JPH06226253A - Treatment of feed water by memberane module - Google Patents

Treatment of feed water by memberane module

Info

Publication number
JPH06226253A
JPH06226253A JP3743293A JP3743293A JPH06226253A JP H06226253 A JPH06226253 A JP H06226253A JP 3743293 A JP3743293 A JP 3743293A JP 3743293 A JP3743293 A JP 3743293A JP H06226253 A JPH06226253 A JP H06226253A
Authority
JP
Japan
Prior art keywords
membrane module
feed water
raw water
water
hardness component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3743293A
Other languages
Japanese (ja)
Other versions
JP3350124B2 (en
Inventor
Kazuo Tanaka
和男 田中
Ichiro Kawada
一郎 河田
Noriaki Yoshioka
範明 吉岡
Yoshiyasu Kamiyama
義康 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP03743293A priority Critical patent/JP3350124B2/en
Publication of JPH06226253A publication Critical patent/JPH06226253A/en
Application granted granted Critical
Publication of JP3350124B2 publication Critical patent/JP3350124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prevent the sticking of a microorganisms slime to a membrane and to stably maintain the permeation performance of the membrane by decreasing the hardness component of a feed water to less than a specified level and treating the feed water with a synthetic high polymer system composite membrane module under the presence of a dissolved oxidizing agent. CONSTITUTION:In the case of treating the feed water containing abundantly the hardness component, a liq. feed pump 5 is driven to pass the feed water in a feed water tank through a water softener 3, and the hardness component such as calcium or magnecium is decreased down to <=10ppm, and once, the feed water is stored in an intermediate tank 4. Then, the storage liq. in the intermediate tank 4 is fed to the synthetic high polymer system composite membrane module 2 consisting of the laminated body of the active skin layer having selective separating function and a porous supporting membrane by a liq. feed pump 6 while injecting the oxidizing agent such as sodium hypochlorite or hydrogen peroxide soln. from an oxidizing agent injector 7, and the feed water is filtrated by a cross-flow system, and a permeated water is taken out by a take out pipe 23 while returning the part of an nonpermeated feed water to the intermediate tank 4 by a return pipe 81.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硬度成分を多量に含有
する原水を合成高分子系複合膜モジュ−ルにより、殺菌
剤乃至は消毒剤としての酸化剤の溶存のもとで処理する
方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for treating raw water containing a large amount of hardness components with a synthetic polymer composite membrane module in the presence of an oxidizing agent as a bactericide or disinfectant. It is about.

【0002】[0002]

【従来の技術】合成高分子系複合膜モジュ−ルにおいて
は、選択分離機能膜としての活性スキン層を多孔質支持
膜上に設けた複合膜が使用されている。原水を膜モジュ
−ルで処理する場合、バクテリアや藻類等の微生物対策
のために、次亜塩素酸ソ−ダ等の酸化剤を原水に添加し
たうえで、原水を処理することがある。
2. Description of the Related Art In a synthetic polymer composite membrane module, a composite membrane in which an active skin layer as a selective separation functional membrane is provided on a porous support membrane is used. When treating raw water with a membrane module, in order to prevent microorganisms such as bacteria and algae, the raw water may be treated after adding an oxidizing agent such as sodium hypochlorite to the raw water.

【0003】従来、膜によっては残留塩素残量に上限が
あるとし、かかる膜を使用した膜モジュ−ルの入口での
塩素濃度を規定値内に抑えるために、次亜塩素酸ソ−ダ
を間歇注入する方法、次亜塩素酸ソ−ダを連続注入し膜
モジュ−ルの直前で還元剤を注入して中和する方法、次
亜塩素酸ソ−ダを連続注入し膜モジュ−ルの直前で活性
炭等により次亜塩素酸ソ−ダを吸着除去する方法等が提
案されている。
Conventionally, depending on the type of membrane, the residual chlorine residual amount has an upper limit, and in order to keep the chlorine concentration at the inlet of the membrane module using such a membrane within the specified value, sodium hypochlorite is used. Method of intermittent injection, method of continuously injecting sodium hypochlorite and neutralizing by injecting a reducing agent immediately before the membrane module, method of continuously injecting sodium hypochlorite of the membrane module Immediately before, a method of adsorbing and removing sodium hypochlorite with activated carbon or the like has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、第1の
方法では、酸化剤量が不足し確実な消毒・殺菌を期待し
難く、第2並びに第3の方法では、膜モジュ−ル内が酸
化剤の存在しない状態となるために、膜モジュ−ル内で
の微生物の発生が避けられない。
However, in the first method, the amount of the oxidizing agent is insufficient, and it is difficult to expect reliable disinfection / sterilization. In the second and third methods, the inside of the membrane module contains the oxidizing agent. Therefore, the generation of microorganisms in the membrane module is unavoidable.

【0005】本出願人においては、かかる不合理を解消
するために、鋭意検討を行い、上記酸化剤による複合膜
の劣化が、鉄、マンガン等の重金属による触媒作用によ
り加速される事実を実験的に確認し、合成高分子系複合
膜モジュ−ルに限外濾過膜モジュ−ルまたは精密濾過膜
モジュ−ル等の前処理用膜モジュ−ルを経て原水を供給
し、この前処理用膜モジュ−ルと合成高分子系複合膜モ
ジュ−ルとの間において酸化剤を添加することを以前に
提案した(特願平2−36629号)。
In order to eliminate such irrationality, the applicant of the present invention has conducted extensive studies and experimentally confirmed that the deterioration of the composite film due to the above-mentioned oxidizing agent is accelerated by the catalytic action of heavy metals such as iron and manganese. The raw water is supplied to the synthetic polymer composite membrane module through a pretreatment membrane module such as an ultrafiltration membrane module or a microfiltration membrane module, and this pretreatment membrane module is supplied. It was previously proposed to add an oxidant between the resin and the synthetic polymer composite membrane module (Japanese Patent Application No. 2-36629).

【0006】この原水処理方法によれば、前処理用膜モ
ジュ−ルで鉄等の重金属を除去でき、複合膜が殺菌に必
要な限度の酸化剤に接触しても、重金属の触媒作用によ
る複合膜の劣化促進を抑制できるので、酸化剤による複
合膜の性能低下を軽度にとどめ得、また、合成高分子系
複合膜モジュ−ルに対する残留塩素許容量を従来よりも
多くできるので、該モジュ−ル内での微生物の繁殖をよ
く阻止でき、その複合膜面への藻類等の付着を排除し
得、従って、複合膜モジュ−ルの透過性能を充分安定に
保持できる。
According to this raw water treatment method, heavy metals such as iron can be removed by the membrane module for pretreatment, and even if the composite membrane comes into contact with the oxidizer at the limit necessary for sterilization, the composite metal is produced by the catalytic action of the heavy metals. Since deterioration promotion of the membrane can be suppressed, the deterioration of the performance of the composite membrane due to the oxidizing agent can be suppressed to a small degree, and the residual chlorine allowable amount for the synthetic polymer composite membrane module can be made larger than that of the conventional one. The growth of microorganisms in the membrane can be well prevented, and the adhesion of algae or the like to the surface of the composite membrane can be eliminated. Therefore, the permeation performance of the composite membrane module can be maintained sufficiently stable.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、本発明
者等において、更に検討を進め実験を行ったところ、原
水に含まれているカルシウム,マグネシウム等の硬度成
分によっても、ある一定値以上の含有量のもとでは、前
記酸化剤による複合膜の性能低下が促進されることを知
った。
However, as a result of further studies and experiments conducted by the present inventors, the content of a certain value or more depending on the hardness components such as calcium and magnesium contained in the raw water. Under the circumstances, it was found that the performance deterioration of the composite film was promoted by the oxidizing agent.

【0008】従来、カルシウム等の硬度成分が炭酸カル
シウムや硫酸カルシウム等の沈殿性物質を生成して複合
膜の性能を低下させることはよく知られている。
It has been well known that hardness components such as calcium produce a precipitating substance such as calcium carbonate or calcium sulfate to deteriorate the performance of the composite membrane.

【0009】しかしながら、上記カルシウム等の硬度成
分の存在下での酸化剤による複合膜の性能低下の促進
は、活性スキン層を形成する合成高分子のアミド結合
に、硬度成分が配位することによりアミド結合に関わる
水素結合が切断されるために、一般に知られている酸化
によるアミド結合の分解が加速的に進行する結果と推定
され、上記沈殿性物質の生成が実質上問題とならないカ
ルシウム硬度である数10ppm程度のもとでも(図4は
スケ−ル発生が問題となるpHとカルシウム硬度との関
係を示し、中性のもとで、カルシウム硬度700ppmが
問題発生の境界値となっている)、上記硬度成分による
複合膜の性能低下促進(加速劣化)が観察され、この性
能低下促進を有効に防止するには、実験結果によれば、
硬度成分を10ppm以下にする必要がある。
However, the promotion of the deterioration of the performance of the composite film by the oxidizing agent in the presence of the hardness component such as calcium is caused by the coordination of the hardness component with the amide bond of the synthetic polymer forming the active skin layer. It is presumed that the hydrogen bond related to the amide bond is cleaved, so that the decomposition of the amide bond due to the generally known oxidation proceeds at an accelerated rate. Even under a certain several tens of ppm (FIG. 4 shows the relationship between pH and calcium hardness where scale generation is a problem, and under neutral conditions, a calcium hardness of 700 ppm is the boundary value for problem occurrence. ), Accelerated deterioration (accelerated deterioration) of the composite film due to the hardness component is observed, and in order to effectively prevent the accelerated deterioration of performance, the experimental results show that
The hardness component must be 10 ppm or less.

【0010】而るに、原水、特に、地下水の硬度成分含
有量は、前記した鉄、マンガン等の重金属に較べて一段
と多量であり、前記した原水中の重金属を除去するため
の限外膜モジュ−ルまたは精密濾過モジュ−ル等による
前処理では、カルシウム等の硬度成分を10ppm以下に
抑えることは至難である。
Therefore, the hardness component content of raw water, especially groundwater, is much larger than that of the above-mentioned heavy metals such as iron and manganese, and the ultra-membrane module for removing the above-mentioned heavy metals in the raw water. It is extremely difficult to suppress the hardness component such as calcium to 10 ppm or less by the pretreatment with a vacuum filter or a microfiltration module.

【0011】本発明の目的は、原水を次亜塩素酸ソ−ダ
等の酸化剤の添加のもとで膜モジュ−ルにより処理する
場合、膜が硬度成分の共存下、酸化剤と接触しても、硬
度成分の含有量を10ppm以下に制限すれば複合膜の劣
化を充分に軽減できるとの実験結果による知見に基づ
き、原水を、酸化剤による膜劣化を軽度にとどめて処理
できる、合成高分子系複合膜モジュ−ルによる原水の処
理方法を提案することにある。
The object of the present invention is to treat raw water with a membrane module in the presence of an oxidizing agent such as sodium hypochlorite so that the membrane is contacted with the oxidizing agent in the presence of a hardness component. However, based on the findings from the experimental results that the deterioration of the composite film can be sufficiently reduced by limiting the content of the hardness component to 10 ppm or less, the raw water can be treated while suppressing the film deterioration due to the oxidant to a small extent. It is to propose a method for treating raw water by a polymer composite membrane module.

【0012】[0012]

【課題を解決するための手段】本発明の膜モジュ−ルに
よる原水の処理方法は、原水の硬度成分を10ppm以
下、好ましくは5ppm以下に低減し、該原水を酸化剤の
溶存下、合成高分子系複合膜モジュ−ルにより処理する
ことを特徴とする構成であり、硬度成分の低減には、軟
水器、酢酸セルロ−ス系膜モジュ−ルまたは1500pp
mNaCl水溶液に対する圧力15kgf/cm2での透過水量
が0.10m3/m2・d・(kgf/cm2)以上である合成高分子
系膜モジュ−ル、更に、これらの組合せを使用すること
ができる。
The method of treating raw water by the membrane module of the present invention reduces the hardness component of the raw water to 10 ppm or less, preferably 5 ppm or less, and the raw water is prepared in the presence of an oxidizing agent in a high synthetic amount. It is characterized in that it is treated with a molecular composite membrane module, and the hardness component can be reduced by using a water softener, a cellulose acetate membrane module or 1500 pp.
Use a synthetic polymer membrane module having a permeated water amount of 0.10 m 3 / m 2 · d · (kgf / cm 2 ) or more at a pressure of 15 kgf / cm 2 for an aqueous solution of mNaCl, and a combination thereof. You can

【0013】なお、合成高分子系複合膜モジュ−ルの原
液室内での酸化剤濃度が高くなり過ぎると合成高分子系
複の酸化劣化が激しくなり、他方、低くなり過ぎると微
生物の繁殖防止が困難となるので、例えば、次亜塩素酸
ソ−ダ使用の場合、合成高分子系複合膜モジュ−ルの原
液室内での塩素濃度が通常、0.1ppm〜1.0ppmに調
整される。
If the concentration of the oxidant in the stock solution chamber of the synthetic polymer composite membrane module is too high, the oxidative deterioration of the synthetic polymer compound becomes severe, while if it is too low, the growth of microorganisms is prevented. For example, when using sodium hypochlorite, the chlorine concentration in the stock solution chamber of the synthetic polymer composite membrane module is usually adjusted to 0.1 ppm to 1.0 ppm.

【0014】[0014]

【作用】合成高分子系複合モジュ−ルの複合膜が硬度成
分の共存下、酸化剤と接触するも、硬度成分を10ppm
以下に抑制しているから、複合膜の透過性能の低下が軽
度にとどめられる。また、原水が殺菌に必要な限度の酸
化剤量の溶存下、同モジュ−ルで処理され、複合膜面で
の微生物の繁殖が充分防止される。
[Function] Although the composite film of the synthetic polymer composite module is contacted with the oxidizing agent in the presence of the hardness component, the hardness component is 10 ppm.
Since it is suppressed below, the deterioration of the permeation performance of the composite membrane can be suppressed to a slight extent. In addition, raw water is treated with the same module in a dissolved amount of an oxidizing agent, which is the limit necessary for sterilization, and the propagation of microorganisms on the composite membrane surface is sufficiently prevented.

【0015】[0015]

【実施例】以下、本発明の実施例を図面により説明す
る。図1は本発明において使用する原水処理装置を示し
ている。図1において、1は原水タンクであり、原水に
はカルシウム、マグネシウム等の硬度成分が含まれてい
る。2は合成高分子系複合膜モジュ−ルであり、その複
合膜は、実質的に選択分離機能を有する活性スキン層と
これと異なる素材の多孔質支持膜との積層体によって構
成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a raw water treatment apparatus used in the present invention. In FIG. 1, reference numeral 1 is a raw water tank, and the raw water contains hardness components such as calcium and magnesium. Reference numeral 2 denotes a synthetic polymer composite membrane module, and the composite membrane is composed of a laminate of an active skin layer having a selective separation function and a porous support membrane made of a material different from the active skin layer.

