JPH062261U - Distance measuring device - Google Patents
Distance measuring deviceInfo
- Publication number
- JPH062261U JPH062261U JP4712592U JP4712592U JPH062261U JP H062261 U JPH062261 U JP H062261U JP 4712592 U JP4712592 U JP 4712592U JP 4712592 U JP4712592 U JP 4712592U JP H062261 U JPH062261 U JP H062261U
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- measured
- measuring device
- distance measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measurement Of Optical Distance (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
(57)【要約】
【目的】 光源に特殊な材料を使用したり、特殊な加工
をする必要なく、高精度に距離を測定できるようにす
る。
【構成】 光源1と測定対象物との間に、光源1から測
定対象物に向かう光に対しては損失が小さく、測定対象
物から光源1に向かう光に対しては損失が大きい方向性
結合手段(例えば、図1のコア径の小さい送光用ファイ
バ3aと、コア径の大きい送光用ファイバ3bとの組み
合わせ)を挿入する。
(57) [Summary] [Purpose] To enable highly accurate distance measurement without using a special material for the light source or performing special processing. [Structure] Directional coupling between a light source 1 and an object to be measured with a small loss for light traveling from the light source 1 to the object to be measured and a large loss for light traveling from the object to be measured to the light source 1. A means (for example, a combination of the light-transmitting fiber 3a having a small core diameter in FIG. 1 and the light-transmitting fiber 3b having a large core diameter) is inserted.
Description
【0001】[0001]
本考案は、測量・建築・工業計測分野で利用される距離測定装置に関するもの である。 The present invention relates to a distance measuring device used in the fields of surveying, construction and industrial measurement.
【0002】[0002]
光波を使用する距離測定装置は、半導体レーザー等の光源からの強度変調され た光や、パルス状の光を測定対象物に対して出射し、その反射光を受光素子にて 受光することにより、距離測定装置と測定対象物との間の距離によって変化する 出射変調光と受光信号との位相差や、光パルスの往復時間を測定して、測定対象 物までの距離を測定する。 A distance measuring device that uses a light wave emits intensity-modulated light from a light source such as a semiconductor laser or pulsed light to an object to be measured, and receives the reflected light by a light receiving element. The phase difference between the emitted modulated light and the received light signal, which changes depending on the distance between the distance measuring device and the measuring object, and the round-trip time of the optical pulse are measured to measure the distance to the measuring object.
【0003】 図3は、光波を使用して距離を測定する距離測定装置の一例を示す。光源1か ら出射された光は、集光レンズ2および送光用ファイバ3を通って、送光用対物 レンズ4により平行光とされて、測定対象物(図示せず)に到達する。測定対象 物に到達した光は反射されて、受光用対物レンズ11、受光用ファイバ12、お よび集光レンズ13を通って受光素子14に入射する。FIG. 3 shows an example of a distance measuring device that measures a distance using a light wave. The light emitted from the light source 1 passes through the condenser lens 2 and the light-sending fiber 3 and is collimated by the light-sending objective lens 4 to reach an object to be measured (not shown). The light that has reached the measurement target is reflected, passes through the light-receiving objective lens 11, the light-receiving fiber 12, and the condenser lens 13, and enters the light-receiving element 14.
【0004】 他方、測定対象物からの反射光の一部は、送光用対物レンズ4、送光用ファイ バ3および集光レンズ2を通って、再び光源1に戻ってくる。この戻ってきた光 の一部が光源1にて反射されて、集光レンズ2、送光用ファイバ3および送光用 対物レンズ4を通って、再び測定対象物に到達する。すなわち、正規の測距光よ りも一往復多く、光が、距離測定装置と測定対象物との間を行き来することにな る。On the other hand, a part of the reflected light from the measurement object returns to the light source 1 again through the light-sending objective lens 4, the light-sending fiber 3 and the condenser lens 2. A part of the returned light is reflected by the light source 1, passes through the condenser lens 2, the light sending fiber 3 and the light sending objective lens 4, and reaches the object to be measured again. That is, the light travels back and forth between the distance measuring device and the object to be measured, which is one round trip more than the regular distance measuring light.
