JPH06226740A - Production of fiber composite - Google Patents

Production of fiber composite

Info

Publication number
JPH06226740A
JPH06226740A JP5016260A JP1626093A JPH06226740A JP H06226740 A JPH06226740 A JP H06226740A JP 5016260 A JP5016260 A JP 5016260A JP 1626093 A JP1626093 A JP 1626093A JP H06226740 A JPH06226740 A JP H06226740A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber composite
film
weight
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP5016260A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamaji
克彦 山路
Michiaki Sasayama
道章 笹山
Akira Shibata
亮 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5016260A priority Critical patent/JPH06226740A/en
Publication of JPH06226740A publication Critical patent/JPH06226740A/en
Ceased legal-status Critical Current

Links

Abstract

PURPOSE:To regenerate and reutilize the unnecessary material of a fiber composite and to obtain strength almost the same as that of the fiber composite before regeneration. CONSTITUTION:The ground matter A obtained by grinding a regenerable fiber composite integrally equipped with a core material layer consisting of a glass fiber and a thermoplastic resin and containing 20-60wt.% of a glass fiber, a thermoplastic resin foam layer and a thermoplastic resin skin layer is molded into a regenerated film and this regenerated film is laminated to the single surface of a glass fiber based matlike article. This laminate is compressed under heating and pressure to melt the thermoplastic resin in the regenerated film to be infiltrated in the matlike article and, after pressure is released, the laminate is sucked in its thickness direction under vacuum to obtain a core material B and the core material B is heated. A thermoplastic resin foam having a thermoplastic resin skin is laminated to the core material and the whole is integrally pressed. All of the thermoplastic resins are the same or the same type and the ratio of the ground matter A to the core material B is set to 10-40wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用内装材や建築
用内装材に用いられる繊維複合体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber composite used for automobile interior materials and architectural interior materials.

【0002】[0002]

【従来の技術】一般に、自動車用天井芯材には、軽量
で、剛性、耐熱性、吸音性、成形性等の性能に優れた材
料が要求されるので、繊維複合体が適している。この繊
維複合体の製造方法として、無機繊維を主体とするマッ
ト状物の両面に熱可塑性樹脂フイルムを積層した積層物
の両面に前記熱可塑性樹脂が溶融状態では融着するが非
溶融状態では融着しない板状体を積層し、前記熱可塑性
樹脂の溶融温度以上の温度に加熱して熱可塑性樹脂を溶
融せしめた状態で加圧圧着した後解圧し、含浸樹脂が溶
融状態にあるうちに両板状体を拡開することにより積層
物を厚さ方向に引っぱって膨らませた後冷却し、両板状
体を積層物から剥離除去して繊維複合体を得る方法が知
られている(特開昭64−77664号公報参照)。
2. Description of the Related Art Generally, a fiber composite is suitable for a ceiling core material for an automobile, because a material which is lightweight and has excellent properties such as rigidity, heat resistance, sound absorption and moldability is required. As a method for producing this fiber composite, the thermoplastic resin is fused in a molten state on both sides of a laminate in which a thermoplastic resin film is laminated on both sides of a mat-like material mainly composed of inorganic fibers, but melted in a non-melted state. Laminate the plate-like bodies that do not adhere to each other, pressurize under pressure in a state where the thermoplastic resin is melted by heating to a temperature equal to or higher than the melting temperature of the thermoplastic resin, decompress the A method is known in which the laminate is pulled in the thickness direction to inflate the laminate by expanding the laminate, and then cooled, and both laminates are peeled off from the laminate to obtain a fiber composite (Japanese Patent Laid-Open No. 2004-242242). (See Japanese Laid-Open Patent Publication No. 64-77664).

【0003】[0003]

【発明が解決しようとする課題】自動車用内装材や建築
用内装材に使用せられる上記繊維複合体には、成形時の
トリミングによる除去部分、繊維複合体製造時の耳カッ
ト部分等の不要部分が多数生じるし、もちろん廃棄物も
存在する。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention In the above-mentioned fiber composite used for interior materials for automobiles and interior materials for construction, unnecessary portions such as a removed portion by trimming at the time of molding and an ear cut portion at the time of producing the fiber composite are provided. There are many wastes, and of course, there are wastes.

【0004】本発明の目的は、上記繊維複合体の不要物
の再生利用により、再生前の繊維複合体と強度において
遜色のない繊維複合体の製造方法を提供することにあ
る。
It is an object of the present invention to provide a method for producing a fiber composite which is comparable in strength to the fiber composite before being recycled by recycling the waste material of the fiber composite.

【0005】[0005]

【課題を解決するための手段】請求項1の発明による繊
維複合体の製造方法は、無機繊維と熱可塑性樹脂とから
なり無機繊維含有率が20〜60重量%である芯材層、
熱可塑性樹脂発泡体層及び熱可塑性樹脂表皮層を一体的
に備えている再生用繊維複合体を粉砕して得られた粉砕
物(A)をフィルムに成形して再生フィルムを得る工程
と、得られた再生フィルムを無機繊維を主体とするマッ
ト状物の両面のうち少なくとも片面に積層する工程と、
この積層物を加熱加圧圧縮して再生フィルム中の熱可塑
性樹脂を溶融してこれをマット状物に含浸する工程と、
その後解圧し、含浸樹脂が溶融状態にあるうちに積層物
を厚さ方向に引っぱって膨らませ、芯材(B)を得る工
程と、得られた芯材(B)を加熱し、これに、熱可塑性
樹脂発泡体に熱可塑性樹脂表皮が積層されてなる積層体
の該発泡体側を積層して両者を加圧一体化する工程とを
含み、かつ上記すべての熱可塑性樹脂が同一または同系
であり、芯材(B)に対する粉砕物(A)の割合が10
〜40重量%であることを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for producing a fiber composite, which comprises a core material layer comprising inorganic fibers and a thermoplastic resin and having an inorganic fiber content of 20 to 60% by weight.
A step of molding a crushed product (A) obtained by crushing a fiber composite material for recycling integrally provided with a thermoplastic resin foam layer and a thermoplastic resin skin layer into a film to obtain a recycled film; A step of laminating the regenerated film on at least one surface of both surfaces of the mat-like material mainly composed of inorganic fibers,
A step of heating and compressing this laminate to melt the thermoplastic resin in the recycled film and impregnating it with a mat-like material;
After that, the pressure is released, and while the impregnated resin is in a molten state, the laminate is pulled in the thickness direction to inflate it to obtain a core material (B), and the obtained core material (B) is heated, A step of laminating the foam side of a laminate formed by laminating a thermoplastic resin skin on a plastic resin foam and pressurizing and integrating the both, and all the thermoplastic resins are the same or similar, The ratio of the ground material (A) to the core material (B) is 10
It is characterized in that it is -40% by weight.

【0006】請求項2の発明による繊維複合体の製造方
法は、無機繊維と熱可塑性樹脂とからなり無機繊維含有
率が20〜60重量%である芯材層、熱可塑性樹脂発泡
体層及び熱可塑性樹脂表皮層を一体的に備えている再生
用繊維複合体を粉砕して得られた粉砕物(A)をフィル
ムに成形して再生フィルムを得る工程と、得られた再生
フィルムを加熱し、これに、熱可塑性樹脂発泡体に熱可
塑性樹脂表皮が積層されてなる積層体の該発泡体側を積
層して両者を加圧一体化して繊維複合体(C)を得る工
程とを含み、かつ上記すべての熱可塑性樹脂が同一また
は同系であり、繊維複合体(C)に対する粉砕物(A)
の割合が50〜95重量%であることを特徴とするもの
である。
A method for producing a fiber composite according to a second aspect of the present invention comprises a core material layer comprising an inorganic fiber and a thermoplastic resin and having an inorganic fiber content of 20 to 60% by weight; a thermoplastic resin foam layer; A step of molding a crushed product (A) obtained by crushing a fiber composite for recycling integrally provided with a plastic resin skin layer into a film to obtain a recycled film, and heating the obtained recycled film, And a step of laminating the foamed body side of the laminated body in which the thermoplastic resin skin is laminated on the thermoplastic resin foamed body and pressurizing and integrating both to obtain a fiber composite (C). All thermoplastic resins are the same or similar, and the pulverized product (A) for the fiber composite (C)
Is 50 to 95% by weight.

【0007】請求項3の発明による繊維複合体の製造方
法は、無機繊維と熱可塑性樹脂とからなり無機繊維含有
率が20〜60重量%である芯材層及び熱可塑性樹脂表
皮層を一体的に備えている再生用繊維複合体を粉砕して
得られた粉砕物(D)をフィルムに成形して再生フィル
ムを得る工程と、得られた再生フィルムを無機繊維を主
体とするマット状物の両面のうち少なくとも片面に積層
する工程と、この積層物を加熱加圧圧縮して再生フィル
ム中の熱可塑性樹脂を溶融してこれをマット状物に含浸
する工程と、その後解圧し、含浸樹脂が溶融状態にある
うちに積層物を厚さ方向に引っぱって膨らませ、芯材
(E)を得る工程と、得られた芯材(E)を加熱し、こ
れに熱可塑性樹脂表皮を積層して両者を加圧一体化する
工程とを含み、かつ上記すべての熱可塑性樹脂が同一ま
たは同系であり、芯材(E)に対する粉砕物(D)の割
合が10〜40重量%であることを特徴とするものであ
る。請求項4の発明による繊維複合体の製造方法は、無
機繊維と熱可塑性樹脂とからなり無機繊維含有率が20
〜60重量%である芯材層及び熱可塑性樹脂表皮層を一
体的に備えている再生用繊維複合体を粉砕して得られた
粉砕物(D)をフィルムに成形して再生フィルムを得る
工程と、得られた再生フィルムを加熱し、これに熱可塑
性樹脂表皮を積層して両者を加圧一体化して繊維複合体
(F)を得る工程とを含み、かつ上記すべての熱可塑性
樹脂が同一または同系であり、繊維複合体(F)に対す
る粉砕物(D)の割合が50〜95重量%であることを
特徴とするものである。
According to a third aspect of the present invention, there is provided a method for producing a fiber composite in which a core layer made of inorganic fibers and a thermoplastic resin and having an inorganic fiber content of 20 to 60% by weight and a thermoplastic resin skin layer are integrally formed. A step of forming a pulverized product (D) obtained by pulverizing the regenerated fiber composite prepared in step 1 to obtain a regenerated film, and a mat-like substance mainly composed of the inorganic fiber of the obtained regenerated film. A step of laminating on at least one side of both sides, a step of heating and compressing this laminate to melt the thermoplastic resin in the recycled film to impregnate it into a mat-like material, and then decompress the impregnated resin While in the molten state, the laminate is pulled in the thickness direction to inflate it to obtain a core material (E), and the obtained core material (E) is heated, and a thermoplastic resin skin is laminated on the core material (E) to form both. And pressure-integrating, and Serial are all thermoplastic resins are the same or syngeneic, in which the ratio of the pulverized material for the core material (E) (D) is characterized in that 10 to 40% by weight. The method for producing a fiber composite according to the invention of claim 4 comprises inorganic fibers and a thermoplastic resin and has an inorganic fiber content of 20.
A pulverized product (D) obtained by pulverizing a fiber composite material for regeneration integrally provided with a core material layer and a thermoplastic resin skin layer of 60% by weight to obtain a regenerated film. And a step of heating the obtained reclaimed film, laminating a thermoplastic resin skin thereon, and pressurizing and integrating both to obtain a fiber composite (F), and all the thermoplastic resins are the same. Alternatively, it is the same system, and the ratio of the ground product (D) to the fiber composite (F) is 50 to 95% by weight.

【0008】請求項1ないし4の発明において、再生用
繊維複合体における無機繊維含有率を20〜60重量%
に限定したのは、20重量%未満では、該発明の方法に
よって得られる繊維複合体の表面強度が不充分となり、
60%を超えると樹脂の量が充分でなくなるので、粉砕
物からフィルムを成形するさいに熱可塑性樹脂を追加す
るか、熱可塑性樹脂をフィルムの形態で積層することに
より、不足量を補う必要が生じるからである。再生フィ
ルムの無機繊維含有率は20〜60重量%が好ましく、
より好ましくは30〜45重量%である。
In the invention of claims 1 to 4, the content of the inorganic fibers in the regenerated fiber composite is 20 to 60% by weight.
If the content is less than 20% by weight, the surface strength of the fiber composite obtained by the method of the present invention becomes insufficient,
If it exceeds 60%, the amount of resin will not be sufficient, so it is necessary to supplement the deficient amount by adding a thermoplastic resin or laminating the thermoplastic resin in the form of a film when forming a film from a pulverized product. Because it will occur. The inorganic fiber content of the recycled film is preferably 20 to 60% by weight,
More preferably, it is 30 to 45% by weight.

【0009】また、請求項1および3の発明において、
芯材(B)(E)に対する粉砕物(A)(D)の割合を
10〜40重量%に限定したのは、10重量%未満で
は、再生用繊維複合体の量が少なくて再生の目的を達成
するのに充分でなく、40重量%を超えると、最終製品
である所定厚さの繊維複合体に占める新しい素材の量が
相対的に不足することになり、所望の強度が得られない
からである。請求項2および4の発明において、繊維複
合体(C)(F)に対する粉砕物(A)(D)の割合を
50〜95重量%に限定したのも前記と同じ理由によ
る。
Further, in the inventions of claims 1 and 3,
The ratio of the pulverized products (A) and (D) to the core materials (B) and (E) is limited to 10 to 40% by weight. If it exceeds 40% by weight, the amount of new material in the final product of the fiber composite having a predetermined thickness is relatively insufficient, and the desired strength cannot be obtained. Because. In the inventions of claims 2 and 4, the ratio of the pulverized products (A) and (D) to the fiber composites (C) and (F) is limited to 50 to 95% by weight for the same reason as above.

【0010】粉砕物(A)をフィルムに成形する方法
は、通常、押出成形法やカレンダー成形法によるが、成
形時必要に応じて粉末状もしくはペレット状の新たな熱
可塑性樹脂を追加してもよい。また、成形して一旦得ら
れたフィルムに新たな熱可塑性樹脂フィルムを積層して
樹脂量を調整してもよい。
The method of molding the pulverized product (A) into a film is usually an extrusion molding method or a calender molding method, but a powdery or pelletized new thermoplastic resin may be added at the time of molding, if necessary. Good. Further, the amount of resin may be adjusted by laminating a new thermoplastic resin film on the film obtained by molding.

【0011】マット状物は、無機繊維の外に他の繊維も
含ませることができるが、無機繊維を主体とするもので
あり、その厚さは5〜10mmが適当である。
The mat-like material may contain other fibers in addition to the inorganic fibers, but is mainly composed of the inorganic fibers, and its thickness is preferably 5 to 10 mm.

【0012】無機繊維としては、たとえばガラス繊維、
ロックウール等があげられ、その長さはマット状物の成
形性の点から5〜200mmが好ましく、その太さは細
くなると機械的強度が低下し、太くなるとマット形成時
に折れ易くなるので、5〜30μmが好ましく、より好
ましくは7〜20μmである。
As the inorganic fiber, for example, glass fiber,
Rock wool and the like are mentioned, and the length thereof is preferably 5 to 200 mm from the viewpoint of the moldability of the mat-like material. The thinner the thickness, the lower the mechanical strength, and the thicker it becomes, the more easily it breaks during mat formation. ˜30 μm is preferable, and more preferably 7 to 20 μm.

【0013】マット状物の製造方法は任意であるが、た
とえば、無機繊維をカードマシンに供給し、解繊、混繊
し、ニードルパンチ処理する方法があげられる。ニード
ルパンチ密度は、1cm2 当り30〜200が好まし
い。
The method for producing the mat-like material is arbitrary, and examples thereof include a method in which inorganic fibers are supplied to a card machine, defibrated, mixed, and needle punched. The needle punch density is preferably 30 to 200 per cm 2 .

【0014】なお、無機繊維を接着するためやマット状
物のかさを増すために、ポリエチレン、ポリプロピレ
ン、飽和ポリエステル、ポリアミド、ポリアクリロニト
リル等の熱可塑性有機繊維を添加してもよい。
In order to bond the inorganic fibers and increase the bulk of the mat-like material, thermoplastic organic fibers such as polyethylene, polypropylene, saturated polyester, polyamide and polyacrylonitrile may be added.

【0015】熱可塑性樹脂としては、ポリエレチン、ポ
リプロピレン、飽和ポリエステル、ポリアミド、塩化ビ
ニル等をあげることができる。
Examples of the thermoplastic resin include polyeletin, polypropylene, saturated polyester, polyamide, vinyl chloride and the like.

【0016】熱可塑性樹脂表皮は、レザー調のものが好
ましく、これにはポリオレフィン系樹脂やポリオレフィ
ン系熱可塑性エラストマーを主成分とするものが適して
いる。
The skin of the thermoplastic resin is preferably leather-like, and suitable is one having a polyolefin resin or a polyolefin thermoplastic elastomer as a main component.

【0017】一般に熱可塑性エラストマーは、常温では
所謂ゴム弾性を示し、高温では可塑化されて各種の成形
加工が可能な特性を有しており、ポリオレフィン系熱可
塑性エラストマーは通常、分子中にエントロピー弾性を
有するゴム成分(ハードセグメント、プロピレン)と塑
性変形を防止するための分子拘束成分(ソフトセグメン
ト、エチレン、少量のジエン)を共有していて、これら
をブレンドして得られたもの、部分架橋構造を有するも
の、不飽和ヒドロキシ単量体、不飽和カルボン酸誘導体
でグラフト変性したものなどがある。
Generally, a thermoplastic elastomer exhibits so-called rubber elasticity at room temperature and has a characteristic that it is plasticized at a high temperature and various molding processes are possible, and a thermoplastic polyolefin-based elastomer usually has entropy elasticity in a molecule. Having a rubber component (hard segment, propylene) having a molecular weight and a molecular restraint component (soft segment, ethylene, a small amount of diene) for preventing plastic deformation, obtained by blending these, partially crosslinked structure And unsaturated hydroxy monomers, and those graft-modified with unsaturated carboxylic acid derivatives.

【0018】ポリオレフィン系熱可塑性エラストマー
は、リサイクル性が高く焼却してもポリ塩化ビニル系エ
ラストマーなどに比して有害物質が発生しない点で好ま
しい。得られた繊維複合体を自動車内装材や建築用部材
として使用する際、加熱により樹脂を溶融し、圧縮、賦
形成形および冷却して所定の部品とする。なお、成形の
際に塩化ビニルレザー、不織布、織布等の化粧用表皮材
を積層してもよい。
The thermoplastic polyolefin-based elastomer is preferred because it has a high recyclability and does not generate harmful substances when incinerated as compared with the polyvinyl chloride-based elastomer. When the obtained fiber composite is used as an automobile interior material or a building member, the resin is melted by heating, compressed, shaped and cooled to obtain a predetermined component. A cosmetic skin material such as vinyl chloride leather, a non-woven fabric, or a woven fabric may be laminated at the time of molding.

【0019】[0019]

【作用】請求項1ないし4の発明による繊維複合体の製
造方法は、上述のような構成を有するので、繊維複合体
両方または片方の表面に補強層が得られることとなる。
繊維複合体の厚さは予め決まっているから、再生フィル
ムに相当する厚さだけ新しい材料の使用量は減らす必要
があるが、表面補強層の存在により全体としての強度
は、再生前の繊維複合体と同等である。
The method for producing a fiber composite according to the first to fourth aspects of the present invention has the structure as described above, so that the reinforcing layer can be obtained on the surface of one or both of the fiber composites.
Since the thickness of the fiber composite is predetermined, it is necessary to reduce the amount of new material used by the thickness corresponding to the recycled film, but the presence of the surface reinforcing layer reduces the overall strength of the fiber composite before it is recycled. It is equivalent to the body.

【0020】[0020]

【実施例】まず、請求項1の発明の実施例について説明
する。
First, an embodiment of the present invention will be described.

【0021】実施例1 まず、ガラス繊維含有率が47.1重量%の再生用繊維
複合体を粉砕機(蓬莱鉄工(株)製、BO−2572)
で0.2〜7mmの大きさに粉砕して粉砕物(A)を
得、これをプレスで厚さ160μm、比重1.17、重
量190g/m2のフィルムに成形して再生フィルムを
得る。
Example 1 First, a fiber composite for recycling having a glass fiber content of 47.1% by weight was crushed (BO-2572 manufactured by Horai Iron Works Co., Ltd.).
Is crushed to a size of 0.2 to 7 mm to obtain a crushed product (A), which is molded by a press into a film having a thickness of 160 μm, a specific gravity of 1.17 and a weight of 190 g / m 2 to obtain a recycled film.

【0022】上記再生用繊維複合体は、つぎのようにし
て製造せられたものである。すなわち、長さ50mm、
直径10μmのガラス繊維と、長さ50mm、直径10
μmのポリプロピレン繊維を重量比2:1でカードマシ
ンに供給し、解繊した後1cm2 当り100箇所のニー
ドルパンチを行なって厚さ6mm、幅1m、長さ1m、
平均重量600g/m2 のマット状物を得た。
The above fiber composite for recycling is manufactured as follows. That is, a length of 50 mm,
Glass fiber with a diameter of 10 μm, length 50 mm, diameter 10
A polypropylene fiber of μm was supplied to a card machine at a weight ratio of 2: 1, and after being defibrated, needle punching was performed at 100 points per 1 cm 2 to obtain a thickness of 6 mm, a width of 1 m, and a length of 1 m.
A mat-like material having an average weight of 600 g / m 2 was obtained.

【0023】このマット状物の両面に厚さ130μm、
重量125g/m2 の高密度ポリエチレンフイルムを積
層し、得られた積層物を2枚のポリテトラフルオロエチ
レンフィルムの間に挾んで200℃で3分間加熱した
後、200℃に加熱したプレスにより5kg/cm2
加圧して0.8mmに圧縮し、200℃に保ったまま両
面のポリテトラフルオロエチレンフィルムを厚さ方向に
真空吸引し、厚さ4mmまで積層物を膨らませた後冷却
し、ポリテトラフルオロエチレンフィルムを積層物から
剥離除去して芯材を得た。
The mat-like material has a thickness of 130 μm on both sides,
A high density polyethylene film having a weight of 125 g / m 2 was laminated, and the obtained laminate was sandwiched between two polytetrafluoroethylene films and heated at 200 ° C. for 3 minutes, and then 5 kg by a press heated to 200 ° C. / Cm 2 and pressurize it to 0.8 mm, and while keeping the temperature at 200 ° C., vacuum suction the polytetrafluoroethylene film on both sides in the thickness direction, swell the laminate to a thickness of 4 mm, and then cool it. The tetrafluoroethylene film was peeled off from the laminate to obtain a core material.

【0024】この芯材を180℃に加熱し、これに、厚
さ4mmのポリエチレン発泡体に厚さ250μmのシボ
模様を有するレザー調ポリオレフィン系熱可塑性エラス
トマー表皮がラミネートされた積層体(G)の80℃に
加熱された発泡体側を重ね合わせ両者をプレスにより加
圧一体成形して繊維複合体を得たものである。
This core material was heated to 180 ° C., and a layered product (G) was prepared by laminating a polyethylene foam having a thickness of 4 mm with a leather-like polyolefin thermoplastic elastomer skin having a grain pattern having a thickness of 250 μm. A foamed body heated at 80 ° C. was superposed on each other, and both were pressed and integrally molded by a press to obtain a fiber composite.

【0025】つぎに、上記再生用繊維複合体における芯
材の製造方法において、マット状物の平均重量を410
g/m2 としかつ両面に高密度ポリエチレンフィルム
を、さらに片側に上記再生フィルムを積層した以外はこ
の方法と同様にして芯材(B)、発泡体及び表皮を備え
ている繊維複合体を得た。芯材(B)に対する粉砕物
(A)の割合は22.4重量%であった。
Next, in the method for producing the core material in the above-mentioned regenerated fiber composite, the average weight of the mat-like material is 410
A fiber composite having a core material (B), a foam and a skin was obtained in the same manner as this method except that g / m 2 was used, and a high-density polyethylene film was laminated on both sides and the recycled film was laminated on one side. It was The ratio of the pulverized product (A) to the core material (B) was 22.4% by weight.

【0026】実施例2 実施例1において、再生フィルムの厚さを125μm、
重量を145g/m2とするとともに、高密度ポリエチ
レンフィルムの重量を80g/m2 とし、かつ再生フィ
ルムをマット状物の両面にある高密度ポリエチレンフィ
ルムにそれぞれ積層した以外は実施例1と同様にして繊
維複合体を製造した。この繊維複合体における芯材
(B)に対する粉砕物(A)の割合は34.1%であっ
た。
Example 2 In Example 1, the thickness of the recycled film was 125 μm,
The same procedure as in Example 1 except that the weight was 145 g / m 2 , the weight of the high-density polyethylene film was 80 g / m 2 , and the recycled film was laminated on each of the high-density polyethylene films on both sides of the mat-like material. To produce a fiber composite. The ratio of the pulverized product (A) to the core material (B) in this fiber composite was 34.1%.

【0027】比較例1 実施例2において、新しく作成したマット状物の重量を
300g/m2 とし、再生フィルムの厚さを165μ
m、重量を195g/m2 とした以外は実施例2と同様
にして繊維複合体を製造した。この繊維複合体における
芯材(B)に対する粉砕物(A)の割合は45.9重量
%であった。
Comparative Example 1 In Example 2, the weight of the newly formed mat-like material was 300 g / m 2, and the thickness of the recycled film was 165 μm.
A fiber composite was produced in the same manner as in Example 2 except that m and weight were 195 g / m 2 . The ratio of the ground material (A) to the core material (B) in this fiber composite was 45.9% by weight.

【0028】比較例2 実施例1において製造された再生用繊維複合体。Comparative Example 2 The regenerated fiber composite produced in Example 1.

【0029】比較例3 実施例1において、再生用繊維複合体を製造する際に用
いられた発泡体をポリウレタン製(発泡倍率40倍)と
する以外は、実施例1と同様にして繊維複合体を製造し
た。この繊維複合体における芯材(B)に対する粉砕物
(A)の割合は22.4重量%であった。
Comparative Example 3 A fiber composite was prepared in the same manner as in Example 1 except that the foam used in the production of the regenerated fiber composite was made of polyurethane (foaming ratio: 40 times). Was manufactured. The ratio of the ground material (A) to the core material (B) in this fiber composite was 22.4% by weight.

【0030】比較例4 実施例1において、再生用繊維複合体を製造する際に用
いられた表皮をポリエステル製ニットとする以外は、実
施例1と同様にして繊維複合体を製造した。この繊維複
合体における芯材(B)に対する粉砕物(A)の割合は
22.4重量%であった。
Comparative Example 4 A fiber composite was produced in the same manner as in Example 1 except that the knit made of polyester was used as the epidermis used in the production of the regenerated fiber composite. The ratio of the ground material (A) to the core material (B) in this fiber composite was 22.4% by weight.

【0031】つぎに、請求項2の発明の実施例につき説
明する。
Next, an embodiment of the invention of claim 2 will be described.

【0032】実施例3 まず、ガラス繊維含有率が47.1重量%の再生用繊維
複合体を粉砕機で直径0.2〜7mmに粉砕して粉砕物
(A)を得、これをプレスで厚さ1.87mm、重量2
190g/m2 のフィルムに成形して再生フィルムを得
る。
Example 3 First, a regenerated fiber composite having a glass fiber content of 47.1% by weight was pulverized by a pulverizer to a diameter of 0.2 to 7 mm to obtain a pulverized product (A), which was pressed by a press. Thickness 1.87mm, weight 2
A recycled film is obtained by molding into a film of 190 g / m 2 .

【0033】上記再生用繊維複合体は、実施例1と同様
にして製造せられたものである。
The regenerated fiber composite was produced in the same manner as in Example 1.

【0034】つぎに、この再生フィルムを180℃に加
熱し、これに、実施例1で用いたポリエチレン発泡体の
積層体(G)(表皮付き)の発泡体側を重ね合わせて両
者をプレスにより加圧一体成形して繊維複合体(C)を
得た。この繊維複合体(C)に対する粉砕物(A)の割
合は86.2重量%であった。
Next, this recycled film was heated to 180 ° C., the laminated body (G) of polyethylene foam used in Example 1 (with a skin) was superposed on it, and both were pressed by a press. The fiber composite (C) was obtained by pressure integral molding. The ratio of the ground product (A) to the fiber composite (C) was 86.2% by weight.

【0035】実施例4 まず、ガラス繊維含有率が33.3重量%の再生用繊維
複合体を粉砕機で直径0.2〜7mmに粉砕して粉砕物
(A)を得、これをプレスで厚さ1.87mm、重量2
190g/m2 のフィルムに成形して再生フィルムを得
る。
Example 4 First, a regenerated fiber composite having a glass fiber content of 33.3% by weight was pulverized with a pulverizer to a diameter of 0.2 to 7 mm to obtain a pulverized product (A), which was pressed. Thickness 1.87mm, weight 2
A recycled film is obtained by molding into a film of 190 g / m 2 .

【0036】上記再生用繊維複合体は、つぎのようにし
て製造せられたものである。すなわち、長さ2〜3m
m、直径10μmのガラス繊維(チョップドストラン
ド)と、高密度ポリエチレンを重量比47:53で混合
し、混練機により混練し、つぎにプレスにより厚さ1.
5mm、ガラス繊維含有率47重量%のフィルムに成形
して芯材を得、この芯材を180℃に加熱し、これに、
実施例1と同じポリエチレン発泡体の積層体(G)の発
泡体側を重ね合わせて両者をプレスにより加圧一体成形
して繊維複合体を得た。
The regenerated fiber composite is produced as follows. That is, 2-3m in length
m, glass fiber (chopped strand) having a diameter of 10 μm and high-density polyethylene were mixed at a weight ratio of 47:53, kneaded by a kneader, and then pressed to have a thickness of 1.
A core material is obtained by molding into a film of 5 mm and a glass fiber content of 47% by weight, and the core material is heated to 180 ° C.
The foam side of the laminate (G) of the same polyethylene foam as in Example 1 was overlapped and both were pressed and integrally molded by a press to obtain a fiber composite.

【0037】その後更に実施例3と同様にして繊維複合
体(C)を製造した。この繊維複合体(C)に対する粉
砕物(A)の割合は86.2%であった。
Thereafter, a fiber composite (C) was produced in the same manner as in Example 3. The ratio of the ground product (A) to the fiber composite (C) was 86.2%.

【0038】比較例5 長さ2〜3mm、直径10μmのガラス繊維(チョップ
ドストランド)と、高密度ポリエチレンを重量比33.
3:66.7で混合し、混練機により混練し、つぎにプ
レスにより厚さ1.5mm、ガラス繊維含有率33.3
重量%のフィルムに成形した。
Comparative Example 5 A glass fiber (chopped strand) having a length of 2 to 3 mm and a diameter of 10 μm and a high density polyethylene were used in a weight ratio of 33.
3: 66.7, kneading with a kneader, and then pressing with a thickness of 1.5 mm, glass fiber content 33.3
The film was formed into a film having a weight percentage.

【0039】再生フィルムの代わりにこのフィルムを用
いる以外は、比較例4と同様にして繊維複合体を得た。
A fiber composite was obtained in the same manner as in Comparative Example 4 except that this film was used instead of the recycled film.

【0040】比較例6 実施例3において、再生用繊維複合体を製造する際に用
いられた発泡体をポリウレタン製(発泡倍率40倍)と
する以外は、実施例3と同様にして繊維複合体を製造し
た。この繊維複合体(C)に対する粉砕物(A)の割合
は87.1重量%であった。
Comparative Example 6 A fiber composite was prepared in the same manner as in Example 3 except that the foam used in the production of the regenerated fiber composite was made of polyurethane (foaming ratio: 40 times). Was manufactured. The ratio of the ground product (A) to the fiber composite (C) was 87.1% by weight.

【0041】比較例7 実施例3において、再生用繊維複合体を製造する際に用
いられた表皮をポリエステル製とする以外は、実施例3
と同様にして繊維複合体を製造した。この繊維複合体
(C)に対する粉砕物(A)の割合は87.2重量%で
あった。
Comparative Example 7 Example 3 was repeated, except that the skin used in the production of the regenerated fiber composite was made of polyester.
A fiber composite was produced in the same manner as in. The ratio of the ground product (A) to the fiber composite (C) was 87.2% by weight.

【0042】つぎに、請求項3の発明の実施例につき説
明する。
Next, an embodiment of the invention of claim 3 will be described.

【0043】実施例5 まず、ガラス繊維含有率が47.1重量%の再生用繊維
複合体を粉砕機で直径0.2〜7mmに粉砕して粉砕物
(D)を得、これをプレスで厚さ170μm、重量20
0g/m2 のフィルムに成形して再生フィルムを得る。
Example 5 First, a regenerated fiber composite having a glass fiber content of 47.1% by weight was pulverized by a pulverizer to a diameter of 0.2 to 7 mm to obtain a pulverized product (D), which was pressed. Thickness 170μm, weight 20
A recycled film is obtained by molding into a film of 0 g / m 2 .

【0044】上記再生用繊維複合体は、つぎのようにし
て製造せられたものである。すなわち、まず長さ50m
m、直径10μmのガラス繊維と、長さ50mm、直径
10μmのポリプロピレン繊維を重量比2:1でカード
マシンに供給し、解繊した後1cm2 当り100箇所の
ニードルパンチを行なって厚さ6mm、幅1m、長さ1
m、平均重量600g/m2 のマット状物を得た。
The regenerated fiber composite is produced as follows. That is, first, the length is 50m
m, glass fiber having a diameter of 10 μm and polypropylene fiber having a length of 50 mm and a diameter of 10 μm were supplied to the card machine at a weight ratio of 2: 1 and disentangled, and needle punching was performed at 100 points per cm 2 to obtain a thickness of 6 mm, Width 1m, length 1
A mat-like material having an average weight of 600 g / m 2 was obtained.

【0045】マット状物の両面に厚さ130μm、重量
125g/m2 の高密度ポリエチレンフイルムを積層
し、得られた積層物を2枚のポリテトラフルオロエチレ
ンフィルムの間に挾んで200℃で3分間加熱した後、
200℃に加熱したプレスにより5kg/cm2 で加圧
して0.8mmに圧縮し、200℃に保ったまま両面の
ポリテトラフルオロエチレンフィルムを厚さ方向に真空
吸引して引っぱり、厚さ4mmまで積層物を膨らませた
後冷却し、ポリテトラフルオロエチレンフィルムを積層
物から剥離除去して芯材を得た。この芯材を180℃に
加熱し、これに厚さ250μmの表面にシボ模様を有す
るレザー調のポリオレフィン系熱可塑性エラストマー製
表皮を積層して両者をプレスにより加圧一体成形して繊
維複合体を得たものである。
A high-density polyethylene film having a thickness of 130 μm and a weight of 125 g / m 2 was laminated on both sides of the mat-like material, and the resulting laminate was sandwiched between two polytetrafluoroethylene films and the mixture was placed at 200 ° C. for 3 hours. After heating for a minute,
Pressed at 5 kg / cm 2 with a press heated to 200 ° C and compressed to 0.8 mm, and while keeping at 200 ° C, vacuum suction the polytetrafluoroethylene film on both sides in the thickness direction to pull it to a thickness of 4 mm. The laminate was inflated and then cooled, and the polytetrafluoroethylene film was peeled off from the laminate to obtain a core material. This core material is heated to 180 ° C., a leather-like polyolefin thermoplastic elastomer skin having a grain pattern on the surface of 250 μm in thickness is laminated on the core material, and both are pressed and integrally molded by a press to form a fiber composite. That is what I got.

【0046】つぎに、上記再生用繊維複合体における芯
材の製造方法において、マット状物の平均重量を400
g/m2 とし、かつ両面に高密度ポリエチレンフィルム
をさらに片面側に再生フィルムを積層した以外はこの方
法と同様にして芯材(E)及び表皮を備えている繊維複
合体を得た。芯材(E)に対する粉砕物(D)の割合は
23.4重量%であった。
Next, in the method for producing the core material in the above-mentioned regenerated fiber composite, the average weight of the mat-like material is 400
A fiber composite having a core material (E) and a skin was obtained in the same manner as above, except that g / m 2 was used and a high-density polyethylene film was further laminated on both sides and a recycled film was laminated on one side. The ratio of the ground product (D) to the core material (E) was 23.4% by weight.

【0047】実施例6 実施例5において、再生フィルムの厚さを125μm、
重量を145g/m2とするとともに、高密度ポリエチ
レンフィルムの重量を80g/m2 とし、かつ再生フィ
ルムをマット状物の両面にある高密度ポリエチレンフィ
ルムにそれぞれ積層した以外は実施例1と同様にして繊
維複合体を製造した。この繊維複合体における芯材
(E)に対する粉砕物(D)の割合は34.1%であっ
た。
Example 6 In Example 5, the thickness of the recycled film was 125 μm,
The same procedure as in Example 1 except that the weight was 145 g / m 2 , the weight of the high-density polyethylene film was 80 g / m 2 , and the recycled film was laminated on each of the high-density polyethylene films on both sides of the mat-like material. To produce a fiber composite. The ratio of the ground material (D) to the core material (E) in this fiber composite was 34.1%.

【0048】比較例8 実施例6において、新しく作成したマット状物の重量を
300g/m2 とし、再生フィルムの厚さを167μ
m、重量を195g/m2 とした以外は実施例6と同様
にして繊維複合体を製造した。この繊維複合体における
芯材(E)に対する粉砕物(D)の割合は45.9重量
%であった。
Comparative Example 8 In Example 6, the weight of the newly formed mat-like material was 300 g / m 2, and the thickness of the recycled film was 167 μm.
A fiber composite was produced in the same manner as in Example 6 except that m and weight were 195 g / m 2 . The ratio of the pulverized product (D) to the core material (E) in this fiber composite was 45.9% by weight.

【0049】比較例9 実施例5において製造された再生用繊維複合体。Comparative Example 9 The regenerated fiber composite produced in Example 5.

【0050】比較例10 実施例5において、再生用繊維複合体を製造する際に用
いられた表皮をポリエステル製ニットとする以外は、実
施例5と同様にして繊維複合体を製造した。この繊維複
合体における芯材(E)に対する粉砕物(D)の割合は
23.4重量%であった。
Comparative Example 10 A fibrous composite was produced in the same manner as in Example 5, except that the polyester used as the epidermis used in the production of the regenerated fibrous composite was a polyester knit. The ratio of the pulverized product (D) to the core material (E) in this fiber composite was 23.4% by weight.

【0051】つぎに、請求項4の発明の実施例につき説
明する。
Next, an embodiment of the invention of claim 4 will be described.

【0052】実施例7 まず、ガラス繊維含有率が47.1重量%の再生用繊維
複合体を粉砕機で直径0.2〜7mmに粉砕して粉砕物
(D)を得、これをプレスで厚さ1.87mm、重量2
190g/m2 のフィルムに成形して再生フィルムを得
る。
Example 7 First, a regenerated fiber composite having a glass fiber content of 47.1% by weight was pulverized with a pulverizer to a diameter of 0.2 to 7 mm to obtain a pulverized product (D), which was pressed. Thickness 1.87mm, weight 2
A recycled film is obtained by molding into a film of 190 g / m 2 .

【0053】上記再生用繊維複合体は、実施例5と同様
にして製造せられたものである。
The above fiber composite for regeneration was produced in the same manner as in Example 5.

【0054】つぎに、この再生フィルムを180℃に加
熱し、これに厚さ250μmの表面にシボ模様を有する
レザー調ポリオレフィン系熱可塑性エラストマー表皮を
積層して両者をプレスにより加圧一体成形して繊維複合
体(F)を得た。
Next, this recycled film was heated to 180 ° C., and a leather-like polyolefin thermoplastic elastomer skin having a grain pattern on the surface having a thickness of 250 μm was laminated on the recycled film and both were integrally molded by pressing with a press. A fiber composite (F) was obtained.

【0055】この繊維複合体(F)に対する粉砕物
(D)の割合は90.5%であった。
The ratio of the ground product (D) to the fiber composite (F) was 90.5%.

【0056】実施例8 まず、ガラス繊維含有率が43.1重量%の再生用繊維
複合体を粉砕機で直径0.2〜7mmに粉砕して粉砕物
(D)を得、これをプレスで厚さ2.08mm、重量2
430g/m2 のフィルムに成形して再生フィルムを得
る。
Example 8 First, a regenerated fiber composite having a glass fiber content of 43.1% by weight was pulverized by a pulverizer to a diameter of 0.2 to 7 mm to obtain a pulverized product (D), which was pressed. Thickness 2.08mm, weight 2
A recycled film is obtained by molding into a film of 430 g / m 2 .

【0057】上記再生用繊維複合体は、つぎのようにし
て製造せられたものである。すなわち、長さ2〜3m
m、直径10μmのガラス繊維(チョップドストラン
ド)と、高密度ポリエチレンを重量比47:53で混合
し、混練機により混練し、つぎにプレスにより厚さ1.
5mm、重量2520g/m2 、ガラス繊維含有率47
重量%のフィルムに成形して芯材を得、この芯材を18
0℃に加熱し、これに、厚さ4mmの実施例1と同じポ
リエチレン発泡体の積層体(G)の発泡体側を重ね合わ
せて両者をプレスにより加圧一体成形して繊維複合体
(F)を得たものである。この繊維複合体(F)に対す
る粉砕物(D)の割合は87.3%であった。その後は
実施例7と同様にして繊維複合体を製造した。
The above regenerated fiber composite is manufactured as follows. That is, 2-3m in length
m, glass fiber (chopped strand) having a diameter of 10 μm and high-density polyethylene were mixed at a weight ratio of 47:53, kneaded by a kneader, and then pressed to have a thickness of 1.
5 mm, weight 2520 g / m 2 , glass fiber content 47
A core material is obtained by molding into a film of 10% by weight.
The composite was heated to 0 ° C., the foam side of the laminate (G) of the same polyethylene foam as in Example 1 having a thickness of 4 mm was superposed on the foam, and both were pressed and integrally molded by a press to form a fiber composite (F). Is what I got. The ratio of the ground product (D) to the fiber composite (F) was 87.3%. Thereafter, a fiber composite was manufactured in the same manner as in Example 7.

【0058】比較例11 長さ2〜3mm、直径10μmのガラス繊維(チョップ
ドストランド)と、高密度ポリエチレンを重量比43.
1:56.9で混合し、混練機により混練し、つぎにプ
レスにより厚さ1.5mm、ガラス繊維含有率33.3
重量%のフィルムに成形した。
Comparative Example 11 A glass fiber (chopped strand) having a length of 2 to 3 mm and a diameter of 10 μm and a high density polyethylene were used in a weight ratio of 43.
1: 56.9, kneaded by a kneader, and then pressed by a thickness of 1.5 mm, glass fiber content 33.3
The film was formed into a film having a weight percentage.

【0059】このフィルムを用いる以外は、比較例8と
同様にして繊維複合体を得た。
A fiber composite was obtained in the same manner as in Comparative Example 8 except that this film was used.

【0060】比較例12 実施例7において、再生用繊維複合体を製造する際に用
いられた表皮をポリエステル製ニットとする以外は、実
施例7と同様にして繊維複合体を製造した。
Comparative Example 12 A fiber composite was produced in the same manner as in Example 7 except that the outer skin used in producing the regenerated fiber composite was a polyester knit.

【0061】上記各実施例および各比較例につき、再生
フィルム化の容易性、外観、曲げ強度を比較した結果を
表1に示す。
Table 1 shows the results obtained by comparing the above examples and comparative examples with respect to the ease of making recycled films, their appearance, and bending strength.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】請求項1〜4の発明の繊維複合体の製造
方法によれば、再生用繊維複合体を有効に利用すること
ができ、しかも通常は再生用繊維複合体が使用されれば
強度が劣化するにもかかわらず、再生前の繊維複合体と
同等の強度が得られ、しかも外観も良好である。
According to the method for producing a fiber composite of the present invention, it is possible to effectively utilize the regenerating fiber composite, and normally, if the regenerating fiber composite is used. Despite the deterioration of strength, the same strength as that of the fiber composite before regeneration is obtained and the appearance is also good.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:08 105:26 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B29K 105: 08 105: 26

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無機繊維と熱可塑性樹脂とからなり無機
繊維含有率が20〜60重量%である芯材層、熱可塑性
樹脂発泡体層及び熱可塑性樹脂表皮層を一体的に備えて
いる再生用繊維複合体を粉砕して得られた粉砕物(A)
をフィルムに成形して再生フィルムを得る工程と、得ら
れた再生フィルムを無機繊維を主体とするマット状物の
両面のうち少なくとも片面に積層する工程と、この積層
物を加熱加圧圧縮して再生フィルム中の熱可塑性樹脂を
溶融してこれをマット状物に含浸する工程と、その後解
圧し、含浸樹脂が溶融状態にあるうちに積層物を厚さ方
向に引っぱって膨らませ、芯材(B)を得る工程と、得
られた芯材(B)を加熱し、これに、熱可塑性樹脂発泡
体に熱可塑性樹脂表皮が積層されてなる積層体の該発泡
体側を積層して両者を加圧一体化する工程とを含み、か
つ上記すべての熱可塑性樹脂が同一または同系であり、
芯材(B)に対する粉砕物(A)の割合が10〜40重
量%であることを特徴とする繊維複合体の製造方法。
1. A recycled material integrally comprising a core material layer comprising inorganic fibers and a thermoplastic resin and having an inorganic fiber content of 20 to 60% by weight, a thermoplastic resin foam layer and a thermoplastic resin skin layer. Pulverized product (A) obtained by pulverizing a fiber composite for use
A step of forming a reclaimed film by molding into a film, a step of laminating the reclaimed film thus obtained on at least one surface of both surfaces of a mat-like material mainly composed of inorganic fibers, and heating and pressing this laminate. The step of melting the thermoplastic resin in the recycled film and impregnating it into the mat-like material, and then decompressing, while the impregnating resin is in a molten state, the laminate is pulled and expanded in the thickness direction, and the core material (B ) Is obtained, and the obtained core material (B) is heated, and the foamed side of the laminated body in which the thermoplastic resin skin is laminated on the thermoplastic resin foam is laminated and the both are pressed. Including the step of integrating, and all the thermoplastic resins are the same or similar,
The method for producing a fiber composite, wherein the ratio of the pulverized product (A) to the core material (B) is 10 to 40% by weight.
【請求項2】 無機繊維と熱可塑性樹脂とからなり無機
繊維含有率が20〜60重量%である芯材層、熱可塑性
樹脂発泡体層及び熱可塑性樹脂表皮層を一体的に備えて
いる再生用繊維複合体を粉砕して得られた粉砕物(A)
をフィルムに成形して再生フィルムを得る工程と、得ら
れた再生フィルムを加熱し、これに、熱可塑性樹脂発泡
体に熱可塑性樹脂表皮が積層されてなる積層体の該発泡
体側を積層して両者を加圧一体化して繊維複合体(C)
を得る工程とを含み、かつ上記すべての熱可塑性樹脂が
同一または同系であり、繊維複合体(C)に対する粉砕
物(A)の割合が50〜95重量%であることを特徴と
する繊維複合体の製造方法。
2. A recycled material integrally comprising a core material layer comprising an inorganic fiber and a thermoplastic resin and having an inorganic fiber content of 20 to 60% by weight, a thermoplastic resin foam layer and a thermoplastic resin skin layer. Pulverized product (A) obtained by pulverizing a fiber composite for use
And a step of obtaining a regenerated film by molding into a film, and heating the obtained regenerated film, and laminating the foam side of the laminated body in which the thermoplastic resin skin is laminated on the thermoplastic resin foam. Fiber composite (C) by pressurizing and integrating both
And a step of obtaining all of the above-mentioned thermoplastic resins are the same or similar, and the ratio of the ground product (A) to the fiber composite (C) is 50 to 95% by weight. Body manufacturing method.
【請求項3】 無機繊維と熱可塑性樹脂とからなり無機
繊維含有率が20〜60重量%である芯材層及び熱可塑
性樹脂表皮層を一体的に備えている再生用繊維複合体を
粉砕して得られた粉砕物(D)をフィルムに成形して再
生フィルムを得る工程と、得られた再生フィルムを無機
繊維を主体とするマット状物の両面のうち少なくとも片
面に積層する工程と、この積層物を加熱加圧圧縮して再
生フィルム中の熱可塑性樹脂を溶融してこれをマット状
物に含浸する工程と、その後解圧し、含浸樹脂が溶融状
態にあるうちに積層物を厚さ方向に引っぱって膨らま
せ、芯材(E)を得る工程と、得られた芯材(E)を加
熱し、これに熱可塑性樹脂表皮を積層して両者を加圧一
体化する工程とを含み、かつ上記すべての熱可塑性樹脂
が同一または同系であり、芯材(E)に対する粉砕物
(D)の割合が10〜40重量%であることを特徴とす
る繊維複合体の製造方法。
3. A regenerated fiber composite comprising an inorganic fiber and a thermoplastic resin, which is integrally provided with a core material layer having an inorganic fiber content of 20 to 60% by weight and a thermoplastic resin skin layer. Forming a pulverized product (D) thus obtained into a film to obtain a regenerated film; laminating the obtained regenerated film on at least one of both surfaces of a mat-like material mainly composed of inorganic fibers; The process of heating and compressing the laminate to melt the thermoplastic resin in the recycled film and impregnating it into the mat-like material, and then decompressing the laminate to the thickness direction while the impregnating resin is in a molten state. And a step of heating the obtained core material (E), laminating a thermoplastic resin skin on the core material (E), and pressurizing and integrating the two, and All of the above thermoplastics are the same or similar The ratio of the pulverized product (D) to the core material (E) is 10 to 40% by weight, and the method for producing a fiber composite.
【請求項4】 無機繊維と熱可塑性樹脂とからなり無機
繊維含有率が20〜60重量%である芯材層及び熱可塑
性樹脂表皮層を一体的に備えている再生用繊維複合体を
粉砕して得られた粉砕物(D)をフィルムに成形して再
生フィルムを得る工程と、得られた再生フィルムを加熱
し、これに熱可塑性樹脂表皮を積層して両者を加圧一体
化して繊維複合体(F)を得る工程とを含み、かつ上記
すべての熱可塑性樹脂が同一または同系であり、繊維複
合体(F)に対する粉砕物(D)の割合が50〜95重
量%であることを特徴とする繊維複合体の製造方法。
4. A regenerated fiber composite comprising an inorganic fiber and a thermoplastic resin, which is integrally provided with a core layer having an inorganic fiber content of 20 to 60% by weight and a thermoplastic resin skin layer. A step of molding the pulverized product (D) obtained as described above into a film to obtain a regenerated film, heating the obtained regenerated film, laminating a thermoplastic resin skin on the regenerated film, and pressurizing and integrating both the fibers to form a fiber composite. A step of obtaining the body (F), all the thermoplastic resins are the same or similar, and the ratio of the pulverized product (D) to the fiber composite (F) is 50 to 95% by weight. And a method for producing a fiber composite.
JP5016260A 1993-02-03 1993-02-03 Production of fiber composite Ceased JPH06226740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5016260A JPH06226740A (en) 1993-02-03 1993-02-03 Production of fiber composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5016260A JPH06226740A (en) 1993-02-03 1993-02-03 Production of fiber composite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002313362A Division JP2003200450A (en) 2002-10-28 2002-10-28 Method for producing fiber composite

Publications (1)

Publication Number Publication Date
JPH06226740A true JPH06226740A (en) 1994-08-16

Family

ID=11911596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5016260A Ceased JPH06226740A (en) 1993-02-03 1993-02-03 Production of fiber composite

Country Status (1)

Country Link
JP (1) JPH06226740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2205978A1 (en) * 2001-06-05 2004-05-01 Coletica Treated water-insoluble solid particles, preparation and use

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390483A (en) * 1977-01-18 1978-08-09 Mitsui Toatsu Chemicals Recovering of inorganic fiber trash
JPS54145762A (en) * 1978-05-04 1979-11-14 Ono Sadatoshi Method of making synthetic resin sheet
JPS55114536A (en) * 1979-02-28 1980-09-03 Sekisui Plastics Co Ltd Forming body of glass-fiber containing synthetic resin and manufacture of the same
JPS57107835A (en) * 1980-12-25 1982-07-05 Toppan Printing Co Ltd Manufacture of composite decorative sheet
JPS57196735U (en) * 1981-06-11 1982-12-14
JPS57208210A (en) * 1981-06-18 1982-12-21 Shin Kobe Electric Mach Co Ltd Manufacture of laminated plate
JPS58139828A (en) * 1982-02-12 1983-08-19 Hayashi Terenpu Kk Carpet for automobile by making use of reclaimed trimming scrap and its manufacture
JPS58188649A (en) * 1982-04-30 1983-11-04 トヨタ自動車株式会社 Laminate for molding processing and its manufacture
JPS61154922A (en) * 1984-12-28 1986-07-14 Takashimaya Nitsupatsu Kogyo Kk Manufacture of trim for automobile
JPS61113158U (en) * 1984-12-28 1986-07-17
JPS61241136A (en) * 1985-04-19 1986-10-27 しげる工業株式会社 Interior part for automobile and manufacture thereof
JPS62119034A (en) * 1985-11-19 1987-05-30 トヨタ自動車株式会社 Molded shape consisting of laminate
JPS62152738A (en) * 1985-12-26 1987-07-07 日本バイリーン株式会社 Flame-retardant nonwoven-fabric molding ceiling material
JPS6357355A (en) * 1986-08-27 1988-03-12 Kotobukiya Furonte Kk Trimming material for vehicle
JPS6387312A (en) * 1986-09-29 1988-04-18 Kasai Kogyo Co Ltd Upholstery for vehicle
JPS6366223U (en) * 1986-10-20 1988-05-02
JPS6422513A (en) * 1987-07-16 1989-01-25 Kubota Ltd Manufacture of resin panel
JPS6477663A (en) * 1987-09-16 1989-03-23 Sekisui Chemical Co Ltd Production of heat moldable composite sheet
JPS6477664A (en) * 1987-09-16 1989-03-23 Sekisui Chemical Co Ltd Production of heat moldable composite sheet
JPH01165431A (en) * 1987-12-22 1989-06-29 Sekisui Chem Co Ltd Manufacture of fiber molding to be thermally molded
JPH01166946A (en) * 1987-12-23 1989-06-30 Sekisui Chem Co Ltd Manufacture of fibrous molding for thermoforming
JPH01285432A (en) * 1988-05-12 1989-11-16 Sekisui Chem Co Ltd Automobile ceiling material and manufacture thereof
JPH01306663A (en) * 1988-05-31 1989-12-11 Sekisui Chem Co Ltd Production of formed fiber material for thermo-forming
JPH01308623A (en) * 1988-01-26 1989-12-13 Sekisui Chem Co Ltd Manufacture of fiber molded form
JPH0212828A (en) * 1988-06-29 1990-01-17 Nec Corp Semiconductor device
JPH0245135A (en) * 1988-08-05 1990-02-15 Sekisui Chem Co Ltd Interior trimming material for automobile and manufacture thereof
JPH0261150A (en) * 1988-08-22 1990-03-01 Sekisui Chem Co Ltd Thermally formable composite material and production thereof
JPH0280652A (en) * 1988-09-13 1990-03-20 Sekisui Chem Co Ltd Production of thermo-formable composite material
JPH0280653A (en) * 1988-09-13 1990-03-20 Sekisui Chem Co Ltd Production of thermo-formable composite material
JPH02175147A (en) * 1988-12-27 1990-07-06 Sekisui Chem Co Ltd Long-sized composite molded form
JPH02175148A (en) * 1988-12-27 1990-07-06 Sekisui Chem Co Ltd Long-sized composite molding
JPH02184428A (en) * 1989-01-10 1990-07-18 Sekisui Chem Co Ltd Long composite molded object
JPH02286241A (en) * 1989-04-26 1990-11-26 Kanai Hiroyuki Interior skinmaterial for automobile
JPH03147830A (en) * 1989-11-02 1991-06-24 Achilles Corp Vehicular interior material and manufacture thereof
JPH03161335A (en) * 1989-11-21 1991-07-11 Sekisui Chem Co Ltd Preparation of lightweight composite material
JPH04228665A (en) * 1990-12-27 1992-08-18 Sekisui Chem Co Ltd Production of fiber composite material
JPH04267110A (en) * 1991-02-21 1992-09-22 Mitsubishi Kasei Corp Reusing method of waste at time of working of laminate
JPH04338511A (en) * 1991-05-15 1992-11-25 Nkk Corp Manufacture of continuous sheet for recycling glass fiber reinforced plastic molded product
JPH0593352A (en) * 1991-08-07 1993-04-16 Sekisui Chem Co Ltd Thermoformable core material and its production
JPH05154840A (en) * 1991-12-10 1993-06-22 Mitsubishi Petrochem Co Ltd Fiber reinforced thermoplastic resin composite material
JPH05254047A (en) * 1992-03-13 1993-10-05 Sekisui Chem Co Ltd Molded interior product for vehicle
JPH05311556A (en) * 1992-04-28 1993-11-22 Sekisui Chem Co Ltd Production of fiber composite product
JPH05311555A (en) * 1992-04-28 1993-11-22 Sekisui Chem Co Ltd Production of fiber composite product
JPH0623919A (en) * 1992-07-07 1994-02-01 Sekisui Chem Co Ltd Forming method of interior trim material
JPH06144123A (en) * 1992-11-10 1994-05-24 Kasai Kogyo Co Ltd Internal component for automobile and its manufacture
JPH06155645A (en) * 1992-11-26 1994-06-03 Sekisui Chem Co Ltd Manufacture of fiber composite
JPH06200463A (en) * 1993-01-06 1994-07-19 Sekisui Chem Co Ltd Production of fiber composite product

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390483A (en) * 1977-01-18 1978-08-09 Mitsui Toatsu Chemicals Recovering of inorganic fiber trash
JPS54145762A (en) * 1978-05-04 1979-11-14 Ono Sadatoshi Method of making synthetic resin sheet
JPS55114536A (en) * 1979-02-28 1980-09-03 Sekisui Plastics Co Ltd Forming body of glass-fiber containing synthetic resin and manufacture of the same
JPS57107835A (en) * 1980-12-25 1982-07-05 Toppan Printing Co Ltd Manufacture of composite decorative sheet
JPS57196735U (en) * 1981-06-11 1982-12-14
JPS57208210A (en) * 1981-06-18 1982-12-21 Shin Kobe Electric Mach Co Ltd Manufacture of laminated plate
JPS58139828A (en) * 1982-02-12 1983-08-19 Hayashi Terenpu Kk Carpet for automobile by making use of reclaimed trimming scrap and its manufacture
JPS58188649A (en) * 1982-04-30 1983-11-04 トヨタ自動車株式会社 Laminate for molding processing and its manufacture
JPS61154922A (en) * 1984-12-28 1986-07-14 Takashimaya Nitsupatsu Kogyo Kk Manufacture of trim for automobile
JPS61113158U (en) * 1984-12-28 1986-07-17
JPS61241136A (en) * 1985-04-19 1986-10-27 しげる工業株式会社 Interior part for automobile and manufacture thereof
JPS62119034A (en) * 1985-11-19 1987-05-30 トヨタ自動車株式会社 Molded shape consisting of laminate
JPS62152738A (en) * 1985-12-26 1987-07-07 日本バイリーン株式会社 Flame-retardant nonwoven-fabric molding ceiling material
JPS6357355A (en) * 1986-08-27 1988-03-12 Kotobukiya Furonte Kk Trimming material for vehicle
JPS6387312A (en) * 1986-09-29 1988-04-18 Kasai Kogyo Co Ltd Upholstery for vehicle
JPS6366223U (en) * 1986-10-20 1988-05-02
JPS6422513A (en) * 1987-07-16 1989-01-25 Kubota Ltd Manufacture of resin panel
JPS6477663A (en) * 1987-09-16 1989-03-23 Sekisui Chemical Co Ltd Production of heat moldable composite sheet
JPS6477664A (en) * 1987-09-16 1989-03-23 Sekisui Chemical Co Ltd Production of heat moldable composite sheet
JPH01165431A (en) * 1987-12-22 1989-06-29 Sekisui Chem Co Ltd Manufacture of fiber molding to be thermally molded
JPH01166946A (en) * 1987-12-23 1989-06-30 Sekisui Chem Co Ltd Manufacture of fibrous molding for thermoforming
JPH01308623A (en) * 1988-01-26 1989-12-13 Sekisui Chem Co Ltd Manufacture of fiber molded form
JPH01285432A (en) * 1988-05-12 1989-11-16 Sekisui Chem Co Ltd Automobile ceiling material and manufacture thereof
JPH01306663A (en) * 1988-05-31 1989-12-11 Sekisui Chem Co Ltd Production of formed fiber material for thermo-forming
JPH0212828A (en) * 1988-06-29 1990-01-17 Nec Corp Semiconductor device
JPH0245135A (en) * 1988-08-05 1990-02-15 Sekisui Chem Co Ltd Interior trimming material for automobile and manufacture thereof
JPH0261150A (en) * 1988-08-22 1990-03-01 Sekisui Chem Co Ltd Thermally formable composite material and production thereof
JPH0280652A (en) * 1988-09-13 1990-03-20 Sekisui Chem Co Ltd Production of thermo-formable composite material
JPH0280653A (en) * 1988-09-13 1990-03-20 Sekisui Chem Co Ltd Production of thermo-formable composite material
JPH02175147A (en) * 1988-12-27 1990-07-06 Sekisui Chem Co Ltd Long-sized composite molded form
JPH02175148A (en) * 1988-12-27 1990-07-06 Sekisui Chem Co Ltd Long-sized composite molding
JPH02184428A (en) * 1989-01-10 1990-07-18 Sekisui Chem Co Ltd Long composite molded object
JPH02286241A (en) * 1989-04-26 1990-11-26 Kanai Hiroyuki Interior skinmaterial for automobile
JPH03147830A (en) * 1989-11-02 1991-06-24 Achilles Corp Vehicular interior material and manufacture thereof
JPH03161335A (en) * 1989-11-21 1991-07-11 Sekisui Chem Co Ltd Preparation of lightweight composite material
JPH04228665A (en) * 1990-12-27 1992-08-18 Sekisui Chem Co Ltd Production of fiber composite material
JPH04267110A (en) * 1991-02-21 1992-09-22 Mitsubishi Kasei Corp Reusing method of waste at time of working of laminate
JPH04338511A (en) * 1991-05-15 1992-11-25 Nkk Corp Manufacture of continuous sheet for recycling glass fiber reinforced plastic molded product
JPH0593352A (en) * 1991-08-07 1993-04-16 Sekisui Chem Co Ltd Thermoformable core material and its production
JPH05154840A (en) * 1991-12-10 1993-06-22 Mitsubishi Petrochem Co Ltd Fiber reinforced thermoplastic resin composite material
JPH05254047A (en) * 1992-03-13 1993-10-05 Sekisui Chem Co Ltd Molded interior product for vehicle
JPH05311556A (en) * 1992-04-28 1993-11-22 Sekisui Chem Co Ltd Production of fiber composite product
JPH05311555A (en) * 1992-04-28 1993-11-22 Sekisui Chem Co Ltd Production of fiber composite product
JPH0623919A (en) * 1992-07-07 1994-02-01 Sekisui Chem Co Ltd Forming method of interior trim material
JPH06144123A (en) * 1992-11-10 1994-05-24 Kasai Kogyo Co Ltd Internal component for automobile and its manufacture
JPH06155645A (en) * 1992-11-26 1994-06-03 Sekisui Chem Co Ltd Manufacture of fiber composite
JPH06200463A (en) * 1993-01-06 1994-07-19 Sekisui Chem Co Ltd Production of fiber composite product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2205978A1 (en) * 2001-06-05 2004-05-01 Coletica Treated water-insoluble solid particles, preparation and use

Similar Documents

Publication Publication Date Title
EP0591553A1 (en) Skinned in-mold expansion molding product of polypropylene resin and production thereof
JPH02124947A (en) Fiber-reinforced monolithic foam and its preparation
EP2247653B1 (en) Foamed polypropylene sheet
JP2797922B2 (en) Wood-based thermoplastic molding plate
EP1300227B1 (en) Method for manufacturing press molded articles
JPH06226740A (en) Production of fiber composite
JP3117564B2 (en) Method for producing fiber composite
JP2003200450A (en) Method for producing fiber composite
JP3357194B2 (en) Manufacturing method of composite sheet with skin material
JP2831673B2 (en) Method for producing fiber molded body
JPH06200463A (en) Production of fiber composite product
KR200270794Y1 (en) Internal panel for car
JPH06218859A (en) Laminate and production thereof
JP3032582B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
JP3172281B2 (en) Manufacturing method of automotive interior materials
JPH04228665A (en) Production of fiber composite material
JPH079629A (en) Laminated composite and production thereof
JP3128368B2 (en) Fiber composite
JPH0649363B2 (en) Method for producing fiber molding for thermoforming
KR100439765B1 (en) Internal panel for car and the manufacturing method of the same
JP2960269B2 (en) Fiber composite
JP3254409B2 (en) Manufacturing method of molded interior material for automobile
JPH06312483A (en) Laminate and manufacture thereof
JPH03161335A (en) Preparation of lightweight composite material
JP2536908B2 (en) Method for producing thermoformable composite material

Legal Events

Date Code Title Description
A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20040225