【0016】この活性スキン層の素材には、アミン官能
性基を有する単量体の脂肪族または芳香族ポリアミン反
応体と、多官能性アシルハライドから成る単量体の脂肪
族または芳香族アミン反応体とを界面重縮合させること
により得られる架橋ポリアミド系重合体を使用すること
が好ましいが、これ以外に、カルボン酸、スルホン酸、
リン酸、硫酸等の基を有する重合体を主成分とするもの
を使用することができる。モジュ−ル形式としては、ス
パイラル型、中空糸膜型、チュ−ブラ−型、プレ−ト型
の何れであってもよい。21は合成高分子系複合膜モジ
ュ−ルの原水側を、22は透過水側を、23は透過水取
出し管を、24は調圧バルブをそれぞれ示している。
The material for the active skin layer comprises a monomeric aliphatic or aromatic polyamine reactant having an amine functional group and a monomeric aliphatic or aromatic amine reaction comprising a polyfunctional acyl halide. It is preferable to use a crosslinked polyamide-based polymer obtained by interfacial polycondensation with a body, but in addition to this, carboxylic acid, sulfonic acid,
A polymer containing a polymer having a group such as phosphoric acid or sulfuric acid as a main component can be used. The module type may be any of spiral type, hollow fiber membrane type, tuber type, and plate type. Reference numeral 21 is a raw water side of the synthetic polymer composite membrane module, 22 is a permeate side, 23 is a permeate take-out pipe, and 24 is a pressure regulating valve.

【0017】3は原水から硬度成分を10ppm以下、好
ましくは、5ppm以下に軽減する軟水器であり、合成高
分子複合膜モジュ−ル2の上流側に設置してある。4は
中間タンクである。5並びに6は液送ポンプである。7
は次亜塩素酸ソ−ダ、過酸化水素水等の酸化剤の注入器
であり、軟水器3と合成高分子複合膜モジュ−ル2との
間の適宜の位置に設置できる。この酸化剤注入器7に
は、例えば、定量注入ポンプを使用できる。81は非透
過原水の一部を中間タンク4に戻す戻し配管、82は非
透過原水排出管、9は酸化剤検出センサ−である。
Reference numeral 3 is a water softener that reduces the hardness component from the raw water to 10 ppm or less, preferably 5 ppm or less, and is installed upstream of the synthetic polymer composite membrane module 2. 4 is an intermediate tank. 5 and 6 are liquid feed pumps. 7
Is an injector for an oxidizing agent such as sodium hypochlorite and hydrogen peroxide, and can be installed at an appropriate position between the water softener 3 and the synthetic polymer composite membrane module 2. For this oxidizer injector 7, for example, a metering pump can be used. Reference numeral 81 is a return pipe for returning a part of the non-permeated raw water to the intermediate tank 4, 82 is a non-permeated raw water discharge pipe, and 9 is an oxidant detection sensor.

【0018】本発明により図1に示す装置を使用して原
水を処理するには、液送ポンプ5を駆動して原水タンク
1内の原水を軟水器3に通し、原水中のカルシウム、マ
グネシウム等の硬度成分を10ppm以下、好ましくは、
5ppm以下に軽減し、これを一旦、中間タンク4に蓄
え、この中間タンク4内の貯液を、酸化剤注入器7より
次亜塩素酸ソ−ダ等の酸化剤を注入しつつ液送ポンプ6
によって合成高分子系複合膜モジュ−ル2に供給し、こ
の供給原水をクロスフロ−方式によって濾過し、非透過
原水の一部を戻し配管81によって中間タンク4に戻し
つつ透過水を透過水取出し管23より取り出していく。
In order to treat the raw water using the apparatus shown in FIG. 1 according to the present invention, the liquid feed pump 5 is driven to pass the raw water in the raw water tank 1 through the water softener 3 to obtain calcium, magnesium, etc. in the raw water. Hardness component of 10ppm or less, preferably,
It is reduced to 5 ppm or less and is temporarily stored in the intermediate tank 4, and the liquid stored in the intermediate tank 4 is pumped while injecting an oxidizing agent such as sodium hypochlorite from the oxidizing agent injector 7 6
Is supplied to the synthetic polymer composite membrane module 2 by means of the cross flow method, and a part of the non-permeated raw water is returned to the intermediate tank 4 by the return pipe 81, while the permeated water is taken out from the permeated water. Take out from 23.

【0019】この原水の処理中、酸化剤検出センサ−9
によって酸化剤注入器7をコントロ−ルして合成高分子
系複合膜モジュ−ル2の原水側21の酸化剤濃度を殺菌
に必要な適切濃度に保持する。例えば、次亜塩素酸ソ−
ダ使用の場合、合成高分子系複合膜モジュ−ル2の原水
側21の塩素濃度を、0.1ppm〜1.0ppmの範囲内に
調整する。
During the treatment of this raw water, the oxidant detection sensor-9
The oxidizer injector 7 is controlled to maintain the oxidizer concentration on the raw water side 21 of the synthetic polymer composite membrane module 2 at an appropriate concentration required for sterilization. For example, sodium hypochlorite
In the case of using the da, the chlorine concentration on the raw water side 21 of the synthetic polymer composite membrane module 2 is adjusted within the range of 0.1 ppm to 1.0 ppm.

【0020】上記軟水器3に代え、図2に示すように、
膜モジュ−ル30をクロスフロ−方式で使用し、非透過
水の一部を原水タンク1に戻すようにしてもよい。図2
において、31、32並びに33は膜モジュ−ル30の
原水側、透過水側並びに調圧バルブをそれぞれ示してい
る。
Instead of the water softener 3, as shown in FIG.
The membrane module 30 may be used in a cross flow system so that a part of the non-permeated water is returned to the raw water tank 1. Figure 2
In the figure, reference numerals 31, 32 and 33 denote the raw water side, the permeate side and the pressure regulating valve of the membrane module 30, respectively.

【0021】図2に示す装置を使用する場合、膜モジュ
−ル30に所定の膜間差圧を作用させるために、ポンプ
5の運転圧力を、図1に示す装置に較べ、高くする必要
があるが、軟水器で必要とされる再生処理が不要であ
り、保守、取扱が容易である、さらに、酸化剤による劣
化反応の触媒となる鉄、マンガン等の重金属の除去も可
能となり、重金属を多量に含む原水に対して有利であ
る、等の利点がある。
When the apparatus shown in FIG. 2 is used, the operating pressure of the pump 5 needs to be higher than that of the apparatus shown in FIG. 1 in order to apply a predetermined transmembrane pressure difference to the membrane module 30. However, it does not require the regeneration treatment required in a water softener, is easy to maintain and handle, and can also remove heavy metals such as iron and manganese that act as catalysts for deterioration reactions by oxidants, thus removing heavy metals. There are advantages such as being advantageous for raw water containing a large amount.

【0022】上記膜モジュ−ル30に酢酸セルロ−ス系
膜モジュ−ルを使用する場合、その膜の優れた耐酸化剤
性のために、図2の点線で示すように、該モジュ−ル3
の上流側で酸化剤を注入でき(7’は酸化剤注入器)、
系全体の殺菌が可能となる。
When a cellulose acetate-based membrane module is used as the membrane module 30, the membrane is excellent in oxidation resistance as shown by the dotted line in FIG. Three
Oxidizer can be injected upstream of (7 'is oxidizer injector),
Sterilization of the entire system is possible.

【0023】上記膜モジュ−ル30に合成高分子系膜モ
ジュ−ルを使用する場合、高透過水量による低コスト操
作を図るために、透過水量が0.10m3/m2・d.(kgf/c
m2)以上のものを使用することが望ましい。
When a synthetic polymer membrane module is used for the membrane module 30, the permeated water content is 0.10 m 3 / m 2 · d. (kgf / c
It is desirable to use m 2) or more.

【0024】硬度成分の低減に膜モジュ−ル30を使用
する場合、図3に示すように、膜モジュ−ル30と合成
高分子系複合膜モジュ−ル2とを直結することもでき
る。この場合も、膜モジュ−ル30に酢酸セルロ−ス系
膜モジュ−ルを使用するときは、図3の点線で示すよう
に(7’は酸化剤注入器)、該モジュ−ルの上流側で酸
化剤を注入することが可能である。
When the membrane module 30 is used to reduce the hardness component, the membrane module 30 and the synthetic polymer composite membrane module 2 can be directly connected as shown in FIG. Also in this case, when a cellulose acetate-based membrane module is used for the membrane module 30, as shown by the dotted line in FIG. 3 (7 'is an oxidizer injector), the upstream side of the module It is possible to inject the oxidizer with.

【0025】なお、図2並びに図3において、図1と同
一の符号は、図1と同一の構成部分を示している。
2 and 3, the same reference numerals as those in FIG. 1 indicate the same components as those in FIG.

【0026】本発明により原水を処理すれば、殺菌に必
要な量の酸化剤を膜に接触させて膜の消毒・殺菌を充分
に行うことができるから、合成高分子系複合膜面での微
生物の発生をよく防止でき、微生物スライムの膜面付着
による透過特性の変動を充分に防止できる。
When the raw water is treated according to the present invention, the amount of the oxidizing agent required for sterilization can be brought into contact with the membrane to sufficiently disinfect and sterilize the membrane. It is possible to well prevent the occurrence of the above, and it is possible to sufficiently prevent the variation of the permeation characteristics due to the adhesion of microbial slime on the membrane surface.

【0027】また、合成高分子系複合膜モジュ−ルの膜
が酸化剤に接触するも、その接触がカルシウム、マグネ
シウム等の硬度成分の10ppm以下といった微少量のも
とで行われるから、酸化剤と硬度成分との共存下では免
れ得ない加速劣化をよく回避でき、合成高分子系複合膜
の透過性能の低下を軽度にとどめることができる。
Further, even though the membrane of the synthetic polymer composite membrane module comes into contact with the oxidizer, the contact is performed with a very small amount such as 10 ppm or less of the hardness component of calcium, magnesium, etc. Accelerated deterioration, which cannot be avoided under the coexistence with the hardness component, can be well avoided, and the deterioration of the permeation performance of the synthetic polymer composite membrane can be suppressed to a slight extent.

【0028】従って、透過水質の低下と低水質透過水量
の増加をよく防止できる。このことは、次の実施例と比
較例との対比からも、明かである。
Therefore, it is possible to well prevent the deterioration of the permeated water quality and the increase of the low water quality permeated water amount. This is also clear from the comparison between the following examples and comparative examples.

【0029】実施例1 図1において、原水には、導電度230μS/cm,PH6.
5,FI(fouling index)4,硬度50ppmの井戸水を使
用した。合成高分子系複合膜モジュ−ル2には、操作圧
力、15kgf/cm2,温度25℃での0.15wt%塩阻止
率が99.5%,透過水量が7.0m3/dayの芳香族ポリ
アミド系複合膜使用の日東電工(株)製スパイラルモジ
ュ−ルを、軟水器3にはオルガノ(株)製、SAT−2
56Aをそれぞれ用い、調圧バルブ24を調整して合成
高分子系複合膜モジュ−ル2を膜間差圧10kgf/cm2
総回収率50%で運転した。酸化剤には、次亜塩素酸ソ
−ダを使用し、検出センサ−9の検出遊離塩素濃度を
0.3ppmに保つように次亜塩素酸ソ−ダの注入量をコ
ントロ−ルした。
Example 1 In FIG. 1, the raw water had an electric conductivity of 230 μS / cm, PH6.
5, well water having FI (fouling index) 4 and hardness of 50 ppm was used. The synthetic polymer composite membrane module 2 has an aroma of 0.15 wt% salt rejection of 99.5% and permeated water of 7.0 m 3 / day at an operating pressure of 15 kgf / cm 2 and a temperature of 25 ° C. Nitto Denko Co., Ltd.'s spiral module using a group polyamide polyamide composite membrane is used for the water softener 3, Organ-2's SAT-2.
56A is used, and the pressure regulating valve 24 is adjusted so that the synthetic polymer composite membrane module 2 has a transmembrane pressure difference of 10 kgf / cm 2 ,
It was operated at a total recovery rate of 50%. Sodium hypochlorite was used as the oxidant, and the injection amount of sodium hypochlorite was controlled so that the concentration of free chlorine detected by the detection sensor 9 was maintained at 0.3 ppm.

【0030】この条件で1年間運転したところ、透過水
の平均導電度はほぼ初期値(9.8μS/cm)のままで、
10.5μS/cmであり、透過水量も初期値の5%増加に
過ぎなかった。また、合成高分子複合膜モジュ−ル2の
原水側の平均硬度は、約0.7ppmであった。
After operating for 1 year under these conditions, the average conductivity of the permeated water remained at the initial value (9.8 μS / cm),
It was 10.5 μS / cm, and the amount of permeated water was only 5% of the initial value. The average hardness of the synthetic polymer composite membrane module 2 on the raw water side was about 0.7 ppm.

【0031】実施例2 図2において、膜モジュ−ル30に操作圧力30kgf/cm
2、温度25℃下での0.2wt%硫酸マグネシウムの阻
止率が99.5%の日東電工(株)製酢酸セルロ−ス系
スパイラルモジュ−ルを使用し、調圧バルブ33を調整
して、該膜モジュ−ル30を膜間差圧15kgf/cm2、総
回収率50%で運転した以外、実施例1に同じとした。
Example 2 In FIG. 2, an operating pressure of 30 kgf / cm was applied to the membrane module 30.
2. Using a acetate cellulose spiral module manufactured by Nitto Denko Corporation having a rejection rate of 0.2 wt% magnesium sulfate at a temperature of 25 ° C. of 99.5%, and adjusting the pressure regulating valve 33. The same procedure as in Example 1 was carried out except that the membrane module 30 was operated at a transmembrane pressure difference of 15 kgf / cm 2 and a total recovery rate of 50%.

【0032】この条件で1年間運転したところ、透過水
の平均導電度はほぼ初期値(5.1μS/cm)のままで、
5.5μS/cmであり、透過水量も初期値の5%増加に過
ぎなかった。また、合成高分子複合膜モジュ−ル2の原
水側の平均硬度は、約0.8ppmであった。
After operating for 1 year under these conditions, the average conductivity of the permeated water remained at the initial value (5.1 μS / cm),
It was 5.5 μS / cm, and the amount of permeated water was only 5% of the initial value. The average hardness of the synthetic polymer composite membrane module 2 on the raw water side was about 0.8 ppm.