【0005】[0005]
上述のように、従来の距離測定装置においては、測定対象物で反射され、装置 本体に戻ってきた光の一部が、装置本体で再び反射して測定対象物に向かうため 、光が、装置本体と測定対象物との間を一往復(またはそれ以上)余計に伝搬し た後に、受光素子に入射する。装置本体と測定物との間を一往復以上余計に伝搬 する光は、ほんのわずかであっても、測距精度に影響を与える。例えば、強度変 調光の位相差測定を利用した測距装置では、精密測定に用いる変調周波数の基本 波周期(例えば、精密測定用周波数15MHzの場合、10m周期)における周 期的誤差を生じさせる。 As described above, in the conventional distance measuring device, a part of the light reflected by the measuring object and returned to the device body is reflected again to the measuring object, so that the light is emitted from the device. After propagating one extra round trip (or more) between the main body and the object to be measured, it is incident on the light receiving element. The light propagating one or more round trips between the main body of the device and the object to be measured affects the accuracy of distance measurement even if the amount of light is small. For example, in a distance measuring device using the phase difference measurement of intensity modulated light, a periodic error occurs in the fundamental wave cycle of the modulation frequency used for precision measurement (for example, 10 m period in the case of precision measurement frequency of 15 MHz). .
【0006】 光が装置本体と測定対象物との間を往復することは、装置本体の反射率を小さ くすることにより、具体的には、装置本体自身を反射率の低い塗料で塗装したり 、あるいはレンズに反射防止コートを施したりすることで、ある程度は改善でき る。Light traveling back and forth between the device body and the object to be measured reduces the reflectance of the device body. Specifically, the device body itself is coated with a paint having a low reflectance. Or you can improve it to some extent by applying anti-reflection coating to the lens.
【0007】 しかしながら、これらの対策で抑えることの出来ない反射もいくつか存在する 。その一つが光源での反射である。もちろん光源自体を反射率の低い材料で作成 したり、反射率の低い表面処理を行ったり、チップ端面に反射防止コートを施せ ば多少の改善は見込めるが、当然価格上昇や信頼性の低下を招き、また、これら の対策によって得られる反射光防止効果はあまり大きくない。However, there are some reflections that cannot be suppressed by these measures. One of them is the reflection from the light source. Of course, if the light source itself is made of a material with low reflectance, surface treatment with low reflectance is applied, or an anti-reflection coating is applied to the chip end surface, some improvement can be expected, but of course this leads to price increase and lower reliability. Moreover, the effect of preventing reflected light obtained by these measures is not so great.
【0008】 本考案は、このような状況に鑑みてなされたもので、光源に特殊な材料を使用 したり、特別な加工をする必要なく、高精度に距離を測定できる安価で信頼性の 高い距離測定装置を提供することを目的とする。The present invention has been made in view of such a situation, and is inexpensive and highly reliable, which enables highly accurate distance measurement without using a special material for a light source or performing special processing. An object is to provide a distance measuring device.
【0009】[0009]
本考案の距離測定装置は、光源と測定対象物との間に、光源から測定対象物に 向かう光に対しては損失が少なく、測定対象物から光源に向かう光に対しては損 失が大きい方向性結合手段を挿入することを特徴とする。 The distance measuring device of the present invention has a small loss between the light source and the object to be measured from the light source to the object to be measured, and a large loss from the light from the object to be measured to the light source. It is characterized in that a directional coupling means is inserted.
【0010】[0010]
上記構成の本考案の距離測距装置においては、光源から測定対象物まで到達す る本来の測距光は、損失が少ないため特に問題なく測距が可能である。他方、光 源から測定対象物に反射して戻ってきた光は、測定対象物から光源方向へ戻って 来る過程において損失が大きくなる。したがって、光源で再度反射して測定対象 物に向けて出射する光、すなわち本来の測距光よりも測定対象物との間を一往復 以上余計に伝搬する光は、小さなレベルとなり、この光に起因する測距誤差を抑 える事が可能となる。 In the distance-measuring device of the present invention having the above-described structure, since the original distance-measuring light that reaches the object to be measured from the light source has a small loss, distance-measuring can be performed without any problem. On the other hand, the light reflected from the light source and returning to the measurement target has a large loss in the process of returning from the measurement target toward the light source. Therefore, the light that is reflected by the light source again and emitted toward the measurement target, that is, the light that propagates more than one round trip to and from the measurement target more than the original distance measuring light, becomes a small level, and It is possible to suppress the ranging error caused by it.
