JPH0622728B2 - Descaling method for shape memory alloy thin plate - Google Patents

Descaling method for shape memory alloy thin plate

Info

Publication number
JPH0622728B2
JPH0622728B2 JP61112180A JP11218086A JPH0622728B2 JP H0622728 B2 JPH0622728 B2 JP H0622728B2 JP 61112180 A JP61112180 A JP 61112180A JP 11218086 A JP11218086 A JP 11218086A JP H0622728 B2 JPH0622728 B2 JP H0622728B2
Authority
JP
Japan
Prior art keywords
memory alloy
thin plate
shape memory
rolling
descaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61112180A
Other languages
Japanese (ja)
Other versions
JPS62270203A (en
Inventor
文男 岩根
山本  明
博 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61112180A priority Critical patent/JPH0622728B2/en
Publication of JPS62270203A publication Critical patent/JPS62270203A/en
Publication of JPH0622728B2 publication Critical patent/JPH0622728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、形状記憶合金素材からの薄板を圧延する過
程で発生する酸化スケールを、当該薄板に複合変形を生
じさせることなく好適に除去し得るデスケーリング方法
に関するものである。
Description: TECHNICAL FIELD The present invention is capable of suitably removing oxide scale generated in the process of rolling a thin sheet of a shape memory alloy material without causing complex deformation of the thin sheet. It concerns a scaling method.

従来技術とその欠点 形状記憶合金を材質とする長尺の薄板(一般にリボン材
と称する)は、形状記憶合金の素材に冷間圧延を施すこ
とによって製造されるものであって、その板厚は約2mm
以下である。この形状記憶合金の薄板は種々の産業上の
分野に用いられるが、この薄板を冷間圧延により製造す
るに際して、次の問題点が指摘される。すなわち形状記
憶合金は、その特性として延性が小さく、冷間圧延によ
って著しく加工硬化して脆化する。このため形状記憶合
金素材に連続的な圧延を実施すると、その薄板に圧延割
れを生じて製品不良を来すので、圧下率20〜30%毎
に内部応力を除去するための中間焼き鈍しを施す必要が
ある。従って形状記憶合金の薄板を冷間圧延する工程で
は、中間焼き鈍しの回数が必然的に多くなる傾向があ
る。
Conventional technology and its drawbacks A long thin plate made of a shape memory alloy (generally called a ribbon material) is manufactured by cold rolling a material of a shape memory alloy, and its plate thickness is About 2 mm
It is the following. The shape memory alloy thin plate is used in various industrial fields, and the following problems are pointed out when the thin plate is manufactured by cold rolling. That is, the shape memory alloy has low ductility as a characteristic, and is significantly work-hardened and embrittled by cold rolling. For this reason, if continuous rolling is performed on the shape memory alloy material, rolling cracks will occur in the thin plate, resulting in product defects. Therefore, it is necessary to perform intermediate annealing for removing internal stress at every reduction rate of 20 to 30%. There is. Therefore, in the step of cold rolling a thin sheet of shape memory alloy, the number of times of intermediate annealing tends to increase inevitably.

この焼き鈍し時の炉内雰囲気として、水素成分を含有す
る還元性ガスを用いると、形状記憶合金は水素吸収して
著しく脆化する欠点を有する。このため一般的には、大
気中またはアルゴン等の不活性ガス雰囲気中で焼き鈍し
をすることになるが、形状記憶合金が高温度に晒される
と、素材表面に酸化スケールを発生し、従って該素材の
表面に光輝肌は得られなくなる。そこで酸素との接触を
遮断した真空焼き鈍しによれば、素材表面での酸化によ
るスケール発生は防止できるが、これはバッチ式の焼き
鈍しとなるため、1回当りの焼き鈍しに長時間を要して
生産効率が低下する。また中間焼き鈍しは多数反復され
るので、これに真空焼き鈍しを適用すると薄板製造コス
トが高騰する。
If a reducing gas containing a hydrogen component is used as the atmosphere in the furnace during this annealing, the shape memory alloy has a drawback that it absorbs hydrogen and becomes significantly brittle. Therefore, generally, annealing is performed in the atmosphere or in an inert gas atmosphere such as argon, but when the shape memory alloy is exposed to high temperature, oxide scale is generated on the surface of the material, and therefore the material is No bright skin can be obtained on the surface. Therefore, vacuum annealing that blocks contact with oxygen can prevent scale generation due to oxidation on the material surface, but since this is a batch type annealing, it takes a long time for each annealing to produce. Efficiency is reduced. Further, since the intermediate annealing is repeated many times, if vacuum annealing is applied to this, the thin plate manufacturing cost rises.

