JPH06226431A - Nozzle for casting - Google Patents

Nozzle for casting

Info

Publication number
JPH06226431A
JPH06226431A JP5013396A JP1339693A JPH06226431A JP H06226431 A JPH06226431 A JP H06226431A JP 5013396 A JP5013396 A JP 5013396A JP 1339693 A JP1339693 A JP 1339693A JP H06226431 A JPH06226431 A JP H06226431A
Authority
JP
Japan
Prior art keywords
mgo
partially stabilized
casting nozzle
sintered body
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5013396A
Other languages
Japanese (ja)
Other versions
JPH089096B2 (en
Inventor
Eiji Shimizu
栄治 清水
Osami Noguchi
修身 野口
Hideki Haishi
秀機 葉石
Nobuo Ayusawa
信夫 鮎澤
Akira Shironita
昭 白仁田
Masaaki Takeuchi
雅昭 竹内
Teruhiko Takeda
輝彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Mitsubishi Materials Corp
Original Assignee
Shinagawa Refractories Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, Mitsubishi Materials Corp filed Critical Shinagawa Refractories Co Ltd
Priority to JP5013396A priority Critical patent/JPH089096B2/en
Publication of JPH06226431A publication Critical patent/JPH06226431A/en
Publication of JPH089096B2 publication Critical patent/JPH089096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a nozzle for molten metal casting made of a ZrO2 sintered compact partially stabilized with MgO enabling long-term stable casting as the nozzle has excellent thermal impact resistance, lessens the reaction of the molten metal components and the stabilizing MgO in the sintered compact and lessens the deterioration in its strength during use. CONSTITUTION:This nozzle for casting consists of the ZrO2 sintered compact partially stabilized with the MgO formed by compounding 0.1 to 2 pts.wt. Al2O3 and 0.1 to 1 pt.wt. SiO2 with 100 pts.wt. ZrO2 component partially stabilized with the MgO compounded with 6 to 10mol% MgO and 0.1 to 3mol% SrO as stabilizers. As a result, the specific fine structure in which monoclinic crystal phase regions are three-dimensionally continuous is formed by adding the MgO and the SrO, Al2O3 and SiO2 as the stabilizers to the ZrO2. The ZrO2 sintered compact partially stabilized with the MgO which is greatly improved in various characteristics, such as thermal impact resistance, strength at room temp. and hot and chemical stability to the high-temp. molten metal, is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋳造用ノズルに係り、特
に、長時間にわたり安定した鋳造を行なうことができる
マグネシア(MgO)部分安定化ジルコニア(ZrO
2 )焼結体製鋳造用ノズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting nozzle, and more particularly to magnesia (MgO) partially stabilized zirconia (ZrO) capable of performing stable casting for a long time.
2 ) Sintered body casting nozzle.

【0002】[0002]

【従来の技術】ZrO2 は、1000℃付近での単斜晶
⇔正方晶の相変態に伴う約4%の体積変化により、Zr
2 単体の焼結体として得るのは困難である。
2. Description of the Related Art ZrO 2 contains Zr due to a volume change of about 4% accompanying the phase transformation of monoclinic ⇔ tetragonal at around 1000 ° C.
It is difficult to obtain a sintered body of O 2 alone.

【0003】このため、従来、一般に、ZrO2 の安定
化剤としてMgO,CaO,Y23 等を添加し、焼
成、冷却により室温で安定な焼結体を得る方法が採られ
ている。
For this reason, conventionally, a method has been generally adopted in which MgO, CaO, Y 2 O 3 or the like is added as a ZrO 2 stabilizer, and a sintered body stable at room temperature is obtained by firing and cooling.

【0004】これら安定化剤を配合したZrO2 焼結体
のうち、特にMgOで安定化したZrO2 焼結体は、耐
熱衝撃性、強度、破壊靭性値に優れる上に、高温で使用
される非鉄金属押出し用のダイス等の耐熱構造部材等と
して広く使用されている。
Among the ZrO 2 sinters containing these stabilizers, the MgO-stabilized ZrO 2 sinters are excellent in thermal shock resistance, strength and fracture toughness and are used at high temperatures. It is widely used as a heat resistant structural member such as a die for extruding non-ferrous metals.

