS
JP6323578B1 (en) * 2017-02-02 2018-05-16 株式会社明電舎 Electrode material manufacturing method and electrode material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573037A (en) * 1968-01-22 1971-03-30 Mallory & Co Inc P R Method of making molybdenum composite materials
AT286423B (en) * 1969-01-27 1970-12-10 Plansee Metallwerk Electric contact
JPS58115728A (en) * 1981-12-28 1983-07-09 三菱電機株式会社 Contact for vacuum breaker
DE3378439D1 (en) * 1982-08-09 1988-12-15 Meidensha Electric Mfg Co Ltd Contact material of vacuum interrupter and manufacturing process therefor
US4517033A (en) * 1982-11-01 1985-05-14 Mitsubishi Denki Kabushiki Kaisha Contact material for vacuum circuit breaker
EP0109088B1 (en) * 1982-11-16 1986-03-19 Mitsubishi Denki Kabushiki Kaisha Contact material for vacuum circuit breaker
JPS59201334A (en) * 1983-04-29 1984-11-14 三菱電機株式会社 Contact material for vacuum breaker
JPS59201335A (en) * 1983-04-29 1984-11-14 三菱電機株式会社 Contact material for vacuum breaker
CN1003329B (en) * 1984-12-13 1989-02-15 三菱电机有限公司 Contacts for vacuum-break switches
JPH0760623B2 (en) * 1986-01-21 1995-06-28 株式会社東芝 Contact alloy for vacuum valve
JP2768721B2 (en) * 1989-03-01 1998-06-25 株式会社東芝 Contact material for vacuum valve
DE19856715C1 (en) * 1998-12-09 2000-07-06 Hella Kg Hueck & Co Electric actuator for use in a motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015644A (en) * 2000-06-29 2002-01-18 Toshiba Corp Contact material for vacuum circuit breaker, its manufacturing method and vacuum circuit breaker
JP2006233298A (en) * 2005-02-25 2006-09-07 Toshiba Corp Contact material for vacuum valve and its production method

Also Published As

Publication number Publication date
US5409519A (en) 1995-04-25
JP3597544B2 (en) 2004-12-08
CN1091856A (en) 1994-09-07
EP0609601B1 (en) 2001-08-16
EP0609601A3 (en) 1995-05-03
KR940019387A (en) 1994-09-14
CN1044529C (en) 1999-08-04
EP0609601A2 (en) 1994-08-10
DE69330598T2 (en) 2002-06-27
KR0125624B1 (en) 1998-11-02
DE69330598D1 (en) 2001-09-20

Similar Documents

Publication Publication Date Title
EP0101024B1 (en) Contact material of vacuum interrupter and manufacturing process therefor
JPH06228704A (en) Contact material for vacuum bulb and its production
JP2766441B2 (en) Contact material for vacuum valve
KR0170052B1 (en) Contact material for vacuum valve &amp; method of manufacturing the same
JP3441331B2 (en) Manufacturing method of contact material for vacuum valve
JP2007066753A (en) Contact material for vacuum valve, and manufacturing method therefor
JPH076671A (en) Contact material and manufacture thereof for vacuum valve
JP2006032036A (en) Contact material for vacuum valve
JP2889344B2 (en) Contact for vacuum valve
JP2003226904A (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JP2003077375A (en) Contact material for vacuum valve and vacuum valve
JP3790055B2 (en) Contact material for vacuum valves
JP4619821B2 (en) Contact material and vacuum valve
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH059888B2 (en)
JPH1083745A (en) Contact material for vacuum valve and electrode material
JPH07134930A (en) Contact point material for vacuum valve
JP2002167631A (en) Electrical contact material, its production method and gas-blast circuit breaker
JPH0973846A (en) Contact material for vacuum bulb and its manufacture
JPH1139973A (en) Contact material for vacuum bulb
JP2002256361A (en) Contact material for vacuum valve
JP2001222934A (en) Contact material for vacuum valve
JPH1083746A (en) Electrode for vacuum valve and its manufacture
JPH0193018A (en) Contact material for vacuum bulb
JPH04206122A (en) Vacuum value

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees