USRE28494E - Method of processing stainless steel strips or sheets - Google Patents

Method of processing stainless steel strips or sheets Download PDF

Info

Publication number
USRE28494E
USRE28494E US44745774A USRE28494E US RE28494 E USRE28494 E US RE28494E US 44745774 A US44745774 A US 44745774A US RE28494 E USRE28494 E US RE28494E
Authority
US
United States
Prior art keywords
stainless steel
hot
cold
steel
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to US44745774 priority Critical patent/USRE28494E/en
Application granted granted Critical
Publication of USRE28494E publication Critical patent/USRE28494E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • stainless steel sheet and strip is produced by first thoroughly surface conditioning a stainless slab and then heating the slab to a suitable hot rolling temperature usually about 2.000F. but may vary somewhat with different grades.
  • the stainless slab is then hot rolled, usually to a conventional hot band gauge of about 0.10-inch. and sometimes annealed.
  • a treatment which usually involves pickling the steel in either an acid or caustic solution and for some grades involves a scale-breaking procedure prior to the pickle such as shot blasting.
  • Most typical pickling operations provide a continuous treatment first in hot hydrochloric or sulphuric acid and then in a hydrofluoric-nitric acid mixture.
  • the steel may be annealed and pickled a second time, or the defects removed in a continuous coil grinding operation.
  • the stainless steel hot band is cold rolled to final gauge, typically about 0.050-inch. and then again continuous annealed, descaled and, if necessary, surface conditioned. Due to the low emissivity of conventional cold rolled stainless steel surface, the final anneal requires a relatively long holding time in order to completely recrystallize the sheet. Hence, slow line speeds are required when annealing cold rolled stainless steel.
  • An object of this invention is to provide a new process for producing stainless steel sheet and strip which utilizes fewer processing steps and faster final annealing and pickling line speeds and therefore results in a faster and less costly operation.
  • the process is particularly applicable to ferritic grades of stainless steel for industrial applications where bright surface finishes are not required.
  • Another object of this invention is to provide a process for producing stainless steel sheet and strip which requires substantially'less time on annealing and pickling facilities thereby making such facilities more readily available for processing additional steels.
  • a further object of this invention is to provide a less costly process for producing stainless steel sheet and strip for industrial and automotive applications which will therefore reduce the price of such steels and enhance their utilization.
  • the process of this invention is particularly applicable to the low chromium ferritic grades of stainless steel for applications not having critical surface finish requirements, specifically applications such as automobile mufflers, heat exchangers industrial piping and other such non-decorative uses.
  • inventive process will make available lower-cost ferritic stainless steels as are particularly desired by the automobile industry to manufacture low-cost engine mufflers suitable to meet future anti-pollution requirements.
  • the process is not limited to ferritic stainless steels, it is for all practical purposes limited to production of stainless steels not having critical surface requirements. That is to say, the process can be used to produce austenitic or ferritic stainless steel grades with chromium contents up to about 19 percent with equal or comparable cost savings, but flawless, bright surface qualities cannot be expected for any grade.
  • any ferritic or austenitic stainless steel containing not more than 19 percent chromium is completely processed to cold rolled sheet or strip substantially in accordance with the prior art practices, but with one notable exception, namely, the hot rolled steel is not descaled prior to cold rolling, but rather the hot band is cold rolled and subsequently annealed with the hot rolling mill scale still on the stainless steel surface. Accordingly, the inventive process first requires that a suitable stainless slab be hot rolled to conventional hot band gauges, i.e. about 0.l0-inch. cooled and then cold rolled to final gauge without descaling after hot rolling.
  • the stainless steel hot band without prior descaling leads to a surprising additional advantage.
  • the anneal following cold rolling may be effected at line speeds 5O percent faster than possible by prior art processes.
  • the steels cold reduced surface will consist of a dull, thin and surprisingly uniform oxide layer which will more readily and easily absorb heat during the final annealing operation. Because of this substantially increased emissivity, the cold rolled steel can be subsequently annealed with shorter holding times, i.e. up to 50 percent faster linespeeds.
  • Those skilled in the art will recognize that it is of course not possible to give actual line speed figures because the maximum line speed necessary to effect substantially complete recrystallization is dependent upon many variable factors.
  • the maximum line speed is dependent not only 'upon furnace length, but furnace geometry and efficiency, and upon steel grade, sheet thickness and even sheet width in some cases. Therefore, the maximum line speed will vary with different grades of steel, different sheet dimensions and different annealing furnaces. Nevertheless. whatever the maximum line speed may be at given conditions with the prior art practice, that line speed can be increased up to 50 percent when practicing this invention under the same conditions. Accordingly, the inventive process not only provides for elimination of the descaling step prior to cold rolling and the economies resulting therefrom, but further substantially reduces the annealing time after cold rolling to allow up to 50 percent faster line speeds during the anneal and pickling operation.
  • the cold rolled stainless steel is annealed with a complete recrystallization, it is then pickled in accordance with conventional procedures. This usually involves continuously passing the steel from the annealing furnace into an acid or caustic pickling solution.

Abstract

A process for producing stainless steel sheet and strip by hot rolling a stainless steel slab to conventional hot band gauge and then cold rolling the hot rolled steel without removing the mill scale formed during hot rolling and thereafter continuous annealing and pickling the cold rolled steel at an annealing temperature in excess of 1,700*F and at line speeds up to 50 percent faster than previously possible.

Description

United States Patent 1191 1111 E Re. 28,494 Rowe 1 1 Reissued July 29, 1975 {54] METHOD OF PROCESSING STAINLESS 2.808.353 10/1957 Leffingwcll ct ul 148/12 STEEL STRIPS OR SHEETS 2.851.384 9/1958 Wuxwcilcr i r 148/12 3.490.956 1/1970 Wilton i. 148/12 1 lnvemori wllson h Vulpurmsot 3.650.848 3/1972 Schneider et al.... 148/12 3.684.589 8/1972 Brickner et a1. 148/12 [73] Amgnee' i 3.694.192 9/1972 Brickncr et a1. 142/1:
P1ttsburgh. Pa. I22] Filed: y 6, 974 OTHER PUBLlCATlONS ASM Metals Handbook. 8th Edition. Vol. 4. 1969. p. {21] Appl. No.1 447.457
Related U.S. Patent Documents P E w S Reissue of: rimary .rammertallard Patent No: 3,776,784 Armrney gen! or Firm Forest (I Sexton Issued: Dec. 4, 1973 Appl. No.: 271.881 [571 ABSTRACT Filed; J l 14, 1972 A process for producing stainless steel sheet and strip by hot rolling a stainless steel slab to conventional hot 152] U.S. Cl. 148/12 EA band gauge and then cold rolling the hot rolled steel [51] Int. Cl. C21D 9/46 without removing the mill scale formed during hot' [581 Field of Search 148/12 EA rolling and thereafter continuous annealing and pickling the cold rolled steel at an annealing temperature [56] Reference Cited in excess of 1,700F and at line speeds up to 50 per UNITED STATES PATENTS cent fastec than previously possible.
2.772.992 12/1956 Kicfcr ct ul l4- l-h2 1 Claim. No Drawings METHOD OF PROCESSlNG STAINLESS STEEL STRIPS OR SHEETS Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
BACKGROUND OF THE lNVENTlON Although most commercial grades of stainless steel sheet and strip are rolled on the same equipment used for producing carbon steel sheet and strip, the procedures used are somewhat different because of the inherent characteristics of stainless steel. That is, the processing of stainless steel slabs to sheet and strip usually requires much closer control of hot rolling temperatures, slower cold rolling strip speeds and more extensive surface conditioning. Processing of stainless steel sheet and strip therefore generally requires a more time consuming operation adding to the operational costs and tying-up annealing and pickling facilities. These factors alone add significantly to the cost of the stainless steel sheet and strip.
According to present commercial practices, stainless steel sheet and strip is produced by first thoroughly surface conditioning a stainless slab and then heating the slab to a suitable hot rolling temperature usually about 2.000F. but may vary somewhat with different grades. The stainless slab is then hot rolled, usually to a conventional hot band gauge of about 0.10-inch. and sometimes annealed. Prior to cold rolling, the hot rolled and annealed steel must be thoroughly descaled by a treatment which usually involves pickling the steel in either an acid or caustic solution and for some grades involves a scale-breaking procedure prior to the pickle such as shot blasting. Most typical pickling operations provide a continuous treatment first in hot hydrochloric or sulphuric acid and then in a hydrofluoric-nitric acid mixture. if, after the first annealing and pickling operation some of the surface defects produced by hot rolling are still present, the steel may be annealed and pickled a second time, or the defects removed in a continuous coil grinding operation. After descaling, the stainless steel hot band is cold rolled to final gauge, typically about 0.050-inch. and then again continuous annealed, descaled and, if necessary, surface conditioned. Due to the low emissivity of conventional cold rolled stainless steel surface, the final anneal requires a relatively long holding time in order to completely recrystallize the sheet. Hence, slow line speeds are required when annealing cold rolled stainless steel.
Since the surface appearance after annealing and pickling is a dull finish. some stainless steels, depending upon end application, will need further processing to effect abright shiny finish. This typically involves temper rolling the steel and may further include a mechanical polishing.
SUMMARY OF THE INVENTION An object of this invention is to provide a new process for producing stainless steel sheet and strip which utilizes fewer processing steps and faster final annealing and pickling line speeds and therefore results in a faster and less costly operation. The process is particularly applicable to ferritic grades of stainless steel for industrial applications where bright surface finishes are not required.
Another object of this invention is to provide a process for producing stainless steel sheet and strip which requires substantially'less time on annealing and pickling facilities thereby making such facilities more readily available for processing additional steels.
A further object of this invention is to provide a less costly process for producing stainless steel sheet and strip for industrial and automotive applications which will therefore reduce the price of such steels and enhance their utilization.
DESCRIPTION OF THE PREFERRED EMBODIMENT As noted above, the process of this invention is particularly applicable to the low chromium ferritic grades of stainless steel for applications not having critical surface finish requirements, specifically applications such as automobile mufflers, heat exchangers industrial piping and other such non-decorative uses. Of particular significance is the fact that the inventive process will make available lower-cost ferritic stainless steels as are particularly desired by the automobile industry to manufacture low-cost engine mufflers suitable to meet future anti-pollution requirements. Although the process is not limited to ferritic stainless steels, it is for all practical purposes limited to production of stainless steels not having critical surface requirements. That is to say, the process can be used to produce austenitic or ferritic stainless steel grades with chromium contents up to about 19 percent with equal or comparable cost savings, but flawless, bright surface qualities cannot be expected for any grade.
According to one embodiment of this invention, any ferritic or austenitic stainless steel containing not more than 19 percent chromium, is completely processed to cold rolled sheet or strip substantially in accordance with the prior art practices, but with one notable exception, namely, the hot rolled steel is not descaled prior to cold rolling, but rather the hot band is cold rolled and subsequently annealed with the hot rolling mill scale still on the stainless steel surface. Accordingly, the inventive process first requires that a suitable stainless slab be hot rolled to conventional hot band gauges, i.e. about 0.l0-inch. cooled and then cold rolled to final gauge without descaling after hot rolling.
Elimination of the descaling operation following hot rolling leads to the obvious advantages of reducing processing time and costs naturally resulting from elimination of one processing step, and rendering the descaling equipment available for processing other materials. Since the steel is subsequently cold rolled with mill scale on the surface thereof, the final surface quality of the steel is not sufficient to meet high standards where appearance is critical. Nevertheless, if the surface appearance is seriously defective and if desired, can usually be improved to more exacting standards by in-line polishing equipment. 0f more significance however is the fact that cold rolling and subsequently annealing the steel without descaling the surface does not in any way adversely affect the steels physical or chemical properties.
In addition to the above advantages cold rolling the stainless steel hot band without prior descaling leads to a surprising additional advantage. in that the anneal following cold rolling may be effected at line speeds 5O percent faster than possible by prior art processes. Specifically, the steels cold reduced surface will consist of a dull, thin and surprisingly uniform oxide layer which will more readily and easily absorb heat during the final annealing operation. Because of this substantially increased emissivity, the cold rolled steel can be subsequently annealed with shorter holding times, i.e. up to 50 percent faster linespeeds. Those skilled in the art will recognize that it is of course not possible to give actual line speed figures because the maximum line speed necessary to effect substantially complete recrystallization is dependent upon many variable factors. For ex ample, the maximum line speed is dependent not only 'upon furnace length, but furnace geometry and efficiency, and upon steel grade, sheet thickness and even sheet width in some cases. Therefore, the maximum line speed will vary with different grades of steel, different sheet dimensions and different annealing furnaces. Nevertheless. whatever the maximum line speed may be at given conditions with the prior art practice, that line speed can be increased up to 50 percent when practicing this invention under the same conditions. Accordingly, the inventive process not only provides for elimination of the descaling step prior to cold rolling and the economies resulting therefrom, but further substantially reduces the annealing time after cold rolling to allow up to 50 percent faster line speeds during the anneal and pickling operation.
After the cold rolled stainless steel is annealed with a complete recrystallization, it is then pickled in accordance with conventional procedures. This usually involves continuously passing the steel from the annealing furnace into an acid or caustic pickling solution. In order to more effectively remove the scale, I prefer to anneal the sheet at temperatures between l,800 and l.850F. Such slightly higher annealing temperatures will help to loosen the scale and make it more readily removed during the subsequent pickling.
By using the above process, I have been able to shorten production time for stainless steel sheet coils as much as two weeks. This could help significantly in reducing the price of such steels and provide quicker delivery times to customers.
The following example will serve to illustrate in more detail the process of this invention.
EXAMPLE A Type 409 stainless steel slab weighing 20.520 pounds and measuring 7 inches thick and 49 inches wide was analyzed to consist of l l.24% Cr. 0.05 C. 0.64% Ti. 0.09% Al. and 0.26% Ni. This slab was hot rolled to 0.085-inch at a starting temperature of 2.250F and coiling lmperature of l.250F. After cooling the hotFJled steel was cold rolled without descaling to 0.050-inch on a 4-high cold reduction mill. The cold rolled strip was then continuously annealed in a 90-foot long annealing furnace. at a temperature of l.850F and at a line speed of feet per minute. The normal line speed for this product processed by prior art practices is 55 feet per minute. Thereafter the strip was passed through a pickling solution of sulfuric acid and then a mixture of nitric and hydrofluoric acid where the cold rolled scale was readily removed. When finished, the stainless strip exhibited the following properties:
Rockwell Hardness B Scale: 73 at one end of the coil; 73 on the other.
Yield Strength (T): 43.275 psi at one end: 43.665
psi 0n the other.
Tensile Strength (T): 69.040 psi at one end; 69.200
psi on the other.
% Elongation in 2 (T): 31.5 at one end: 31.5 on the other end of the coil.
I claim:
1. In the process for producing stainless steel sheet and strip containing not more than l9% chromium wherein the steel is hot rolled to hot band gauge of about 0. 10-inch. cooled. descaled. then cold rolled to final gauge and continuous annealed [at a temperature offrom about 1700 to about l850F at a line speed sufficient] to effect substantially complete recrystallization and finally descaled; the improvement comprising eliminating the descaling step after hot rolling so that the steel is cold rolled and annealed with mill scale on the surface thereof thereby permitting a line speed up to 50% faster during said continuous anneal following the cold roll.
The process of claim 1 in which said annealing temperature is within the range I800 to l850F.]