【0005】このようなMgO部分安定化ZrO2 焼結
体において、強度を犠牲にして耐熱衝撃性を向上させる
目的で、ZrO2 の安定化剤としてMgOとCaOを併
用したり、Al23 やSiO2 を微量添加したものな
どが提案されている。しかしながら、その耐熱衝撃性は
十分であるとは言えず、またMgO部分安定化ZrO2
焼結体製鋳造用ノズルと溶融金属との反応に関しては、
ほどんど注意を払われていなかったのが現実である。
In such a MgO partially stabilized ZrO 2 sintered body, MgO and CaO are used in combination as a stabilizer of ZrO 2 or Al 2 O 3 for the purpose of improving thermal shock resistance at the expense of strength. A material in which a small amount of SiO 2 or SiO 2 is added has been proposed. However, it cannot be said that its thermal shock resistance is sufficient, and MgO partially stabilized ZrO 2
Regarding the reaction between the sintered casting nozzle and the molten metal,
The reality is that little attention has been paid.

【0006】[0006]

【発明が解決しようとする課題】このため、従来のMg
O部分安定化ZrO2 焼結体では、温度1300℃以上
の溶融金属と接触する鋳造用ノズルのように、急激な熱
衝撃及び溶融金属との反応等が関与する条件下で使用す
る部材に適用した場合には、熱衝撃により生じた亀裂に
よる部材の破損、或いは、溶融金属成分と焼結体中の安
定化剤MgOとが反応することによる、ZrO2 焼結体
の強度劣化、更には部材破損といった耐用性の面での問
題があった。
Therefore, the conventional Mg
O partially stabilized ZrO 2 sintered body is applied to members used under conditions involving rapid thermal shock and reaction with molten metal, such as a casting nozzle that comes into contact with molten metal at a temperature of 1300 ° C or higher. In such a case, the member is damaged by cracks caused by thermal shock, or the strength of the ZrO 2 sintered body is deteriorated due to the reaction between the molten metal component and the stabilizer MgO in the sintered body, and further, the member. There was a problem in terms of durability such as breakage.

【0007】本発明は上記従来の問題点を解決し、耐熱
衝撃性に優れ、かつ溶融金属成分と焼結体中の安定化剤
MgOとの反応が少ないため、使用中の強度劣化が少な
いことから、長時間安定な鋳造を可能とするMgO部分
安定化ZrO2 焼結体製溶融金属鋳造用ノズルを提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems, is excellent in thermal shock resistance, and has little reaction between the molten metal component and the stabilizer MgO in the sintered body, so that strength deterioration during use is small. Therefore, an object of the present invention is to provide a molten metal casting nozzle made of a MgO partially stabilized ZrO 2 sintered body, which enables stable casting for a long time.

【0008】[0008]

【課題を解決するための手段及び作用】請求項1の鋳造
用ノズルは、化学組成としてMgOを6〜10モル%、
SrOを0.1〜3モル%含有し、残部が実質的にZr
2 よりなるMgO部分安定化ZrO2 成分100重量
部に対し、Al23 を0.1〜2重量部、SiO2
0.1〜1重量部含有するMgO部分安定化ZrO2
結体よりなることを特徴とする。
The casting nozzle of claim 1 has a chemical composition of MgO of 6 to 10 mol%,
0.1 to 3 mol% of SrO is contained, and the balance is substantially Zr.
Sintered MgO partially stabilized ZrO 2 containing 0.1 to 2 parts by weight of Al 2 O 3 and 0.1 to 1 part by weight of SiO 2 with respect to 100 parts by weight of MgO partially stabilized ZrO 2 component made of O 2. Characterized by consisting of a body.

【0009】請求項2の鋳造用ノズルは、請求項1の鋳
造用ノズルにおいて、MgO部分安定化ZrO2 成分が
更にBaOを2モル%未満含有することを特徴とする。
A casting nozzle according to a second aspect is the casting nozzle according to the first aspect, characterized in that the MgO partially stabilized ZrO 2 component further contains less than 2 mol% of BaO.

【0010】請求項3の鋳造用ノズルは、請求項1又は
2の鋳造用ノズルにおいて、MgO部分安定化ZrO2
焼結体の微細組織は、径が5〜100μmの立方晶、正
方晶及び単斜晶よりなる第1の結晶粒と、単斜晶よりな
る第2の結晶粒とからなり、該第1の結晶粒内の単斜晶
は、主として粒界に面する領域に存在して、該第1の結
晶粒の粒界に存在する前記第2の結晶粒と共に3次元的
に連続した単斜晶相領域を形成していることを特徴とす
る。
The casting nozzle according to claim 3 is the casting nozzle according to claim 1 or 2, wherein the MgO partially stabilized ZrO 2 is used.
The microstructure of the sintered body is composed of first crystal grains of cubic crystal, tetragonal crystal and monoclinic crystal having a diameter of 5 to 100 μm, and second crystal grains of monoclinic crystal. The monoclinic crystal in the crystal grain exists mainly in a region facing the grain boundary, and the monoclinic phase is three-dimensionally continuous with the second crystal grain existing in the grain boundary of the first crystal grain. It is characterized by forming a region.