このため一般では、大気中あるいは不活性ガス雰囲気中
で焼き鈍しを行なった後に、形状記憶合金の表面に生成
した酸化スケールを別の工程で除去する方法を取らなけ
ればならない。しかし酸化スケールの除去手段として、
硫酸や塩酸等の酸液中に浸漬する酸洗法を用いると、酸
化スケールや金属成分が溶出するにつれて水素が発生
し、この水素が形状記憶合金素材に浸透して著しく脆化
し(酸洗い脆性)、以降の加工に耐え得なくなる欠点があ
る。従って酸化スケールを除去する手段としては、圧縮
空気と細い砂との混合噴気を吹き付けるサンドブラスト
や、砥石による研削等の機械的なデスケーリング法によ
らざるを得ないのが実情である。
Therefore, in general, it is necessary to take a method of removing the oxide scale formed on the surface of the shape memory alloy in a separate step after annealing in the air or in an inert gas atmosphere. However, as a means of removing oxide scale,
When the pickling method of immersing in an acid solution such as sulfuric acid or hydrochloric acid is used, hydrogen is generated as oxide scale and metal components elute, and this hydrogen penetrates into the shape memory alloy material and becomes extremely brittle (pickling brittleness ), There is a drawback that it cannot withstand the subsequent processing. Therefore, as a means for removing the oxide scale, the actual condition is to use a mechanical descaling method such as sandblasting in which a mixed air of compressed air and fine sand is blown, or grinding with a grindstone.

ところが焼き鈍しを実施した形状記憶合金は、内部応力
が除去される結果として著しく軟化し、このような焼き
鈍し組織に前述の機械的なデスケーリングを施すと、サ
ンドブラスト時の粒子衝撃や研削加工によって、形状記
憶合金素材の表層付近が局部的に変形する。更にこれら
の加工に伴う発熱により素材に局部的な温度上昇を生
じ、例えばNi-Ti系形状記憶合金では、マルテンサイ
ト変態温度28〜50℃と逆変態温度55〜85℃の上
下付近で加熱・冷却が繰返されることになる。この結
果、機械的デスケーリングを施した形状記憶合金の薄板
1には、第1図に示すように、横波2、縦波3および捻
じれ4等からなる複雑な複合変形が生じ、以降の圧延加
工が不可能となる問題を生じる。
However, the shape memory alloy that has been annealed is significantly softened as a result of the removal of internal stress, and when such annealed structure is subjected to the above-mentioned mechanical descaling, the shape is affected by particle impact and grinding during sandblasting. The vicinity of the surface layer of the memory alloy material is locally deformed. Furthermore, the heat generated by these workings causes a local temperature rise in the material. The cooling will be repeated. As a result, as shown in FIG. 1, the mechanically descaled shape memory alloy thin plate 1 undergoes a complex composite deformation including transverse waves 2, longitudinal waves 3, and twists 4, and the subsequent rolling. It causes a problem that processing becomes impossible.

発明の目的 この発明は、形状記憶合金の薄板を冷間圧延する際に中
間焼き鈍しを酸素共存状態の下で実施しなければなら
ず、その結果として酸化スケールが発生している現状に
鑑み提案されたものであって、形状記憶合金の素材に変
形をもたらすことなく、好適に機械的なデスケーリング
を施し得る新規な手段を提供することを目的とする。
OBJECT OF THE INVENTION The present invention has been proposed in view of the present situation in which intermediate annealing must be performed in the coexistence of oxygen when cold-rolling a thin sheet of shape memory alloy, and as a result, oxide scale is generated. It is an object of the present invention to provide a novel means capable of suitably performing mechanical descaling without causing deformation of the material of the shape memory alloy.

問題点を解決するための手段 前述した問題点を克服し所期の目的を好適に達成するた
め、本発明に係る形状記憶合金製薄板のデスケーリング
方法は、形状記憶合金の素材に冷間圧延と中間焼き鈍し
とを反復的に施して、所要厚みの形状記憶合金製薄板を
製造する薄板製造方法において、 前記中間焼き鈍し後の薄板に、圧下率5%以上の冷間調
質圧延を施して加工硬化させ、 次いでこの加工硬化した薄板の表面に、サンドブラスト
または研削による機械的なデスケーリングを施して酸化
スケールを除去するようにしたことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and preferably achieve an intended purpose, a method for descaling a shape-memory alloy thin plate according to the present invention comprises a cold-rolled shape-memory alloy material. In the thin plate manufacturing method of manufacturing a shape-memory alloy thin plate having a required thickness by repeatedly performing the intermediate annealing and the intermediate annealing, the thin plate after the intermediate annealing is subjected to cold temper rolling with a reduction rate of 5% or more and processed. The surface of the thin plate which has been hardened and then work hardened is subjected to mechanical descaling by sandblasting or grinding to remove oxide scale.

実施例 次に本発明に係る形状記憶合金製薄板のデスケーリング
方法につき、好適な実施例を挙げて説明する。この方法
は、焼き鈍しした形状記憶合金の素材に、例えば圧下率
5%以上の調質圧延(スキンパス)による冷間圧延を施し
て合金組織を加工硬化させ、この状態で機械的なデスケ
ーリングを施すことを内容とするものである。すなわち
形状記憶合金の素材を焼き鈍しすることにより、その素
材は前述した如く内部応力が除去されて軟らかくなる。
そこでこの素材に調質ロールによる適当な圧下を掛けて
若干の冷間圧延を施すと、金属結晶の滑りによる微細化
と、結晶内の転位の発生とにより説明付けられる硬度や
強度の増加現象(加工硬化)を呈する。このためサンドブ
ラストまたは砥石研削等による機械的なデスケーリング
を加工硬化後の形状記憶合金素材に施しても、これによ
り前述した複合的な変形を生ずることがなく、平坦な薄
板形状が確保されるものである。
Example Next, a descaling method for a shape memory alloy thin plate according to the present invention will be described with reference to preferred examples. In this method, an annealed shape memory alloy material is cold-rolled by, for example, temper rolling (skin pass) with a reduction rate of 5% or more to work-harden the alloy structure, and mechanical descaling is performed in this state. That is the content. That is, by annealing the material of the shape memory alloy, the material is softened by removing the internal stress as described above.
Therefore, when this material is subjected to an appropriate reduction by a tempering roll and subjected to a slight cold rolling, the increase in hardness and strength explained by the refinement due to the slip of the metal crystal and the occurrence of dislocation in the crystal ( Work hardening). Therefore, even if mechanical descaling such as sandblasting or grinding with a grindstone is applied to the shape-hardening alloy material after work hardening, the above-mentioned complex deformation does not occur, and a flat thin plate shape is secured. Is.

なおこの素材を更に冷間仕上圧延することによって、板
表面を光沢肌とすることができる。更に軟質性が必要な
場合には、最終の焼き鈍しのみバッチ式真空焼き鈍しを
行なえば、酸化スケールを全く生じない光輝肌の形状記
憶合金製薄板が得られる。
The plate surface can be made to have a glossy surface by further cold finishing rolling this material. When further softness is required, a batch-type vacuum annealing is performed only for the final annealing to obtain a shape-memory alloy thin plate having a bright skin with no oxide scale.

比較例 55.2%Ni(ニッケル)で残Ti(チタン)からなるNi-
Ti系形状記憶合金を材質とするφ10mm線材を、80
0℃で温間圧延して板厚2mm、板幅14mmに加工し、こ
の圧延平板を素材として5本用意した。この平板素材を
板厚1.8mmに冷間圧延した後、その表面を研削して酸
化スケールを完全に除去した。研削後の板厚は1.7mm
であった。この平板素材を更に冷間圧延して板厚1.5
mmとし、次いでアルゴンガス雰囲気中で700℃で1分
間加熱した後に水冷する焼き鈍しを実施した。この平板
素材の表面には、酸化スケールが発生していた。
Comparative Example 55.2% Ni (nickel) and balance Ti (titanium) Ni-
Φ10mm wire made of Ti-based shape memory alloy
Five pieces were prepared by warm rolling at 0 ° C. to form a sheet having a thickness of 2 mm and a sheet width of 14 mm. After cold rolling this flat plate material to a plate thickness of 1.8 mm, its surface was ground to completely remove oxide scale. Plate thickness after grinding is 1.7 mm
Met. This flat plate material is further cold rolled to a plate thickness of 1.5.
mm, and then annealed by heating in an argon gas atmosphere at 700 ° C. for 1 minute and then water cooling. Oxide scale was generated on the surface of this flat plate material.

