JPH06225480A - Superconducting power storage apparatus - Google Patents

Superconducting power storage apparatus

Info

Publication number
JPH06225480A
JPH06225480A JP5009622A JP962293A JPH06225480A JP H06225480 A JPH06225480 A JP H06225480A JP 5009622 A JP5009622 A JP 5009622A JP 962293 A JP962293 A JP 962293A JP H06225480 A JPH06225480 A JP H06225480A
Authority
JP
Japan
Prior art keywords
power
superconducting
regenerative
stored
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5009622A
Other languages
Japanese (ja)
Inventor
Toyofumi Momotake
豊文 百武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5009622A priority Critical patent/JPH06225480A/en
Publication of JPH06225480A publication Critical patent/JPH06225480A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To provide a superconducting power storage apparatus which suppresses a load fluctuation which is applied to a power system when a stored power is regenerated with a light failure mode as low as possible and eliminates harmful influences upon other users. CONSTITUTION:A superconducting coil 1, a converter 2 which is provided between the superconducting coil 1 and a power system and converts a DC power and outputs it as an AC power and a controller 10 which controls the power regeneration time, regenerated power or variation ratio of the regenerated power of the converter in accordance with an electric energy which is stored when the stored power of the superconducting coil is regenerated to the power system are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導コイルを用い電
力系統に連系して使用する電力貯蔵装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device which uses a superconducting coil and is connected to a power system.

【0002】[0002]

【従来の技術】近年の電力需要は年々増加する傾向にあ
る。日間の電力需要においても昼間のピーク電力が増加
し、時間帯別の需要は拡大する傾向にある。この対策と
して負荷平準化を行うために種々の電力貯蔵装置の開発
が進められている。この電力貯蔵装置の用途は設置する
電力系統及び装置自体の規模によって異なり、先に述べ
た負荷平準化以外に、電力を安定供給するための電力動
揺抑制、電圧変動抑制及び負荷変動補償(周波数変動抑
制)などの手段としても使用される。電力を貯蔵する手
段としては、超電導電力貯蔵、バッテリー貯蔵、圧縮空
気貯蔵及びフライホイール貯蔵などの研究開発が進めら
れている。
2. Description of the Related Art In recent years, electric power demand tends to increase year by year. Even in the daily power demand, the peak power during the daytime increases, and the demand for each hour tends to expand. As a countermeasure, various power storage devices are being developed in order to level the load. The application of this power storage device depends on the scale of the installed power system and the device itself. In addition to the load leveling described above, power fluctuation suppression, voltage fluctuation suppression, and load fluctuation compensation (frequency fluctuation) for stable power supply It is also used as a means such as suppression. As means for storing electric power, research and development such as superconducting power storage, battery storage, compressed air storage, and flywheel storage are under way.

【0003】図6に貯蔵設備として超電導コイルを用い
た超電導電力貯蔵装置の一構成例を示す。図6において
超電導コイル1は変換装置2を介して電力系統に接続さ
れている。交流側には変換装置2から出力される有効電
力と無効電力を検出するための計器用変圧器3と変流器
4が接続され、その出力は制御回路5に入力される。制
御回路5は計器用変圧器3及び変流器4の出力から有効
電力、無効電力を求め、この値を外部から与えられる有
効電力基準Pref 、無効電力基準Qref と比較し、その
偏差を演算した値を変換装置2の運転制御量として出力
する。
FIG. 6 shows a structural example of a superconducting power storage device using a superconducting coil as a storage facility. In FIG. 6, the superconducting coil 1 is connected to the power system via the converter 2. On the AC side, an instrument transformer 3 and a current transformer 4 for detecting active power and reactive power output from the conversion device 2 are connected, and the output thereof is input to the control circuit 5. The control circuit 5 obtains active power and reactive power from the outputs of the instrument transformer 3 and the current transformer 4, compares these values with externally applied active power reference Pref and reactive power reference Qref, and calculates the deviation thereof. The value is output as the operation control amount of the converter 2.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
超電導電力貯蔵装置では、異常が起きたときに超電導コ
イルに貯蔵されているエネルギー(貯蔵電力)の処理が
問題となる。
By the way, in such a superconducting power storage device, there is a problem in processing energy (stored power) stored in the superconducting coil when an abnormality occurs.

【0005】例えば、超電導コイルが常電導転移するな
ど重度の異常が発生した場合の重故障モードでは、超電
導コイルと並列に設けられた減衰抵抗6によって貯蔵電
力を減衰させた後、装置を停止する。また、緊急を要し
ない比較的軽度の異常が生じた場合の軽故障モードで
は、貯蔵電力を電力系統に回生した後、装置を停止する
方法が考えられている。しかし、軽故障モードによる貯
蔵電力の回生は電力系統に対して擾乱(負荷変動)を与
える要因となる。この負荷変動は、電力系統の周波数変
動に直接影響するため、負荷変動が電力系統の許容範囲
を超えると他の需要家に対しても悪影響を及ぼすことに
なる。
For example, in a serious failure mode when a serious abnormality such as a superconducting coil undergoes a normal conduction transition, the storage power is attenuated by a damping resistor 6 provided in parallel with the superconducting coil, and then the apparatus is stopped. . Further, in the light failure mode when a relatively light abnormality that does not require an emergency occurs, a method is considered in which the device is stopped after the stored power is regenerated to the power system. However, the regeneration of the stored power in the light failure mode causes a disturbance (load fluctuation) in the power system. Since this load fluctuation directly affects the frequency fluctuation of the power system, if the load fluctuation exceeds the allowable range of the power system, it will adversely affect other customers.

【0006】そこで、本発明の目的は、軽故障モードで
貯蔵電力を回生する際に電力系統に与える負荷変動を極
力抑え、他の需要家に悪影響を及ぼすことのない超電導
電力貯蔵装置を提供することにある。
[0006] Therefore, an object of the present invention is to provide a superconducting power storage device that suppresses the load fluctuation applied to the power system when regenerating the stored power in the light failure mode and does not adversely affect other consumers. Especially.

【0007】[0007]

【課題を解決するための手段】本発明による超電導電力
貯蔵装置は上記の目的を達成するために、軽故障モード
時に回生時間、回生電力、回生電力の変化率などを制御
する機能を備えた構成とする。
In order to achieve the above object, a superconducting power storage device according to the present invention is configured to have a function of controlling regenerative time, regenerative power, a rate of change of regenerative power, etc. in a light failure mode. And

【0008】[0008]

【作用】本発明によれば、超電導コイルから回生する貯
蔵電力の回生時間、回生電力もしくは回生電力の変化率
を制御することによって、電力系統への負荷変動を最小
限に抑えた回生運転が可能となり、他の需要家に及ぼす
影響がなくなる。
According to the present invention, by controlling the regenerative time of the stored power regenerated from the superconducting coil, the regenerative power, or the rate of change of the regenerative power, regenerative operation can be performed while minimizing load fluctuations on the power system. Therefore, it will not affect other customers.

【0009】[0009]

【実施例】以下本発明の超電導電力貯蔵装置の一実施例
を図1及び図5を参照して説明する。図1において図6
と同じ部分には同一符号をつけてその説明は省略する。
図1で図6と異なる点は、制御回路10の内部に、直流
電流を検出する変流器11からの出力を基に貯蔵電力を
演算する演算部12と演算部12からの出力を受けて回
生電力(または回生時間)を制御する制御器13を備え
たことである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the superconducting power storage device of the present invention will be described below with reference to FIGS. 6 in FIG.
The same parts as those in FIG.
1 is different from FIG. 6 in that the control circuit 10 receives an output from the arithmetic unit 12 and an arithmetic unit 12 that calculates the stored power based on the output from the current transformer 11 that detects a direct current. That is, the controller 13 for controlling the regenerative electric power (or the regenerative time) is provided.

【0010】図5は電力系統の一般的な負荷変動に対す
る制御分担特性を示したものである。負荷変動はいくつ
かの変動成分が重畳していると考えられ、この負荷変動
を吸収する電力系統側の分担を表している。この図から
判るように負荷変動が大きいほど、変動時間が長くなけ
れば、系統では負荷変動を吸収できない。言い換えれ
ば、負荷変動と変動時間の関係を図5に示されたカーブ
よりも下側になるように抑えればその電力系統では負荷
変動を全て吸収することが可能になる。
FIG. 5 shows a control sharing characteristic with respect to a general load fluctuation of the power system. It is considered that some fluctuation components are superposed on the load fluctuation, and the power system side shares the load fluctuation. As can be seen from this figure, as the load fluctuation increases, the load fluctuation cannot be absorbed by the system unless the fluctuation time is long. In other words, if the relationship between the load fluctuation and the fluctuation time is suppressed so as to be below the curve shown in FIG. 5, the load fluctuation can be completely absorbed in the power system.

【0011】制御器13は電力系統のもつ制御分担特性
を考慮し、電力系統が吸収し得る範囲内で貯蔵電力を回
生するよう回生時間(または回生電力)を制御する。例
えば、ある直流電力を貯蔵している状態で貯蔵電力を回
生するとき、回生時間が短く(回生電力が大きく)なる
と、貯蔵電力(J)=回生電力(W)×回生時間(s)
の関係より、回生電力は大きく(回生時間は短く)な
り、回生に伴う負荷変動を系統で吸収できず結果的に周
波数が上がり、他の需要家にも悪影響を及ぼす。一方、
回生時間を十分に長く(回生電力を小さく)すれば、回
生に伴う負荷変動は系統で吸収でき、問題となる周波数
変動は起こらない。ここで、貯蔵電力と回生時間(また
は回生電力)との対応は超電導電力貯蔵装置を設置する
上位系統の制御分担特性と貯蔵装置が許容し得る回生時
間を考慮して任意に設定されるものである。また、軽故
障時に貯蔵装置が許容し得る回生時間が故障項目によっ
て大きく異なる場合には、故障項目に対応して最大回生
時間を選択する機能をもたせればより細かな制御が可能
となる。
The controller 13 controls the regeneration time (or regenerative power) so that the stored power is regenerated within a range that the power system can absorb, in consideration of the control sharing characteristic of the power system. For example, when the stored power is regenerated in the state where it is stored, if the regenerated time becomes short (the regenerated power is large), the stored power (J) = regenerative power (W) × regeneration time (s)
Therefore, the regenerative power becomes large (regeneration time is short), the load fluctuation due to regeneration cannot be absorbed by the system, and the frequency rises as a result, which adversely affects other consumers. on the other hand,
If the regeneration time is sufficiently long (regeneration power is small), load fluctuations due to regeneration can be absorbed by the system, and no problematic frequency fluctuations will occur. Here, the correspondence between the stored power and the regenerative time (or regenerative power) is arbitrarily set in consideration of the control sharing characteristic of the upper system in which the superconducting power storage device is installed and the regenerative time that the storage device can tolerate. is there. Further, when the regenerative time that the storage device can tolerate during a minor failure differs greatly depending on the failure item, it is possible to perform finer control by providing a function of selecting the maximum regeneration time in accordance with the failure item.

【0012】なお、図1に示した実施例では回生時間を
決めるための諸量として、直流電流から貯蔵電力を演算
しその値を利用しているが、回生時における系統周波数
変動分を検出しその値を利用してもほぼ同様の効果が期
待できる。 [他の実施例1]
In the embodiment shown in FIG. 1, the stored electric power is calculated from the direct current and used as the quantity for determining the regenerative time. However, the fluctuation of the system frequency during regeneration is detected. Almost the same effect can be expected by using that value. [Other Embodiment 1]

【0013】以下本発明の超電導電力貯蔵装置の他の実
施例1を図2及び図5を参照して説明する。図2におい
て図6と同じ部分には同一符号をつけてその説明は省略
する。図2で図6と異なる点は、制御回路20の内部に
回生電力の変化率を制御する制御器21を備えたことで
ある。
Another embodiment 1 of the superconducting power storage device of the present invention will be described below with reference to FIGS. 2 and 5. 2, the same parts as those in FIG. 6 are designated by the same reference numerals and the description thereof will be omitted. The difference between FIG. 2 and FIG. 6 is that the control circuit 20 is provided with a controller 21 for controlling the rate of change of regenerative power.

【0014】貯蔵電力を回生するとき、系統が回生電力
(=負荷変動)を吸収する上で最も厳しいのは回生電力
が急激に変化する部分(立ち上がりと立ち下がり部分)
であり、この部分の回生電力の変化率はできるだけ緩や
かにすることが望ましい。
When the stored power is regenerated, the most severe point for the system to absorb the regenerated power (= load fluctuation) is the portion where the regenerated power changes abruptly (rise and fall portions).
Therefore, it is desirable that the rate of change in regenerative power in this portion be as gentle as possible.

【0015】負荷変動と変動時間の関係が図5に示され
たカーブよりも下側にくるよう制御すれば、系統側で負
荷変動を全て吸収できることは既に述べたが、回生電力
の変化率はこの負荷変動と変動時間の関係(図3のカー
ブ)に相当する。したがって、回生電力の変化率を超電
導電力貯蔵装置を設置する上位系統の制御分担特性を考
慮し、系統が吸収し得る範囲内(許容範囲内)に収まる
ように制御すれば、周波数変動も起こらず他の需要家に
悪影響を及ぼすこともない。 [他の実施例2]
It has already been described that the load fluctuation can be absorbed on the system side by controlling so that the relationship between the load fluctuation and the fluctuation time is below the curve shown in FIG. This corresponds to the relationship between the load fluctuation and the fluctuation time (curve in FIG. 3). Therefore, if the rate of change of regenerative power is controlled so that it falls within the range that can be absorbed by the system (within the allowable range) in consideration of the control sharing characteristic of the upper system where the superconducting power storage device is installed, frequency fluctuations will not occur. It will not adversely affect other customers. [Other Embodiment 2]

【0016】以下本発明の超電導電力貯蔵装置の他の実
施例2を図3及び図4を参照して説明する。図3は回生
電力の変化率を制御する手段として制御回路30の内部
に制御ループを切り換える切換器31と遅れ要素32と
を備えた構成とする。切換器31は軽故障モードによる
電力回生指令の有無に応じて制御ループを切り換える機
能を有する。軽故障モードによる電力回生指令がある場
合は制御ループ(2)を介して変換装置の運転制御量を
決定する。制御ループ(2)に設けられた遅れ要素32
は回生電力の変化率(立ち上がりと立ち下がり部分)を
緩やかに抑えるように作用する。遅れ要素32を介する
場合と介さない場合の運転制御量の相違を図4に示す。
図4から判るように遅れ要素を介することによって回生
電力の立ち上がりと立ち下がり部分は緩やかに抑えられ
る。ここで遅れ要素の定数は超電導電力貯蔵装置を設置
する上位系統の制御分担特性を考慮して設定すれば、電
力回生に伴う負荷変動を系統が吸収し得る範囲内(許容
範囲内)に収めることが可能となり、周波数変動も起こ
らず他の需要家に悪影響を及ぼすこともない。
Another embodiment 2 of the superconducting power storage device of the present invention will be described below with reference to FIGS. 3 and 4. In FIG. 3, a switch 31 for switching a control loop and a delay element 32 are provided inside the control circuit 30 as means for controlling the rate of change of regenerative power. The switch 31 has a function of switching the control loop according to the presence or absence of a power regeneration command in the light failure mode. When there is a power regeneration command in the light failure mode, the operation control amount of the converter is determined via the control loop (2). Delay element 32 provided in the control loop (2)
Acts to gently suppress the rate of change in regenerative power (rise and fall portions). FIG. 4 shows the difference in the operation control amount with and without the delay element 32.
As can be seen from FIG. 4, the rising and falling portions of the regenerative power can be gently suppressed by interposing the delay element. Here, if the constant of the delay element is set in consideration of the control sharing characteristic of the upper system where the superconducting power storage device is installed, it should be within the range (within the allowable range) in which the system can absorb the load fluctuation due to power regeneration. This makes it possible to prevent frequency fluctuations and adversely affect other consumers.

【0017】[0017]

【発明の効果】本発明によれば、超電導コイルからの電
力の回生時間や電力の変化率を制御できるので、回生に
伴う負荷変動を電力系統の許容範囲内に抑えることがで
き、他の需要家に悪影響を及ぼすことのない超電導電力
貯蔵装置を提供することができる。
According to the present invention, since the regeneration time of the electric power from the superconducting coil and the rate of change of the electric power can be controlled, the load fluctuation due to the regeneration can be suppressed within the allowable range of the power system, and other demands can be satisfied. It is possible to provide a superconducting power storage device that does not adversely affect the house.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の超電導電力貯蔵装置を示す構
成図
FIG. 1 is a configuration diagram showing a superconducting power storage device according to an embodiment of the present invention.

【図2】本発明の他の実施例1の超電導電力貯蔵装置を
示す構成図
FIG. 2 is a configuration diagram showing a superconducting power storage device of another embodiment 1 of the present invention.

【図3】本発明の他の実施例2の制御回路の要部を示す
構成図
FIG. 3 is a configuration diagram showing a main part of a control circuit according to a second embodiment of the present invention.

【図4】本発明の他の実施例2の遅れ要素の機能を示す
概念図
FIG. 4 is a conceptual diagram showing a function of a delay element according to another embodiment 2 of the present invention.

【図5】負荷変動に対する電力系統の制御分担を表す図FIG. 5 is a diagram showing control sharing of the power system with respect to load fluctuations.

【図6】従来の超電導電力貯蔵装置を示す構成図FIG. 6 is a configuration diagram showing a conventional superconducting power storage device.

【符号の説明】[Explanation of symbols]

1…超電導コイル 2…変換装置 3…計器用変圧器 4…変流器 5,10,20,30…制御回路 6…減衰抵抗 11…変流器 12…貯蔵電力演算部 13…回生時間(回生電力)制御器 21…回生電力変化率制御器 31…切換部 32…遅れ要素 1 ... Superconducting coil 2 ... Converter 3 ... Instrument transformer 4 ... Current transformer 5, 10, 20, 30 ... Control circuit 6 ... Damping resistance 11 ... Current transformer 12 ... Storage power calculation unit 13 ... Regeneration time (regeneration) Electric power) controller 21 ... Regenerative power change rate controller 31 ... Switching unit 32 ... Delay element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイルと、この超電導コイルと電
力系統との間に介在し直流電力を交流電力として出力す
る変換装置と、超電導コイルの貯蔵電力を系統へ回生す
る際に貯蔵されている電力量に応じて前記変換装置によ
る電力の回生時間を制御する制御回路とを備えたことを
特徴とする超電導電力貯蔵装置。
1. A superconducting coil, a converter which is interposed between the superconducting coil and the power system and outputs DC power as AC power, and electric power stored when the stored power of the superconducting coil is regenerated to the system. A superconducting power storage device, comprising: a control circuit for controlling a regeneration time of electric power by the conversion device according to an amount.
【請求項2】 制御回路は超電導コイルに貯蔵されてい
る電力量に応じて回生電力を制御することを特徴とする
請求項1記載の超電導電力貯蔵装置。
2. The superconducting power storage device according to claim 1, wherein the control circuit controls the regenerative electric power according to the amount of electric power stored in the superconducting coil.
【請求項3】 制御回路は超電導コイルからの回生電力
の変化率を制御することを特徴とする請求項1記載の超
電導電力貯蔵装置。
3. The superconducting power storage device according to claim 1, wherein the control circuit controls a rate of change of regenerative power from the superconducting coil.
【請求項4】 制御回路に超電導コイルからの回生電力
の変化率を緩やかに抑えるための遅れ要素を備えたこと
を特徴とする請求項1記載の超電導電力貯蔵装置。
4. The superconducting power storage device according to claim 1, wherein the control circuit is provided with a delay element for gently suppressing the rate of change of the regenerative power from the superconducting coil.
JP5009622A 1993-01-25 1993-01-25 Superconducting power storage apparatus Pending JPH06225480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5009622A JPH06225480A (en) 1993-01-25 1993-01-25 Superconducting power storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5009622A JPH06225480A (en) 1993-01-25 1993-01-25 Superconducting power storage apparatus

Publications (1)

Publication Number Publication Date
JPH06225480A true JPH06225480A (en) 1994-08-12

Family

ID=11725374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5009622A Pending JPH06225480A (en) 1993-01-25 1993-01-25 Superconducting power storage apparatus

Country Status (1)

Country Link
JP (1) JPH06225480A (en)

Similar Documents

Publication Publication Date Title
JPH0965588A (en) Electric power storage system
KR20120030556A (en) Controlling an inverter device of a high voltage dc system for supporting an ac system
JP2007129845A (en) Power quality maintaining controller
JPH02131329A (en) Reactive power compensator for power system
JPH07123609A (en) Feeding system for fuel cell
US5497069A (en) Shock load stabilization circuit and voltage regulator having same
JPH06225480A (en) Superconducting power storage apparatus
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JP2708246B2 (en) Control device for self-excited power converter
JP3058928B2 (en) Inverter device
JPH0731301Y2 (en) Controller for reactive power compensator
JPS61161999A (en) Excitation controlling method
JP3277660B2 (en) Power regeneration type inverter
JP2000245074A (en) Method for avoiding capacity decrease of battery
JPH0270261A (en) Dc chopper-type variable constant-voltage power supply
JPH0538055A (en) Power supply
JPS6130416Y2 (en)
JP2000050501A (en) Reactive power compensating device
JPS61156320A (en) Static reactive power compensator
JPS5989579A (en) Output power controller for inverter
JPH073801Y2 (en) Protection circuit for active filter
JPS60156228A (en) Power system stabilizer
JPS63148831A (en) Controller of stational reactive power compensator
JPH08163781A (en) Self-exciting reactive voltage compensator
JPH0515089A (en) Superconducting power storage device