【0011】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0012】本発明の鋳造用ノズルが、耐熱衝撃性、特
に急加熱時の耐熱衝撃性において優れている理由とし
て、本発明の鋳造用ノズルを構成するMgO部分安定化
ZrO2 焼結体においては、単斜晶相領域が3次元的に
連続して形成されていることが考えられる。即ち、Mg
O部分安定化ZrO2 焼結体は、急加熱されると、焼結
体中の単斜晶が正方晶に相変態する。そして、それに伴
う体積収縮は、急加熱により生じた熱応力の、応力緩和
領域を生成せしめるが、その効果は単斜晶相領域が分散
して存在するよりも、3次元的に連続して存在する方が
大きいためと考えられる。
The reason why the casting nozzle of the present invention is excellent in thermal shock resistance, particularly in thermal shock during rapid heating, is that the MgO partially stabilized ZrO 2 sintered body constituting the casting nozzle of the present invention is It is considered that the monoclinic phase region is formed three-dimensionally continuously. That is, Mg
When the O partially stabilized ZrO 2 sintered body is rapidly heated, the monoclinic crystal in the sintered body undergoes a phase transformation into a tetragonal system. And the volume contraction accompanying it causes the stress relaxation region of the thermal stress generated by the rapid heating, but the effect is three-dimensionally continuous rather than the presence of the monoclinic phase regions dispersed. This is probably because it is more important to

【0013】また、鋳造する溶融金属と鋳造用ノズルの
界面近傍での反応を考える。従来のMgO部分安定化Z
rO2 焼結体の場合、焼結体中の粒界に侵入してきた溶
融金属成分は、粒内に固溶している安定化剤MgOと反
応し、MgOは溶融金属内へ拡散していき、その結果、
溶融金属の界面近傍では焼結体中のMgO量が減少する
事によるその領域での強度劣化により溶損が進行するも
のと考えられる。本発明のMgO部分安定化ZrO2
結体ではSrO、BaOを添加することにより、MgO
を含む粒の粒界領域に安定化剤MgOを含まない単斜晶
領域が形成される。すなわち、安定化剤MgOを含む結
晶粒が安定化剤MgOを含まない相により、保護された
形態をなし、そのため、粒界に侵入してきた溶融金属成
分とMgOは反応しにくくなる。その結果、溶融金属と
の界面近傍で焼結体の強度劣化がなく耐溶損性に優れる
ものと考えられる。
Consider the reaction near the interface between the molten metal to be cast and the casting nozzle. Conventional MgO partially stabilized Z
In the case of the rO 2 sintered body, the molten metal component that has penetrated into the grain boundaries in the sintered body reacts with the stabilizer MgO that is in solid solution in the grains, and MgO diffuses into the molten metal. ,as a result,
It is considered that near the interface of the molten metal, the amount of MgO in the sintered body decreases and the strength deteriorates in that region, so that melting loss progresses. In the MgO partially stabilized ZrO 2 sintered body of the present invention, MgO can be added by adding SrO and BaO.
A monoclinic region that does not contain the stabilizer MgO is formed in the grain boundary region of the grains that contain. That is, the crystal grains containing the stabilizer MgO are protected by the phase not containing the stabilizer MgO, so that the molten metal component that has penetrated into the grain boundaries and MgO do not easily react with each other. As a result, the strength of the sintered body is not deteriorated near the interface with the molten metal, and it is considered that the corrosion resistance is excellent.

【0014】なお、本発明の鋳造用ノズルを構成するM
gO部分安定化ZrO2 焼結体では、単斜晶相が連続し
ているとしているが、部分的に不連続な領域があったと
しても、また、粒界に単斜晶以外の添加物による反応生
成物が存在したとしても、本発明の効果を失わせるもの
ではない。
Incidentally, M constituting the casting nozzle of the present invention
In the gO partially stabilized ZrO 2 sintered body, the monoclinic phase is said to be continuous. However, even if there is a partially discontinuous region, the grain boundary is not affected by additives other than the monoclinic crystal. The presence of the reaction product does not impair the effects of the present invention.

【0015】以下、本発明の鋳造用ノズルを構成するM
gO部分安定化ZrO2 焼結体における各成分の添加効
果と微細組織との関連について説明する。
Hereinafter, M constituting the casting nozzle of the present invention
The relationship between the addition effect of each component and the microstructure in the gO partially stabilized ZrO 2 sintered body will be described.

【0016】なお、以下において、「モル%」はMgO
とSrOとZrO2 との合計に対する内割りのモル百分
率を示し、「重量%」はこの合計に対する外割りの重量
百分率を示す。
In the following, "mol%" means MgO.
And SrO and ZrO 2 indicate the mole percentage of the inner portion relative to the total, and “wt%” indicates the weight percentage of the outer portion relative to the total.

【0017】本発明においては、MgOとSrO,Al
23 及びSiO2 との併用による相乗効果で、前記微
細組織を形成して優れた耐熱衝撃性と安定性を得、更に
BaOを添加することで粒界生成物を増加させ、より溶
融金属成分に対する安定性を高めるものである。
In the present invention, MgO, SrO, Al
Due to the synergistic effect of the combined use of 2 O 3 and SiO 2 , the above-mentioned microstructure is formed to obtain excellent thermal shock resistance and stability, and the addition of BaO increases the grain boundary products, resulting in more molten metal. It improves the stability of the ingredients.

【0018】本発明において、MgOの添加量は6〜1
0モル%、好ましくは7〜9モル%である。MgOが6
モル%未満では、前記微細組織が得られないばかりか、
焼結体の強度が低下する。MgOが10モル%より多い
と前記微細組織が得られたとしても焼成後の冷却時に析
出する単斜晶の量が減少し、耐熱衝撃性は劣化する。従
ってMgO含有量は6〜10モル%でなければならな
い。
In the present invention, the addition amount of MgO is 6 to 1
It is 0 mol%, preferably 7 to 9 mol%. MgO is 6
If it is less than mol%, not only the fine structure cannot be obtained,
The strength of the sintered body decreases. When the content of MgO is more than 10 mol%, the amount of monoclinic crystals precipitated during cooling after firing is decreased and the thermal shock resistance is deteriorated even if the fine structure is obtained. Therefore, the MgO content must be 6-10 mol%.

【0019】SrOの添加量は0.1〜3モル%、好ま
しくは0.3〜2モル%である。SrOが0.1モル%
未満では前記微細組織は得られず、3モル%より多い
と、前記微細組織は崩れ、耐熱衝撃性も劣化する。
The amount of SrO added is 0.1 to 3 mol%, preferably 0.3 to 2 mol%. SrO is 0.1 mol%
If the amount is less than the above, the fine structure cannot be obtained, and if it is more than 3 mol%, the fine structure collapses and the thermal shock resistance also deteriorates.

【0020】BaOを添加する場合、その添加量は2モ
ル%未満、好ましくは1モル%未満とする。BaOが2
モル%以上になると、前記微細組織は崩れ、耐熱衝撃性
も低下する。
When BaO is added, its amount is less than 2 mol%, preferably less than 1 mol%. BaO is 2
When it is more than mol%, the fine structure collapses and the thermal shock resistance also deteriorates.

【0021】Al23 及びSiO2 の添加量は、Mg
O,SrOを含有し残部が実質的にZrO2 よりなるM
gO部分安定化ZrO2 成分100重量部に対し、Al
23 を0.1〜2重量部及びSiO2 を0.1〜1重
量部、好ましくはAl23を0.1〜1重量部及びS
iO2 を0.1〜0.5重量部である。Al23 及び
SiO2 の添加量が上記範囲より少ないと前記微細組織
が得られず、耐熱衝撃性に劣り、上記範囲より多いと、
前記微細組織は得られず、しかも強度も低下する。
The addition amount of Al 2 O 3 and SiO 2 is Mg
M containing O and SrO and the balance being essentially ZrO 2
gO partially stabilized ZrO 2 component 100 parts by weight, Al
2 O 3 0.1 to 2 parts by weight and SiO 2 0.1-1 parts by weight, preferably Al 2 O 3 0.1-1 parts by weight of S
iO 2 is 0.1 to 0.5 parts by weight. If the added amount of Al 2 O 3 and SiO 2 is less than the above range, the fine structure cannot be obtained and the thermal shock resistance is inferior, and if it is more than the above range,
The fine structure cannot be obtained, and the strength is reduced.

【0022】このようなMgO部分安定化ZrO2 焼結
体よりなる本発明の鋳造用ノズルは、前記所定の化学組
成となるように、各成分を配合して得られる混合粉体を
所定形状に成形し、得られた成形体を大気雰囲気中、焼
成温度1500〜1800℃で焼成することにより製造
することができる。ここで、1500℃より低い焼成温
度では前記微細組織は得られず、1800℃より高い焼
成温度では、焼成炉の技術面、コスト面、量産面で実現
が難しくなる。
In the casting nozzle of the present invention made of such a MgO partially stabilized ZrO 2 sintered body, the mixed powder obtained by mixing the respective components so as to have the predetermined chemical composition is formed into a predetermined shape. It can be manufactured by molding and calcining the obtained molded body at a calcining temperature of 1500 to 1800 ° C. in the atmosphere. If the firing temperature is lower than 1500 ° C., the fine structure cannot be obtained, and if the firing temperature is higher than 1800 ° C., it is difficult to realize the firing furnace in terms of technology, cost and mass production.

【0023】なお、本発明の鋳造用ノズルのMgO部分
安定化ZrO2 焼結体の製造に使用されるMgO、その
他の成分原料は、焼結体生成過程で酸化物の形となるも
のであればよく、各々の酸化物の他、水酸化物、炭酸塩
等も使用可能である。また、各成分がより均一な混合状
態とされた、液相から合成された原料を用いることもで
きる。
The MgO and other component raw materials used in the production of the MgO partially stabilized ZrO 2 sintered body of the casting nozzle of the present invention should be in the form of oxides during the production process of the sintered body. In addition to the respective oxides, hydroxides, carbonates and the like can be used. It is also possible to use a raw material synthesized from a liquid phase in which each component is in a more uniform mixed state.

【0024】[0024]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明するが、本発明はその要旨を超えない
限り、以下の実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist.

【0025】実施例1〜8a,8b、比較例9〜14 平均粒子径が1μm以下の高純度ZrO2 原料にMg
O,SrCO3 ,BaCO3 ,Ca(OH)2 ,Al2
3 ,SiO2 の各粉末を、焼成後の化学組成が表1に
示す割合となるように加えて湿式混合した。得られた混
合粉末を1200℃で4時間仮焼し、その後、湿式解砕
し、成形用有機バインダを加えて化学組成的に均一な混
合粉末を得た。この粉末を圧力1000kg/cm2
CIPした後、1750℃で5時間焼成し、焼結体試料
を得た。
Examples 1 to 8a and 8b, Comparative Examples 9 to 14 Mg was used as a high-purity ZrO 2 raw material having an average particle size of 1 μm or less.
O, SrCO 3 , BaCO 3 , Ca (OH) 2 , Al 2
Each powder of O 3 and SiO 2 was added so that the chemical composition after firing would be the ratio shown in Table 1 and wet-mixed. The obtained mixed powder was calcined at 1200 ° C. for 4 hours, then wet-crushed, and a molding organic binder was added to obtain a mixed powder having a uniform chemical composition. This powder was subjected to CIP at a pressure of 1000 kg / cm 2 and then fired at 1750 ° C. for 5 hours to obtain a sintered body sample.

【0026】各試料について各々評価を行ない、結果を
表1に示した。
Each sample was evaluated and the results are shown in Table 1.

【0027】なお、評価方法は、室温強度についてJI
S曲げ試験による方法、耐熱衝撃性については、一端閉
管型の試料を1700℃溶鋼中へ浸漬する急加熱試験方
法により測定した。また微細組織については、焼結体試
料を鏡面研磨後に化学エッチングをしSEM観察する方
法を採用した。図1に請求項3の微細組織を有する焼結
体(実施例6の焼結体)の化学エッチング後のSEM写
真を示す。図中帯状の黒色部が連続形成されている単斜
晶領域である。
The evaluation method is as follows:
The method based on the S-bending test and the thermal shock resistance were measured by a rapid heating test method in which a tube of one-end closed tube type was immersed in molten steel at 1700 ° C. Regarding the fine structure, a method of observing the sintered body sample by mirror etching and then performing chemical etching and SEM observation was adopted. FIG. 1 shows an SEM photograph of the sintered body having the fine structure of claim 3 (sintered body of Example 6) after chemical etching. In the figure, it is a monoclinic region in which a band-shaped black portion is continuously formed.

【0028】表1より明らかなように、MgO−SrO
−Al23 −SiO2 混合系及びMgO−SrO−B
aO−Al23 −SiO2 混合系で、前記微細組織を
有するMgO部分安定化ZrO2 焼結体は、耐熱衝撃性
に優れ、かつ高強度であり、鋳造用ノズルとして極めて
有効に使用することができる。
As is clear from Table 1, MgO-SrO
-Al 2 O 3 -SiO 2 mixed system and MgO-SrO-B
The MgO partially stabilized ZrO 2 sintered body having the aO—Al 2 O 3 —SiO 2 mixed system and having the above microstructure has excellent thermal shock resistance and high strength, and is extremely effectively used as a casting nozzle. be able to.

【0029】[0029]

【表1】 [Table 1]

【0030】また、実施例6、比較例10,13に関
し、10mm×10mm×3mm厚さのMgO部分安定
化ZrO2 焼結体製プレートを作製した。このプレート
上に2mm×2mm×2mmのコバルト系合金を載せ、
Ar雰囲気下1500℃まで昇温して静的条件下での耐
食試験を実施した。耐食性は、合金とプレートとの濡れ
性の尺度としての接触角の測定と合金とプレートの反応
部の切断面をSEM・EPMAで組織・組成解析を行な
うことにより評価した。結果を表2に示す。
Further, regarding Example 6 and Comparative Examples 10 and 13, a MgO partially stabilized ZrO 2 sintered body plate having a thickness of 10 mm × 10 mm × 3 mm was prepared. Place a 2mm x 2mm x 2mm cobalt-based alloy on this plate,
A corrosion resistance test was performed under static conditions by raising the temperature to 1500 ° C. in an Ar atmosphere. The corrosion resistance was evaluated by measuring the contact angle as a measure of the wettability between the alloy and the plate and performing the structure / composition analysis of the cut surface of the reaction part of the alloy and the plate with SEM / EPMA. The results are shown in Table 2.

【0031】表2より次のことが明らかである。即ち、
接触角については、いずれの試料も90°以上で、差は
殆どなかった。
The following is clear from Table 2. That is,
Regarding the contact angle, all samples were 90 ° or more, and there was almost no difference.

【0032】組織変化については実施例6の試料では、
合金成分が焼結体の粒界に侵入するが、粒界領域は安定
化剤を含まない単斜晶であるため、粒内に存在する安定
化剤と接触しにくく、従って、組織及び組成の変化が殆
ど認められず、高耐食性材料であることが確認された。
Regarding the change in structure, in the sample of Example 6,
Although the alloy component penetrates into the grain boundaries of the sintered body, the grain boundary region is a monoclinic crystal that does not contain a stabilizer, so it is difficult to contact the stabilizer present in the grains, and therefore the structure and composition Almost no change was observed, and it was confirmed that the material had high corrosion resistance.

【0033】一方、比較例10及び13の試料では、合
金成分が焼結体の粒界に侵入し、粒内に存在している安
定化剤と反応を起こし、安定化剤は粒界を通じ合金との
接触面に移動している。その結果、焼結体内部では、安
定化剤を含んだZrO2 粒の脱安定化が進行し、そのZ
rO2 粒が細分化され、焼結体強度の低下により合金と
の界面より損傷が生じることが判明した。
On the other hand, in the samples of Comparative Examples 10 and 13, the alloy component penetrates into the grain boundaries of the sintered body and reacts with the stabilizer existing in the grains, and the stabilizer is alloyed through the grain boundaries. It has moved to the contact surface with. As a result, destabilization of the ZrO 2 particles containing the stabilizer proceeds inside the sintered body,
It was found that the rO 2 grains were subdivided and the strength of the sintered body was reduced, resulting in damage from the interface with the alloy.

【0034】[0034]

【表2】 [Table 2]

【0035】更に、実施例6及び比較例10,13に関
し、外径30mm、内径4mm、長さ30mmのMgO
部分安定化ZrO2 質ノズルを製作し、実機装置に各ノ
ズルをセットし、以下の操業条件で評価試験を行なっ
た。
Further, regarding Example 6 and Comparative Examples 10 and 13, MgO having an outer diameter of 30 mm, an inner diameter of 4 mm and a length of 30 mm.
Partially stabilized ZrO 2 quality nozzles were manufactured, each nozzle was set in an actual machine, and an evaluation test was conducted under the following operating conditions.

【0036】操業条件 溶解合金種はコバルト系合金とする。鋳造時の保持温度
は1500℃とする。その結果、実施例6の材質では、
熱衝撃による亀裂発生もなく、8時間以上安定して鋳造
が可能であった。
Operating Conditions The molten alloy type is a cobalt alloy. The holding temperature during casting is 1500 ° C. As a result, with the material of Example 6,
There was no cracking due to thermal shock, and stable casting was possible for 8 hours or more.

【0037】一方、比較例10,13の材質では、熱衝
撃による亀裂の発生及び安定化剤の偏析による脱安定化
に伴う溶損により、ノズル表面性状の悪化のため2時間
以内の低い耐用性しか得られなかった。
On the other hand, in the materials of Comparative Examples 10 and 13, low durability within 2 hours due to deterioration of nozzle surface properties due to melting loss due to cracking due to thermal shock and destabilization due to segregation of the stabilizer. I only got it.

【0038】以上の結果、本発明のMgO部分安定化Z
rO2 焼結体製鋳造用ノズルを使用することにより、従
来材質に比べ飛躍的に耐用性が向上することがわかる。
As a result, the MgO partially stabilized Z of the present invention is obtained.
It can be seen that the durability is dramatically improved by using the casting nozzle made of the rO 2 sintered body as compared with the conventional material.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明の鋳造用ノズ
ルによれば、耐熱衝撃性、室温及び熱間での強度、高温
の溶融金属に対する化学的安定性等に著しく優れ、長時
間の鋳造に安定して使用することができる鋳造用ノズル
が提供される。
As described above in detail, according to the casting nozzle of the present invention, the thermal shock resistance, the strength at room temperature and hot, the chemical stability against molten metal at high temperature, etc. Provided is a casting nozzle which can be stably used in casting.

【0040】請求項2,3の鋳造用ノズルによれば、よ
り一層上記特性に優れた鋳造用ノズルが提供される。
According to the casting nozzles of claims 2 and 3, a casting nozzle further excellent in the above characteristics is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】MgO部分安定化ZrO2 焼結体の微細結晶組
織を示すSEM写真(500倍)である。
FIG. 1 is a SEM photograph (500 times) showing a fine crystal structure of a MgO partially stabilized ZrO 2 sintered body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 葉石 秀機 岡山県赤磐郡山陽町桜ヶ丘西6−31−24 (72)発明者 鮎澤 信夫 岡山県岡山市可知5−6−25 (72)発明者 白仁田 昭 岡山県岡山市上道北方18−39 (72)発明者 竹内 雅昭 岡山県備前市東片上390 (72)発明者 武田 輝彦 岡山県備前市東片上660 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Haishi 6-31-24 Sakuragaoka Nishi, Sanyo-cho, Akaban-gun, Okayama Prefecture (72) Inventor Nobuo Ayuzawa 5-6-25 Kachi, Okayama-shi, Okayama (72) Invention Akira Shirahita 18-39 north of Kamido, Okayama City, Okayama Prefecture (72) Inventor Masaaki Takeuchi 390 Higashikataue, Bizen City, Okayama Prefecture (72) Teruhiko Takeda Higashikatagami, Bizen City, Okayama Prefecture 660

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学組成としてMgOを6〜10モル
%、SrOを0.1〜3モル%含有し、残部が実質的に
ZrO2 よりなるMgO部分安定化ZrO2 成分100
重量部に対し、Al23 を0.1〜2重量部、SiO
2 を0.1〜1重量部含有するMgO部分安定化ZrO
2 焼結体よりなることを特徴とする鋳造用ノズル。
1. A chemical MgO 6-10 mole percent composition of SrO containing 0.1 to 3 mol%, MgO partial balance of substantially ZrO 2 stabilized ZrO 2 component 100
0.1 to 2 parts by weight of Al 2 O 3 and SiO 2 with respect to parts by weight
MgO partially stabilized ZrO containing 0.1 to 1 part by weight of 2
A casting nozzle characterized by comprising 2 sintered bodies.
【請求項2】 請求項1の鋳造用ノズルにおいて、Mg
O部分安定化ZrO2 成分が更にBaOを2モル%未満
含有することを特徴とする鋳造用ノズル。
2. The casting nozzle according to claim 1, wherein Mg
A casting nozzle characterized in that the O partially stabilized ZrO 2 component further contains less than 2 mol% of BaO.
【請求項3】 請求項1又は2の鋳造用ノズルにおい
て、MgO部分安定化ZrO2 焼結体の微細組織は、径
が5〜100μmの立方晶、正方晶及び単斜晶よりなる
第1の結晶粒と、単斜晶よりなる第2の結晶粒とからな
り、該第1の結晶粒内の単斜晶は、主として粒界に面す
る領域に存在して、該第1の結晶粒の粒界に存在する前
記第2の結晶粒と共に3次元的に連続した単斜晶相領域
を形成していることを特徴とする鋳造用ノズル。
3. The casting nozzle according to claim 1 or 2, wherein the fine structure of the MgO partially stabilized ZrO 2 sintered body is a cubic structure having a diameter of 5 to 100 μm, a tetragonal system and a monoclinic system. The crystal grains and the second crystal grains composed of monoclinic crystals are present. The monoclinic crystals in the first crystal grains are mainly present in the region facing the grain boundaries, and A casting nozzle characterized in that a monoclinic phase region which is three-dimensionally continuous is formed together with the second crystal grains existing at grain boundaries.
JP5013396A 1993-01-29 1993-01-29 Casting nozzle Expired - Lifetime JPH089096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013396A JPH089096B2 (en) 1993-01-29 1993-01-29 Casting nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013396A JPH089096B2 (en) 1993-01-29 1993-01-29 Casting nozzle