この酸化スケールを生じた平板素材に、圧下率0〜10
%の範囲で冷間圧延を施した後、サンドブラストあるい
は砥石研削によって表面の酸化スケールを除去し、平板
形状としての平坦度を測定した。すなわち第1図で、長
さL=20mm当りの最大高さHmmを測定した結果を、以
下の表1に示す。
The flat plate material that has generated this oxide scale has a reduction ratio of 0 to 10
After cold rolling in the range of%, the oxide scale on the surface was removed by sandblasting or grinding with a grindstone, and the flatness as a flat plate shape was measured. That is, the results of measuring the maximum height Hmm per length L = 20 mm in FIG. 1 are shown in Table 1 below.

このように焼き鈍しを行なったままの状態で機械的デス
ケーリングを施した薄板は、その平坦度が著しく劣っ
て、次の冷間圧延工程で圧延ロールに噛込ませることは
到底不可能である。しかるに圧下率5%以上で冷間圧延
した後に、機械的デスケーリングを実施した薄板は平坦
度が良好で、そのままの形状で次の冷間圧延を行なうこ
とができる。圧下率は、最低5%以下でも可能と予想さ
れるが、実用的には厚み差0.05mm以下の圧下は調整
が困難で、一般的に冷間圧延の板厚が2mm以下であるこ
とを考えると、最低圧下率は5%以上が実用的である。
The thin plate that has been mechanically descaled while being annealed in this way is extremely inferior in flatness, and cannot be caught in the rolling roll in the next cold rolling step. However, the thin plate subjected to mechanical descaling after cold rolling at a rolling reduction of 5% or more has good flatness, and the next cold rolling can be performed with the shape as it is. The reduction rate is expected to be 5% or less, but practically it is difficult to adjust the reduction with a thickness difference of 0.05 mm or less, and it is generally considered that the cold-rolled sheet thickness is 2 mm or less. Considering this, it is practical that the minimum rolling reduction is 5% or more.

発明の効果 このように本発明に係るデスケーリング方法によれば、
形状記憶合金素材の表面に酸化スケールを生ずる状態で
の中間焼き鈍しを許容し、この中間焼き鈍し後の薄板
に、圧下率5%以上の冷間調質圧延を施して加工硬化さ
せ、次いでこの加工硬化した薄板の表面に機械的なデス
ケーリングを施すようにしたものである。すなわち形状
記憶合金製の薄板を加工硬化させることにより、これに
機械的なデスケーリングを施しても、その際の局部的な
変形を防ぐことができ、従ってマルテンサイト変態温度
および逆変態温度の上下付近で加熱冷却(デスケーリン
グ発熱によって)されても複合変形を生じず、平坦なま
まの薄板を得ることができるものである。また本方法で
は、連続的な焼き鈍しを可能とするので、バッチ焼き鈍
しに比較して著しく形状記憶合金製薄板の製造効率を向
上させることができる。
As described above, according to the descaling method of the present invention,
Allowing intermediate annealing in a state where oxide scale is generated on the surface of the shape memory alloy material, and subjecting the thin plate after this intermediate annealing to cold temper rolling with a reduction rate of 5% or more to work harden it and then work harden it. The surface of the thin plate is subjected to mechanical descaling. That is, even if mechanical descaling is applied to a thin plate made of a shape memory alloy by work hardening, local deformation at that time can be prevented, so that the temperature above and below the martensitic transformation temperature and the reverse transformation temperature can be prevented. Even if heated and cooled (due to descaling heat generation) in the vicinity, composite deformation does not occur, and a thin plate that remains flat can be obtained. Further, since the present method enables continuous annealing, it is possible to significantly improve the production efficiency of the shape memory alloy thin plate as compared with batch annealing.

【図面の簡単な説明】[Brief description of drawings]

第1図は、中間焼き鈍しを施しただけの形状記憶合金製
薄板にデスケーリングを実施した際に、複合変形を素材
に生じた状態を概略的に示す説明図である。
FIG. 1 is an explanatory view schematically showing a state in which a composite deformation has occurred in a material when descaling is performed on a shape memory alloy thin plate that has only been subjected to intermediate annealing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】形状記憶合金の素材に冷間圧延と中間焼き
鈍しとを反復的に施して、所要厚みの形状記憶合金製薄
板を製造する薄板製造方法において、 前記中間焼き鈍し後の薄板に、圧下率5%以上の冷間調
質圧延を施して加工硬化させ、 次いでこの加工硬化した薄板の表面に、サンドブラスト
または研削による機械的なデスケーリングを施して酸化
スケールを除去するようにしたことを特徴とする形状記
憶合金製薄板のデスケーリング方法。
1. A thin plate manufacturing method for manufacturing a shape memory alloy thin plate having a required thickness by repeatedly subjecting a shape memory alloy material to cold rolling and intermediate annealing, wherein the thin plate after the intermediate annealing is rolled down. It is characterized in that it is subjected to cold temper rolling at a rate of 5% or more to work-harden, and then the surface of this work-hardened thin plate is subjected to mechanical descaling by sandblasting or grinding to remove oxide scale. Method for descaling thin sheet made of shape memory alloy.
JP61112180A 1986-05-16 1986-05-16 Descaling method for shape memory alloy thin plate Expired - Lifetime JPH0622728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112180A JPH0622728B2 (en) 1986-05-16 1986-05-16 Descaling method for shape memory alloy thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112180A JPH0622728B2 (en) 1986-05-16 1986-05-16 Descaling method for shape memory alloy thin plate

Publications (2)

Publication Number Publication Date
JPS62270203A JPS62270203A (en) 1987-11-24
JPH0622728B2 true JPH0622728B2 (en) 1994-03-30

Family

ID=14580253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112180A Expired - Lifetime JPH0622728B2 (en) 1986-05-16 1986-05-16 Descaling method for shape memory alloy thin plate

Country Status (1)

Country Link
JP (1) JPH0622728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026757B4 (en) * 2010-07-09 2012-07-05 Andritz Sundwig Gmbh Method and production line for producing a cold-rolled steel flat product from a stainless steel
DE102018119296A1 (en) * 2018-08-08 2020-02-13 Thyssenkrupp Ag Inline stretching of shape memory alloys, especially flat steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026648A (en) * 1983-07-21 1985-02-09 Furukawa Electric Co Ltd:The Manufacture of shape memory ni-ti alloy plate

Also Published As

Publication number Publication date
JPS62270203A (en) 1987-11-24

Similar Documents

Publication Publication Date Title
CN114653751B (en) Preparation method of duplex stainless steel cold-rolled ribbed steel bar
JP4813123B2 (en) Method for producing austenitic stainless steel sheet with excellent surface quality
CN112893468A (en) Method for improving strength of Fe-Mn-Cr-Ni high-entropy alloy through corrugated rolling and plain rolling process
JPH0622728B2 (en) Descaling method for shape memory alloy thin plate
JPS60248889A (en) Manufacture of austenitic stainless steel sheet
USRE28494E (en) Method of processing stainless steel strips or sheets
CN110878406A (en) Processing method of strengthened zirconium alloy strip and zirconium alloy strip
JPH0694575B2 (en) Method for producing ferritic stainless steel sheet having excellent surface properties and press formability
JPS61163254A (en) Production of strip made of zirconium alloy
JP3046901B2 (en) Pretreatment for pickling electrical steel sheets
JPH0657388A (en) Production of cold-rolled sheet of titanium or titanium alloy small in surface flaw
JP3133870B2 (en) Method for producing austenitic stainless steel sheet having good surface gloss
JPS61199084A (en) Manufacture of cr stainless steel sheet
JPH07228958A (en) Production of pure titanium sheet for industry
JPS60103131A (en) Manufacture of medium plate and thick plate of low thermal expansion fe-ni alloy
JP2754225B2 (en) Method for producing austenitic stainless steel with poor etchability
JP2953331B2 (en) Method for producing B-containing austenitic stainless steel sheet
JPH07216522A (en) Production of titanium sheet excellent in surface characteristic
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production
JP3535027B2 (en) Manufacturing method of titanium alloy sheet material
JPS59215450A (en) Hot worked plate of ti-base material and its manufacture
JPS59163003A (en) Manufacture of stainless steel strip excellent in surface property
JPH06293947A (en) Production of titanium hot rolled and annealed sheet and titanium cold rolled sheet
CN117443935A (en) Production method of titanium plate
JPH11172337A (en) Manufacture of fe-ni alloy sheet