【0011】[0011]
図1は、本考案の距離測定装置の一実施例を示す。この実施例と図3の従来例 との相違は、送光用ファイバ部分である。この実施例においては、従来の送光用 ファイバ3の代わりに、光源1側すなわち集光レンズ2に接続されたコア径が小 さいファイバ3aと、送光用対物レンズ4に接続されたコア径が大きいファイバ 3bを使用する。これらのコア径の異なるファイバ3aおよび3bは、密着させ て接続されており、送光用ファイバ3bから、送光用ファイバ3aへ入射できな かった光が、再び送光用ファイバ3bへ入射しないように構成されている。 FIG. 1 shows an embodiment of the distance measuring device of the present invention. The difference between this embodiment and the conventional example of FIG. 3 is the fiber portion for light transmission. In this embodiment, instead of the conventional light-transmitting fiber 3, a fiber 3a with a small core diameter connected to the light source 1 side, that is, the condenser lens 2 and a core diameter connected to the light-transmitting objective lens 4 are used. Using a large fiber 3b. The fibers 3a and 3b having different core diameters are closely attached to each other, and the light that could not be incident on the light transmitting fiber 3b from the light transmitting fiber 3b does not enter the light transmitting fiber 3b again. Is configured.
【0012】 光源1から出射された光は、集光レンズ2、送光用ファイバ3aおよび3bを 通った後、送光用対物レンズ4により平行光とされて測定対象物(図示せず)に 到達する。測定対象物に到達した光は、反射されて、受光用対物レンズ11、受 光用ファイバ12および集光レンズ13を通って受光素子14に入射する。The light emitted from the light source 1 passes through the condenser lens 2 and the light-sending fibers 3 a and 3 b, and then is converted into parallel light by the light-sending objective lens 4 to be a measurement target (not shown). To reach. The light that has reached the measurement target is reflected and enters the light receiving element 14 through the light receiving objective lens 11, the light receiving fiber 12, and the condenser lens 13.
【0013】 他方、測定対象物からの反射光の一部は、送光用対物レンズ4を介して送光用 ファイバ3bに戻ってくる。しかし、送光用ファイバ3bに接続されている送光 用ファイバ3aは、送光用ファイバ3bに比較してコア径が小さいため、多くの 光は送光用ファイバ3aを経由して光源1に到達する事はない。したがって、光 源1からの再反射光を低減できる。On the other hand, a part of the reflected light from the measurement object returns to the light-sending fiber 3b via the light-sending objective lens 4. However, since the light-transmitting fiber 3a connected to the light-transmitting fiber 3b has a smaller core diameter than the light-transmitting fiber 3b, most of the light is transmitted to the light source 1 via the light-transmitting fiber 3a. It never reaches. Therefore, the re-reflected light from the light source 1 can be reduced.
【0014】 なお、光源1から出射されて、集光レンズ2、送光用ファイバ3aおよび3b を通って、測定対象物(図示せず)に向かう本来の測距光は、送光用ファイバ3 bのコア径が送光用ファイバ3aに比べて十分大きいため、減衰が抑制されるか ら、距離測定に支障は生じない。The original distance-measuring light emitted from the light source 1 and passing through the condenser lens 2 and the light-sending fibers 3 a and 3 b toward the object to be measured (not shown) is the light-sending fiber 3 Since the core diameter of b is sufficiently larger than that of the light-transmitting fiber 3a, the attenuation is suppressed, so that the distance measurement is not hindered.
【0015】 図3は、本考案の距離測定装置の別の実施例を示す。この実施例では、図1の 実施例の送光用ファイバ3aおよび3bの代わりに、偏光ビームスプリッタ20 2、λ/4波長板203、無焦点レンズ204および吸収板206が設けられる 。FIG. 3 shows another embodiment of the distance measuring device of the present invention. In this embodiment, a polarization beam splitter 202, a λ / 4 wavelength plate 203, an afocal lens 204 and an absorption plate 206 are provided in place of the light transmitting fibers 3a and 3b of the embodiment of FIG.
【0016】 光源(この場合は偏光ビームである半導体レーザー等が望ましい)201から の出射光は、偏光ビームスプリッタ202を透過後、λ/4波長板203、無焦 点レンズ204および送光用対物レンズ4を通って、測定対象物に到達する。測 定対象物からの反射光は、受光用対物レンズ11、受光用ファイバ12および集 光レンズ13を通って、受光素子14に入射する。Light emitted from a light source (preferably a semiconductor laser that is a polarized beam in this case) 201 passes through a polarized beam splitter 202, and then is transmitted to a λ / 4 wavelength plate 203, an afocal point lens 204, and an objective for light transmission. The object to be measured is reached through the lens 4. The reflected light from the object to be measured passes through the light receiving objective lens 11, the light receiving fiber 12 and the light collecting lens 13, and enters the light receiving element 14.
【0017】 一方、測定対象物からの反射光の一部は、送光用対物レンズ205、無焦点レ ンズ204およびλ/4波長板203を経て、偏光ビームスピリッタ202に戻 ってくる。この光はλ/4波長板203を2回通過しているため、偏光方向が9 0゜回転しており、光源201の方向には戻らず、偏光ビームスプリッタ202 で反射され、吸収板206で吸収される。On the other hand, a part of the reflected light from the object to be measured returns to the polarized beam splitter 202 via the objective lens 205 for light transmission, the afocal lens 204 and the λ / 4 wavelength plate 203. Since this light has passed through the λ / 4 wave plate 203 twice, the polarization direction is rotated by 90 °, does not return to the direction of the light source 201, is reflected by the polarization beam splitter 202, and is absorbed by the absorption plate 206. Be absorbed.
【0018】 このようにして、測定対象物からの反射光の内、再度測定対象物に向かって出 射される光を抑える事が出来る。In this way, of the reflected light from the measurement object, the light emitted toward the measurement object again can be suppressed.
【0019】[0019]
本考案の距離測定装置によれば、光源と測定対象物との間に、光源から測定対 象物に向かう光に対しては損失が少なく、測定対象物から光源に向かう光に対し ては損失が大きい方向性結合手段を挿入したので、光源から測定対象物まで到達 する本来の測距光は、損失が少ないため特に問題なく測距が可能であるとともに 、光源で再度反射して測定対象物に向けて出射する光は、小さなレベルとなるか ら、この光に起因する測距誤差を抑える事が可能となる。従って、光源に特殊な 材料を使用したり、特別な加工をする必要なく、安価且つ信頼性高く、しかも高 精度に距離を測定できる。 According to the distance measuring device of the present invention, there is little loss between the light source and the measuring object for light traveling from the light source to the measuring object, and loss for light traveling from the measuring object to the light source. Since a large directional coupling means is inserted, the original distance measuring light that reaches the object to be measured from the light source can be measured without any problems because there is little loss. Since the light that is emitted toward is at a low level, it is possible to suppress the distance measurement error caused by this light. Therefore, it is possible to measure distance with low cost, high reliability, and high precision without using a special material for the light source or performing special processing.
【図面の簡単な説明】[Brief description of drawings]
【図1】本考案の距離測定装置の一実施例の構成を示す
光学的構成図である。FIG. 1 is an optical configuration diagram showing a configuration of an embodiment of a distance measuring device of the present invention.
【図2】本考案の距離測定装置の一実施例の構成を示す
光学的構成図である。FIG. 2 is an optical configuration diagram showing the configuration of an embodiment of the distance measuring device of the present invention.
【図3】従来のの距離測定装置の一例の構成を示す光学
的構成図である。FIG. 3 is an optical configuration diagram showing a configuration of an example of a conventional distance measuring device.
1,201 光源 2,13 集光レンズ 3a,3b 送光用ファイバ 4 送光用対物レンズ 11 受光用対物レンズ 12 受光用ファイバ 14 受光素子 202 偏光ビームスピリッタ 203 λ/4波長板 1,201 Light source 2,13 Condensing lens 3a, 3b Light-transmitting fiber 4 Light-transmitting objective lens 11 Light-receiving objective lens 12 Light-receiving fiber 14 Light-receiving element 202 Polarized beam splitter 203 λ / 4 wavelength plate
Claims (3)
の反射光を受光して測定対象物までの距離を測定する距
離測定装置において、 前記光源と前記測定対象物との間に、前記光源から前記
測定対象物に向かう光に対しては損失が少なく、前記測
定対象物から前記光源に向かう光に対しては損失が大き
い方向性結合手段を挿入した事を特徴とする距離測定装
置。1. A distance measuring device that emits light from a light source to an object to be measured and receives the reflected light to measure the distance to the object to be measured, wherein between the light source and the object to be measured, The distance measuring device is characterized in that a directional coupling means is inserted, which has a small loss with respect to light traveling from the light source to the measurement object and has a large loss with respect to light traveling from the measurement object to the light source. ..
の異なるファイバを使用して構成される事を特徴とする
請求項1記載の距離測定装置。2. The distance measuring device according to claim 1, wherein the directional coupling means is configured by using two kinds of fibers having different core diameters.
リッタおよびλ/4波長板を使用して構成される事を特
徴とする請求項1記載の距離測定装置。3. The distance measuring device according to claim 1, wherein the directional coupling means is configured by using a polarization beam splitter and a λ / 4 wavelength plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4712592U JPH062261U (en) | 1992-06-12 | 1992-06-12 | Distance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4712592U JPH062261U (en) | 1992-06-12 | 1992-06-12 | Distance measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH062261U true JPH062261U (en) | 1994-01-14 |
Family
ID=12766435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4712592U Withdrawn JPH062261U (en) | 1992-06-12 | 1992-06-12 | Distance measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH062261U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290362U (en) * | 1985-11-27 | 1987-06-09 | ||
JP2013205414A (en) * | 2012-03-27 | 2013-10-07 | Sick Ag | Photoelectric sensor and method for detecting object in monitoring area |
-
1992
- 1992-06-12 JP JP4712592U patent/JPH062261U/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290362U (en) * | 1985-11-27 | 1987-06-09 | ||
JP2013205414A (en) * | 2012-03-27 | 2013-10-07 | Sick Ag | Photoelectric sensor and method for detecting object in monitoring area |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109188397B (en) | Laser transmitter-receiver and laser radar | |
US7139446B2 (en) | Compact fiber optic geometry for a counter-chirp FMCW coherent laser radar | |
US8687173B2 (en) | Compact fiber optic geometry for a counter chirp FMCW coherent laser radar | |
JP2004527765A (en) | Optical sensor for distance measurement | |
JP2004527765A5 (en) | ||
CN211426800U (en) | Optical fiber coherent detection device and coherent speed measurement system | |
JPH02236103A (en) | Robot terminal working body and integrated optical fiber coupling proximity sensor for tool | |
CN103091681A (en) | Continuous wave with frequency modulation interferometer based on multiple refection technology | |
JP2691781B2 (en) | Laser Doppler vibrometer using beam splitting optical system | |
JPH062261U (en) | Distance measuring device | |
RU2408842C1 (en) | Distance measuring device (versions) and device for realising said method (versions) | |
KR101870989B1 (en) | Optical system and interferometer having the same | |
US4865443A (en) | Optical inverse-square displacement sensor | |
JP2696117B2 (en) | Laser Doppler vibrometer using beam splitting optical system | |
JP3241857B2 (en) | Optical rangefinder | |
JPS6355035B2 (en) | ||
JP2765291B2 (en) | Laser radar device | |
JPH06501547A (en) | speedometer | |
JPS63196829A (en) | Method and apparatus for searching fault point of light waveguide | |
JPS5837496B2 (en) | Optical fiber length measurement method | |
JPS61178684A (en) | Optical range finder | |
JPH0481753B2 (en) | ||
JPS58151509A (en) | Optical measuring method of surface roughness | |
JPH05215839A (en) | Laser range finder | |
JPS6394188A (en) | Optical fiber utilizing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19961003 |