Publications (2)

Publication Number Publication Date
JPH06226431A true JPH06226431A (en) 1994-08-16
JPH089096B2 JPH089096B2 (en) 1996-01-31

Family

ID=11831958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013396A Expired - Lifetime JPH089096B2 (en) 1993-01-29 1993-01-29 Casting nozzle

Country Status (1)

Country Link
JP (1) JPH089096B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415643B1 (en) * 1998-12-12 2004-03-19 주식회사 포스코 Refractory compositions for ceramic lined copper nozzle for corex
EP2090554A1 (en) * 2008-02-18 2009-08-19 Refractory Intellectual Property GmbH & Co. KG Refractory slag band
EP3827912A1 (en) * 2019-11-26 2021-06-02 Refractory Intellectual Property GmbH & Co. KG An exchangeable nozzle for a nozzle changer system, a method for manufacturing such a nozzle, a nozzle changer system comprising such a nozzle and a tundish comprising such a nozzle changer system
CN115717208A (en) * 2021-08-24 2023-02-28 昆山晶微新材料研究院有限公司 Aviation aluminum alloy material and production method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415643B1 (en) * 1998-12-12 2004-03-19 주식회사 포스코 Refractory compositions for ceramic lined copper nozzle for corex
EP2090554A1 (en) * 2008-02-18 2009-08-19 Refractory Intellectual Property GmbH & Co. KG Refractory slag band
WO2009103949A1 (en) * 2008-02-18 2009-08-27 Refractory Intellectual Property Gmbh & Co Kg Refractory slag band
EA017317B1 (en) * 2008-02-18 2012-11-30 Рефректори Интеллекчуал Проперти Гмбх Унд Ко Кг A refractory article for ladle as the ladle shroud, stopper rod, submerged entry nozzle or tube
EP3827912A1 (en) * 2019-11-26 2021-06-02 Refractory Intellectual Property GmbH & Co. KG An exchangeable nozzle for a nozzle changer system, a method for manufacturing such a nozzle, a nozzle changer system comprising such a nozzle and a tundish comprising such a nozzle changer system
WO2021104696A1 (en) * 2019-11-26 2021-06-03 Refractory Intellectual Property Gmbh & Co. Kg An exchangeable nozzle for a nozzle changer system, a method for manufacturing such a nozzle, a nozzle changer system comprising such a nozzle and a tundish comprising such a nozzle changer system
CN114555263A (en) * 2019-11-26 2022-05-27 里弗雷克特里知识产权两合公司 Replaceable nozzle of a nozzle changer system, method of manufacturing such a nozzle, nozzle changer system comprising such a nozzle and tundish comprising such a nozzle changer system
CN114555263B (en) * 2019-11-26 2023-12-15 里弗雷克特里知识产权两合公司 Replaceable nozzle of a nozzle changer system, method of manufacturing such a nozzle, nozzle changer system comprising such a nozzle and tundish comprising such a nozzle changer system
CN115717208A (en) * 2021-08-24 2023-02-28 昆山晶微新材料研究院有限公司 Aviation aluminum alloy material and production method thereof

Also Published As

Publication number Publication date
JPH089096B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
TW201041823A (en) A sintered product based on chromium oxide
US4835123A (en) Magnesia partially-stabilized zirconia
JP3283883B2 (en) Alumina-magnesia-graphite refractory for continuous casting
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
JPH06226431A (en) Nozzle for casting
JPS59152266A (en) Zirconia refractories
EP0235936A1 (en) Magnesia partially-stabilized Zirconia
JP2002316866A (en) Member for heat treatment consisting of alumina sintered compact having excellent durability
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS6126561A (en) Zirconia ceramics
JPH09314278A (en) Mold material for casting titanium and titanium alloy
WO1998050184A1 (en) Nozzle for continuous casting of steel
JPH0624839A (en) Zircon-based refractory
JPS6247834B2 (en)
JP3026640B2 (en) Zirconia material added basic pouring material
JPH06263544A (en) Sialon-based composite sintered compact and its production
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JP4312628B2 (en) Stopper for continuous casting of steel
JP2971824B2 (en) High corrosion resistance refractory
JP3031192B2 (en) Sliding nozzle plate refractories
JPH0867558A (en) Refractory for molten metal for nozzle or the like
JPH04260655A (en) Graphite-containing refractory having high strength
JP2599894B2 (en) Carbon containing refractories
JPH1112034A (en) Zirconia-based refractory for casting use
JPH04143048A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 17

EXPY Cancellation because of completion of term