【0033】実施例3 図2において、膜モジュ−ル30に操作圧力20kgf/cm
2、温度25℃下での0.2wt%硫酸マグネシウムの阻
止率が99.0%、透過水量が0.13m3/m2・d・(kgf
/cm2)の日東電工(株)製合成高分子系スパイラルモジ
ュ−ルを使用し、調圧バルブ33を調整して、該膜モジ
ュ−ル30を膜間差圧10kgf/cm2、総回収率50%で
運転した以外、実施例1に同じとした。
Example 3 In FIG. 2, the membrane module 30 has an operating pressure of 20 kgf / cm.
2 , 0.2 wt% magnesium sulphate rejection at a temperature of 25 ℃ is 99.0%, and the amount of permeated water is 0.13 m 3 / m 2 · d · (kgf
/ cm 2 ), a synthetic polymer spiral module manufactured by Nitto Denko Co., Ltd. is used, the pressure regulating valve 33 is adjusted, and the membrane module 30 is subjected to a transmembrane pressure difference of 10 kgf / cm 2 and a total recovery. The same as Example 1 except that the operation was performed at a rate of 50%.

【0034】この条件で1年間運転したところ、透過水
の平均導電度はほぼ初期値(7.4μS/cm)のままで、
8.3μS/cmであり、透過水量も初期値の5%増加に過
ぎなかった。また、合成高分子複合膜モジュ−ル2の原
水側の平均硬度は、約1.2ppmであった。
After operating for 1 year under these conditions, the average conductivity of the permeated water remained at the initial value (7.4 μS / cm),
It was 8.3 μS / cm, and the amount of permeated water was only 5% of the initial value. The average hardness of the synthetic polymer composite membrane module 2 on the raw water side was about 1.2 ppm.

【0035】比較例 実施例1に対し、軟水器の使用を省略し、他は実施例と
同一の条件で原水を処理したところ、運転6ヵ月目で導
電度が初期値のほぼ3倍に増加し、透過水量においては
2倍に増加した。
Comparative Example In contrast to Example 1, the use of a water softener was omitted, and the raw water was treated under the same conditions as in Example 1 except that the conductivity increased to about 3 times the initial value after 6 months of operation. However, the amount of permeated water increased twice.

【0036】[0036]

【発明の効果】本発明の膜モジュ−ルによる原水の処理
方法は、上述した通りの構成であり、合成高分子系複合
膜モジュ−ルにより原水を処理する場合、該膜モジュ−
ルの原水側を殺菌処理できるから、微生物スライムの膜
付着を防止でき、また、この酸化剤量のもとで硬度成分
の共存による高分子膜の加速劣化を防止するべく、その
硬度成分量を低減しているから、その劣化を軽度にとど
めることができ、従って、膜の透過性能を安定に維持で
きる。
The method for treating raw water with the membrane module of the present invention has the constitution as described above, and when treating raw water with the synthetic polymer composite membrane module, the membrane module
Since the raw water side of the rubber can be sterilized, it is possible to prevent microbial slime from adhering to the film, and to prevent accelerated deterioration of the polymer film due to the coexistence of hardness components under this amount of oxidizer, the amount of hardness component is adjusted. Since the amount is reduced, the deterioration can be suppressed to a slight extent, and thus the permeation performance of the membrane can be stably maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用する原水処理装置の一例を
示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a raw water treatment device used in the present invention.

【図2】本発明において使用する原水処理装置の別例を
示す説明図である。
FIG. 2 is an explanatory diagram showing another example of the raw water treatment apparatus used in the present invention.

【図3】本発明において使用する原水処理装置の他の別
例を示す説明図である。
FIG. 3 is an explanatory view showing another example of the raw water treatment apparatus used in the present invention.

【図4】原水におけるスケ−ル発生に対するカルシウム
硬度とpHとの関係を示す図表である。
FIG. 4 is a chart showing the relationship between calcium hardness and pH with respect to scale generation in raw water.

【符号の説明】[Explanation of symbols]

1 原水タンク 2 合成高分子複合膜モジュ−ル 3 軟水器 30 膜モジュ−ル 4 中間タンク 5 液送ポンプ 6 液送ポンプ 7 酸化剤注入器 9 酸化剤検出センサ− 1 Raw Water Tank 2 Synthetic Polymer Composite Membrane Module 3 Water Softener 30 Membrane Module 4 Intermediate Tank 5 Liquid Delivery Pump 6 Liquid Delivery Pump 7 Oxidant Injector 9 Oxidant Detection Sensor-