Claims (1)

1. IN THE PROCESS FOR PRODUCING STAINLESS STEEL SHEET AND STRIP CONTAINING NOT MORE THAN 19% CHROMIUM WHEREIN THE STEEL IS HOT ROLLED TO HOT BAND GAUGE OF ABOUT 0.10-INCH, COOLED, DESCALED, THEN COLD ROLLED TO FINAL GAUGE AND CONTINOUS ANNEALED (AT A TEMPERATURE OF FROM ABOUT 1700 TO ABOUT 1850*F AT A LINE SPEED SUFFICIENT) TO EFFECT SUBSTANTIALLY COMPLETE RECRYSTALLIZATION AND FINALLY DESCALED, THE IMPROVEMENT COMPRISING ELIMINATING THE DESCALING STEP AFTER HOT ROLLING SO THAT THE STEEL IS COLD ROLLED AND ANNEALED WITH MILL SCALE ON THE SURFACE THEREOF THEREBY PERMITTING A LINE SPEED UP TO 50% FASTER DURING SAID CONTINOUS ANNEAL FOLLOWING THE COLD ROLL.
US44745774 1972-07-14 1974-05-06 Method of processing stainless steel strips or sheets Expired USRE28494E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US44745774 USRE28494E (en) 1972-07-14 1974-05-06 Method of processing stainless steel strips or sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27188172A 1972-07-14 1972-07-14
US44745774 USRE28494E (en) 1972-07-14 1974-05-06 Method of processing stainless steel strips or sheets

Publications (1)

Publication Number Publication Date
USRE28494E true USRE28494E (en) 1975-07-29

Family

ID=26955162

Family Applications (1)

Application Number Title Priority Date Filing Date
US44745774 Expired USRE28494E (en) 1972-07-14 1974-05-06 Method of processing stainless steel strips or sheets

Country Status (1)

Country Link
US (1) USRE28494E (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402769A (en) 1982-12-10 1983-09-06 Allegheny Ludlum Steel Corporation Method for improving the ductility of autogenous welds in unstabilized, ferritic stainless steel coils
US4533391A (en) 1983-11-07 1985-08-06 Allegheny Ludlum Steel Corporation Work-hardenable substantially austenitic stainless steel and method
US5412966A (en) * 1993-07-16 1995-05-09 Worldclass Industries, Inc. Push-pull pickle line
US5606787A (en) * 1994-01-11 1997-03-04 J & L Specialty Steel, Inc. Continuous method for producing final gauge stainless steel product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772992A (en) * 1953-07-13 1956-12-04 Allegheny Ludlum Steel Process of producing stainless steel
US2808353A (en) * 1953-09-22 1957-10-01 Sharon Steel Corp Method of making deep drawing stainless steel
US2851384A (en) * 1953-07-03 1958-09-09 Armco Steel Corp Process of diminishing of ridging in 17-chrome stainless steel
US3490956A (en) * 1965-06-03 1970-01-20 Allegheny Ludlum Steel Method of producing ferritic stainless steel
US3650848A (en) * 1969-06-18 1972-03-21 Republic Steel Corp Production of ferritic stainless steel with improved drawing properties
US3684589A (en) * 1970-10-02 1972-08-15 United States Steel Corp Method for producing a minimum-ridging type 430 stainless steel
US3694192A (en) * 1970-08-11 1972-09-26 United States Steel Corp Ferritic stainless steels with improved cold-heading characteristics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851384A (en) * 1953-07-03 1958-09-09 Armco Steel Corp Process of diminishing of ridging in 17-chrome stainless steel
US2772992A (en) * 1953-07-13 1956-12-04 Allegheny Ludlum Steel Process of producing stainless steel
US2808353A (en) * 1953-09-22 1957-10-01 Sharon Steel Corp Method of making deep drawing stainless steel
US3490956A (en) * 1965-06-03 1970-01-20 Allegheny Ludlum Steel Method of producing ferritic stainless steel
US3650848A (en) * 1969-06-18 1972-03-21 Republic Steel Corp Production of ferritic stainless steel with improved drawing properties
US3694192A (en) * 1970-08-11 1972-09-26 United States Steel Corp Ferritic stainless steels with improved cold-heading characteristics
US3684589A (en) * 1970-10-02 1972-08-15 United States Steel Corp Method for producing a minimum-ridging type 430 stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402769A (en) 1982-12-10 1983-09-06 Allegheny Ludlum Steel Corporation Method for improving the ductility of autogenous welds in unstabilized, ferritic stainless steel coils
US4533391A (en) 1983-11-07 1985-08-06 Allegheny Ludlum Steel Corporation Work-hardenable substantially austenitic stainless steel and method
US5412966A (en) * 1993-07-16 1995-05-09 Worldclass Industries, Inc. Push-pull pickle line
US5606787A (en) * 1994-01-11 1997-03-04 J & L Specialty Steel, Inc. Continuous method for producing final gauge stainless steel product

Similar Documents

Publication Publication Date Title
US3776784A (en) Method of processing stainless steel strips or sheets
US3139358A (en) Method of preventing ribbing and roping
US2808353A (en) Method of making deep drawing stainless steel
US2340461A (en) Process of producing stainless steel sheet or strip stock
GB2088257A (en) Making rod or wire
JP2000144258A (en) Production of titanium-containing ferritic stainless steel sheet excellent in ridging resistance
US3490956A (en) Method of producing ferritic stainless steel
US3067072A (en) Method of annealing type 430 stainless steel
JPH0730404B2 (en) New production method of austenitic stainless steel sheet with excellent surface characteristics and materials
JPH09111354A (en) Production of ferritic stainless steel sheet
USRE28494E (en) Method of processing stainless steel strips or sheets
US2606848A (en) Method of making sheet steel
US3287237A (en) Surface treatment of bright annealed strip
GB1592274A (en) Method for producing continuously cast steel slabs
US3513036A (en) Process for producing coiled,hotrolled,pickled steel strip
CN111636031A (en) Ultra-low carbon bake-hardening steel and production method thereof
US3591427A (en) Method of processing steel sheet or strip
JPH06285508A (en) Manufacture of stainless cold-rolled steel strip
JPS6119688B2 (en)
JPS60255921A (en) Manufacture of hot rolled austenitic stainless steel strip
US1536663A (en) Method of manufacturing steel sheets
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JPH07173537A (en) Production of austenitic stainless hot rolled steel strip
CN116748293A (en) Rolling method of 2507 duplex stainless steel
JP2001121205A (en) Scale removing method of steel