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神山 義康 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshiyasu Kamiyama 1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原水の硬度成分を10ppm以下に低減し、
該原水を酸化剤の溶存下、合成高分子系複合膜モジュ−
ルにより処理することを特徴とする膜モジュ−ルによる
原水の処理方法。
1. The hardness component of raw water is reduced to 10 ppm or less,
The raw water is mixed with an oxidant in a synthetic polymer composite membrane module.
A method for treating raw water with a membrane module, which comprises treating the raw water with a membrane module.
【請求項2】硬度成分の低減に、軟水器を使用する請求
項1記載の膜モジュ−ルによる原水の処理方法。
2. The method for treating raw water with a membrane module according to claim 1, wherein a water softener is used to reduce the hardness component.
【請求項3】硬度成分の低減に、酢酸セルロ−ス系膜モ
ジュ−ルを使用する請求項1記載の膜モジュ−ルによる
原水の処理方法。
3. The method for treating raw water with a membrane module according to claim 1, wherein a cellulose acetate-based membrane module is used to reduce the hardness component.
【請求項4】硬度成分の低減に、1500ppmNaCl
水溶液に対する圧力15kgf/cm2での透過水量が0.1
0m3/m2・d・(kgf/cm2)以上である合成高分子系膜モジ
ュ−ルを使用する請求項1記載の膜モジュ−ルによる原
水の処理方法。
4. 1500 ppm NaCl for reducing the hardness component
The amount of permeated water at a pressure of 15 kgf / cm 2 against an aqueous solution is 0.1
The method for treating raw water with a membrane module according to claim 1, wherein a synthetic polymer membrane module having a density of 0 m 3 / m 2 · d · (kgf / cm 2 ) or more is used.
JP03743293A 1993-02-01 1993-02-01 Raw water treatment method by membrane module Expired - Fee Related JP3350124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03743293A JP3350124B2 (en) 1993-02-01 1993-02-01 Raw water treatment method by membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03743293A JP3350124B2 (en) 1993-02-01 1993-02-01 Raw water treatment method by membrane module

Publications (2)

Publication Number Publication Date
JPH06226253A true JPH06226253A (en) 1994-08-16
JP3350124B2 JP3350124B2 (en) 2002-11-25

Family

ID=12497359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03743293A Expired - Fee Related JP3350124B2 (en) 1993-02-01 1993-02-01 Raw water treatment method by membrane module

Country Status (1)

Country Link
JP (1) JP3350124B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517598A (en) * 2016-12-28 2017-03-22 北京清大国华环境股份有限公司 Treating method and treating device for zero discharging of desulfurization wastewater
JPWO2016092620A1 (en) * 2014-12-08 2017-08-03 三菱重工業株式会社 Water treatment equipment
WO2017141717A1 (en) * 2016-02-18 2017-08-24 オルガノ株式会社 Water treatment system and water treatment method using reverse osmosis membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016092620A1 (en) * 2014-12-08 2017-08-03 三菱重工業株式会社 Water treatment equipment
WO2017141717A1 (en) * 2016-02-18 2017-08-24 オルガノ株式会社 Water treatment system and water treatment method using reverse osmosis membrane
JPWO2017141717A1 (en) * 2016-02-18 2018-05-24 オルガノ株式会社 Water treatment system and water treatment method using reverse osmosis membrane
KR20180100223A (en) * 2016-02-18 2018-09-07 오르가노 코포레이션 Water treatment system and water treatment method using reverse osmosis membrane
TWI700252B (en) * 2016-02-18 2020-08-01 日商奧璐佳瑙股份有限公司 Water treatment system and water treatment method using reverse osmosis membrane
CN106517598A (en) * 2016-12-28 2017-03-22 北京清大国华环境股份有限公司 Treating method and treating device for zero discharging of desulfurization wastewater

Also Published As

Publication number Publication date
JP3350124B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
EP1031372B1 (en) Method for inhibiting growth of bacteria or sterilizing around separating membrane
KR101809769B1 (en) Water treatment method and ultrapure water production method
JP2007069204A (en) Water treatment method, water treatment apparatus and method of manufacturing regenerated water
WO2012133620A1 (en) Membrane-separation method
KR101840896B1 (en) Ultrapure water production process
JP2007244979A (en) Water treatment method and water treatment apparatus
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JPH05329477A (en) Membrane separation
JP2009297611A (en) Hydrogen peroxide-containing organic water treatment method and apparatus
JP2005185985A (en) Method and apparatus for producing water
JP3641854B2 (en) Reverse osmosis membrane separation method and reverse osmosis membrane separation device
JP2889302B2 (en) Raw water treatment method using reverse osmosis membrane module
JPS6336890A (en) Apparatus for producing high-purity water
JPH06226253A (en) Treatment of feed water by memberane module
JP2000300966A (en) Membrane sterilization method and membrane separation device
JP5103769B2 (en) Cleaning method for reclaimed water production equipment
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
JPS60137403A (en) Liquid sealing device using formaldehyde solution
JPH09891A (en) Method for treating raw water using membrane module
JP3148849B2 (en) Seawater desalination method by reverse osmosis
JPH1199389A (en) Treatment of water containing organic component and manganese
JP3221801B2 (en) Water treatment method
JPS61200810A (en) Membrane separation apparatus
JP3087750B2 (en) Sterilization method of membrane
JPH09893A (en) Method for treating raw water by means of membrane module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080913

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees