JPH06224517A - Variable-wavelength semiconductor laser device - Google Patents

Variable-wavelength semiconductor laser device

Info

Publication number
JPH06224517A
JPH06224517A JP3260693A JP3260693A JPH06224517A JP H06224517 A JPH06224517 A JP H06224517A JP 3260693 A JP3260693 A JP 3260693A JP 3260693 A JP3260693 A JP 3260693A JP H06224517 A JPH06224517 A JP H06224517A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
light absorption
wavelength
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3260693A
Other languages
Japanese (ja)
Inventor
Seiji Nogiwa
誠二 野極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP3260693A priority Critical patent/JPH06224517A/en
Publication of JPH06224517A publication Critical patent/JPH06224517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor laser the wavelength of which can be changed in a wide range at a high speed. CONSTITUTION:Active semiconductor layers 1 are formed in such a way that the layers 1 are arranged in parallel with each other in the light guiding direction of the optical wave guide of a laser resonator and electric field impression upon semiconductor light absorption changing layers which are integrated on the same semiconductor substrate 8, generate optical gains when currents are injected, and are changed in light absorbing amount when electric fields are impressed is performed independently from the current injection into the layers 1. A distributed diffraction grating 5 which changes the refractive index of the layers 1 by changing the light absorption of the layers 1 by impressing electric fields and, in addition, performs distributed optical feedback for giving wavelength selecting properties to the layer 1 is provided in the light guiding direction inside the laser resonator and in parallel with the layers 1 and 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は光通信や光情報処理、
光計測等の分野において、小型の光源として使用できる
波長可変半導体レーザ装置についてのものであり、広い
波長範囲にわたって、連続かつ高速に波長可変制御する
ことができる半導体レーザ装置についてのものである。
This invention relates to optical communication, optical information processing,
The present invention relates to a wavelength tunable semiconductor laser device that can be used as a small light source in the field of optical measurement and the like, and to a semiconductor laser device that can perform wavelength tunable control continuously and at high speed over a wide wavelength range.

【0002】[0002]

【従来の技術】次に、従来の可変波長半導体レーザ装置
の構造例を図2、図3及び図4に示す。図2は分布反射
(DBR)型波長可変半導体レーザ装置であり、光利得
を生ずる活性導波路領域21と、伝搬光の位相を制御す
る位相調整導波路領域22と、レーザ光の波長を可変制
御する波長制御導波路領域23が、光導波方向に直列に
配置して構成されている。
2. Description of the Related Art Next, an example of the structure of a conventional tunable wavelength semiconductor laser device is shown in FIGS. FIG. 2 shows a distributed reflection (DBR) type wavelength tunable semiconductor laser device, which includes an active waveguide region 21 that produces an optical gain, a phase adjusting waveguide region 22 that controls the phase of propagating light, and a wavelength tunable control of laser light. The wavelength control waveguide region 23 is arranged in series in the optical waveguide direction.

【0003】図2の装置で、レーザ発振のための活性導
波路領域21への注入電流IA と独立して、位相調整導
波路領域22及び波長制御導波路領域23に電流IB お
よびIC を注入することにより、プラズマ効果で位相調
整導波路領域22及び波長制御導波路領域23の屈折率
が直接的に変化する。したがって、位相調整導波路領域
22及び波長制御導波路領域23それぞれの注入電流I
B およびIC を独立に制御することで、レーザ共振器の
等価屈折率neqが変化し、波長制御導波路領域23の回
折格子23Aの凹凸周期Λで決まるブラッグ波長λb =
2neq×Λと伝搬光の位相が変化し、発振波長が連続し
て変化する。
In the device of FIG. 2, the currents IB and IC are injected into the phase adjustment waveguide region 22 and the wavelength control waveguide region 23 independently of the injection current IA into the active waveguide region 21 for laser oscillation. As a result, the refractive index of the phase adjustment waveguide region 22 and the wavelength control waveguide region 23 directly changes due to the plasma effect. Therefore, the injection current I in each of the phase adjustment waveguide region 22 and the wavelength control waveguide region 23 is
By independently controlling B and IC, the equivalent refractive index neq of the laser resonator changes, and the Bragg wavelength λb = determined by the uneven period Λ of the diffraction grating 23A in the wavelength control waveguide region 23.
The phase of the propagating light changes to 2neq × Λ, and the oscillation wavelength changes continuously.

【0004】また、この種の類似レーザ装置で、位相調
整導波路領域22に電界を印加することで、フランツ−
ケルディッシュ効果あるいは量子閉じ込めシュタルク効
果の屈折率変化を利用し、位相調整導波路領域22の屈
折率を直接的に変化させ、発振波長を変化させるレーザ
装置も提案されている。これらのレーザ装置について
は、例えば、K.Kobayashi et al.,Lightwabe Technolog
y vol.6,No.11,pp1623-pp1633,1988やU.Koren et al.,a
ppl.Phys.Lett.,Vol.53,No.22,pp2132-pp2134,1988に詳
しく説明されている。
Further, in this type of similar laser device, an electric field is applied to the phase adjusting waveguide region 22 to obtain the Franz-
A laser device has also been proposed in which the refractive index of the phase adjustment waveguide region 22 is directly changed by utilizing the refractive index change of the Keldysh effect or the quantum confined Stark effect to change the oscillation wavelength. For these laser devices, see, for example, K. Kobayashi et al., Lightwabe Technolog.
y vol.6, No.11, pp1623-pp1633,1988 and U.Koren et al., a
ppl.Phys.Lett., Vol.53, No.22, pp2132-pp2134, 1988.

【0005】次に、二重導波路型波長可変半導体レーザ
装置の構成例を図3に示す。図3で、光利得を生ずる活
性領域31とレーザ光の波長を可変制御する波長制御領
域32が、レーザ共振器の光導波路内において光導波方
向に互いに平行に近接配置して構成されている。
Next, FIG. 3 shows an example of the structure of a double waveguide type wavelength tunable semiconductor laser device. In FIG. 3, an active region 31 that produces an optical gain and a wavelength control region 32 that variably controls the wavelength of laser light are arranged in the optical waveguide of the laser resonator in parallel with each other in the optical waveguide direction.

【0006】図3で、レーザ発振のための活性領域31
への注入電流と独立して、波長制御領域32に電流を注
入することにより、波長制御領域32のキャリア密度が
変化し、プラズマ効果によって波長制御領域32の屈折
率が直接的に変化する。したがって、レーザ共振器の等
価屈折率neqが変化し、共振器内に構成されている回折
格子33の凹凸周期Λで決まるブラッグ波長λb が変化
し、発振波長が連続して変化する。このレーザ装置につ
いては、例えば、特開平3ー87086 号公報に詳しく説明さ
れている。
In FIG. 3, the active region 31 for laser oscillation is shown.
By injecting a current into the wavelength control region 32 independently of the injection current into the wavelength control region 32, the carrier density of the wavelength control region 32 changes, and the refractive index of the wavelength control region 32 directly changes due to the plasma effect. Therefore, the equivalent refractive index neq of the laser resonator changes, the Bragg wavelength λb determined by the uneven period Λ of the diffraction grating 33 formed in the resonator changes, and the oscillation wavelength changes continuously. This laser device is described in detail, for example, in Japanese Patent Laid-Open No. 3-87086.

【0007】次に、分布帰還(DFB)型波長可変半導
体レーザ装置の構成を図4に示す。図4は、DFBレー
ザの上部電極を複数に分割して構成されている。図4
で、上部の電極41と電極42から注入する電流を独立
に制御すると、共振器内の利得が部分的に変化し、活性
領域のキャリア密度が変化する。このためプラズマ効果
により活性領域の屈折率が変化し、従って、分布帰還の
ブラッグ波長が変化し、発振波長が連続して変化する。
このレーザ装置については、例えば、Y.Yoshikuni et a
l.,Electron.Lett.,Vol.22,No.22,pp1153-pp1154,1986
に詳しく説明されている。
Next, FIG. 4 shows the configuration of a distributed feedback (DFB) type wavelength tunable semiconductor laser device. In FIG. 4, the upper electrode of the DFB laser is divided into a plurality of parts. Figure 4
When the current injected from the upper electrode 41 and the electrode 42 is controlled independently, the gain in the resonator partially changes, and the carrier density in the active region changes. Therefore, the refractive index of the active region changes due to the plasma effect, so that the Bragg wavelength of distributed feedback changes, and the oscillation wavelength continuously changes.
Regarding this laser device, for example, Y. Yoshikuni et a
l., Electron. Lett., Vol. 22, No. 22, pp1153-pp1154, 1986
Are described in detail in.

【0008】[0008]

【発明が解決しようとする課題】しかし、図2及び図3
に示した波長可変半導体レーザ装置は、波長可変の機構
が波長制御領域の電流注入による波長制御領域のキャリ
ア密度の変化に基づいているために、その変化する最大
速度は波長制御領域のキャリア寿命で制限され、1〜3
ns程度である。
However, FIG. 2 and FIG.
In the wavelength tunable semiconductor laser device shown in Fig. 5, the wavelength tunable mechanism is based on the change in carrier density in the wavelength control region due to the current injection in the wavelength control region, so the maximum changing speed is the carrier lifetime in the wavelength control region. Limited, 1-3
It is about ns.

【0009】また、図2の位相調整導波路領域22の電
界印加よる波長可変半導体レーザ装置は、波長可変の機
構がフランツ−ケルディッシュ効果あるいは量子閉じ込
めシュタルク効果による位相調整導波路領域の屈折率変
化に基づいているため、0.1ps程度の高速波長可変は
可能であるが、屈折率の変化量が小さいことと、波長制
御領域の屈折率が変化できないため、広い波長範囲にわ
たって波長を可変することが困難である。
Further, in the wavelength tunable semiconductor laser device by applying an electric field in the phase adjustment waveguide region 22 of FIG. 2, the wavelength tunable mechanism is the Franz-Keldish effect or the quantum confined Stark effect to change the refractive index of the phase adjustment waveguide region. It is possible to tune the wavelength at a high speed of about 0.1 ps, but since the amount of change in the refractive index is small and the refractive index in the wavelength control region cannot be changed, the wavelength can be tuned over a wide wavelength range. Have difficulty.

【0010】図4の波長可変半導体レーザ装置は、波長
可変の機構が活性領域のキャリア密度の変化に基づいて
いる。その変化の最大速度は活性領域のキャリア寿命と
レーザ光の光子寿命によって決まり、20〜50ps程
度で比較的高速に変化する。しかし、活性領域のキャリ
ア密度の変化量が比較的小さいため、屈折率変化が小さ
く広い波長範囲にわたって波長を可変することが困難で
ある。
In the wavelength tunable semiconductor laser device of FIG. 4, the wavelength tunable mechanism is based on a change in carrier density in the active region. The maximum rate of change depends on the carrier life of the active region and the photon life of the laser light, and changes relatively fast at about 20 to 50 ps. However, since the amount of change in carrier density in the active region is relatively small, the change in refractive index is small and it is difficult to change the wavelength over a wide wavelength range.

【0011】[0011]

【課題を解決するための手段】この目的を達成するた
め、この発明では、レーザ共振器の光導波路内に、導波
路方向に互いに平行に近接配置して形成し、共通の半導
体基板8上に集積され、電流注入により光利得を生ずる
半導体活性層1と、電界印加によって光吸収量が変化す
る半導体光吸収変化層2を備え、半導体光吸収変化層2
は半導体活性層1の電流注入とは独立に電界印加を行
い、電界印加による光吸収の変化から半導体活性層1の
屈折率を変化させる。さらに、波長選択性を持たせるた
めの光分布帰還を行う分布回折格子5をレーザ共振器内
の光導波方向に、半導体活性層1及び半導体光吸収変化
層2と平行して備える。
In order to achieve this object, according to the present invention, they are formed in an optical waveguide of a laser resonator so as to be arranged close to each other in parallel with each other in the waveguide direction, and are formed on a common semiconductor substrate 8. The semiconductor light absorption change layer 2 includes a semiconductor active layer 1 which is integrated and produces an optical gain by current injection, and a semiconductor light absorption change layer 2 whose light absorption amount is changed by application of an electric field.
The electric field is applied independently of the current injection into the semiconductor active layer 1, and the refractive index of the semiconductor active layer 1 is changed due to the change in light absorption due to the applied electric field. Further, a distributed diffraction grating 5 for performing distributed light feedback for providing wavelength selectivity is provided in parallel with the semiconductor active layer 1 and the semiconductor light absorption change layer 2 in the optical waveguide direction in the laser resonator.

【0012】[0012]

【作用】この発明の波長可変の機構を述べると以下のよ
うに説明できる。まず、フランツ−ケルディッシュ効果
あるいは量子閉じ込めシュタルク効果による吸収変化を
用いて、半導体光吸収変化領域の光吸収を変化させ、こ
れに伴いレーザ共振器内の損失を変化させる。従って、
半導体レーザ共振器しきいキャリア密度が変化する。
The wavelength tunable mechanism of the present invention can be described as follows. First, the absorption change due to the Franz-Keldish effect or the quantum confined Stark effect is used to change the optical absorption in the semiconductor optical absorption change region, and the loss in the laser resonator is changed accordingly. Therefore,
The semiconductor carrier cavity threshold carrier density changes.

【0013】半導体活性領域のキャリア密度は、レーザ
発振状態ではしきい値キャリア密度に保たれるので、損
失変化によってしきいキャリア密度が変化し、そのため
半導体活性領域のキャリア密度が同様に変化し、プラズ
マ効果により半導体活性領域の屈折率が変化する。従っ
て、レーザ共振器の等価屈折率が変化し、発振波長が変
化する。
Since the carrier density of the semiconductor active region is kept at the threshold carrier density in the laser oscillation state, the threshold carrier density changes due to the loss change, and thus the carrier density of the semiconductor active region also changes. The plasma effect changes the refractive index of the semiconductor active region. Therefore, the equivalent refractive index of the laser resonator changes, and the oscillation wavelength changes.

【0014】これより、波長変化の最大速度は、半導体
活性領域のキャリア密度の変化速度で決まるため、図4
の波長可変半導体レーザ装置と同様に高速性が得られ
る。また、最大波長可変量はレーザ共振器内の損失変化
量と半導体活性領域のキャリア密度−利得特性によって
決まる。従って、半導体光吸収変化領域には吸収変化が
大きく、半導体活性領域にはキャリア密度の利得依存性
が大きい媒質(例えば多重量子井戸)を用いることによ
り比較的大きい波長可変量が可能となる。
From this, the maximum rate of wavelength change is determined by the rate of change of carrier density in the semiconductor active region.
High speed can be obtained similarly to the wavelength tunable semiconductor laser device. Further, the maximum wavelength tunable amount is determined by the loss variation amount in the laser resonator and the carrier density-gain characteristic of the semiconductor active region. Therefore, a relatively large wavelength tunable amount can be achieved by using a medium (for example, multiple quantum well) in which the semiconductor light absorption change region has a large absorption change and the semiconductor active region has a large gain dependency of carrier density.

【0015】[0015]

【実施例】次に、この発明による波長可変半導体レーザ
装置の実施例の構成を図1に示す。図1は波長可変半導
体レーザ装置の斜視図であり、内部構造を示すために一
部を切り欠いて示している。図1で、半導体基板8上に
クラッド層11を形成する。半導体基板8は、たとえば
InPにより構成され、クラッド層11もInPにより
構成される。クラッド層11中には、クラッド層11と
異なる導電型かあるいは絶縁性のInPにより構成され
る電流阻止層7が、光導波路部分となる領域を除いて構
成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, FIG. 1 shows the configuration of an embodiment of a wavelength tunable semiconductor laser device according to the present invention. FIG. 1 is a perspective view of a wavelength tunable semiconductor laser device, with a part cut away to show the internal structure. In FIG. 1, the clad layer 11 is formed on the semiconductor substrate 8. The semiconductor substrate 8 is made of, for example, InP, and the cladding layer 11 is also made of InP. In the clad layer 11, a current blocking layer 7 made of InP having a conductivity type different from that of the clad layer 11 or an insulating property is formed except for a region serving as an optical waveguide portion.

【0016】クラッド層11上に、波長選択性をもたら
せるための分布回折格子5を、レーザ光伝搬方向に光導
波路層4で構成する。光導波路層4は、例えばInGa
AsPで構成する。光導波路層4上に、活性層1と中間
分離層3と光吸収変化層2とクラッド層9を順に積層し
ている。活性層1は、例えばInGaAs/InGaA
sPの多層薄膜により構成され、多重量子井戸構造によ
るバンドギャップエネルギがEgである。中間分離層3
は透明な、例えばInPにより構成される。光吸収変化
層2は、例えば、InGaAs/InGaAsPの多層
薄膜からなる多重量子井戸構造によって構成される。ク
ラッド層9は、例えばInPにより構成される。
A distributed diffraction grating 5 for providing wavelength selectivity is formed on the clad layer 11 by the optical waveguide layer 4 in the laser light propagation direction. The optical waveguide layer 4 is made of, for example, InGa.
It is composed of AsP. On the optical waveguide layer 4, the active layer 1, the intermediate separation layer 3, the light absorption change layer 2 and the cladding layer 9 are laminated in this order. The active layer 1 is, for example, InGaAs / InGaA.
The band gap energy of the multi-quantum well structure is Eg, which is composed of a multilayer thin film of sP. Intermediate separation layer 3
Is transparent, for example, composed of InP. The light absorption change layer 2 is composed of, for example, a multi-quantum well structure composed of InGaAs / InGaAsP multilayer thin films. The cladding layer 9 is made of, for example, InP.

【0017】この積層半導体で、レーザ共振器を形成す
る中央部のみをレーザ光の伝搬方向に残し、上層部をク
ラッド層11上部まで除去し、共通電極取り出し層6を
積層する。共通電極取り出し層6は、中間分離層3と同
じ導電型の活性層1及び光吸収変化層2よりバンドギャ
ップエネルギが大きい、たとえばInPのような半導体
を用いる。
In this laminated semiconductor, only the central portion forming the laser resonator is left in the propagation direction of the laser light, the upper layer portion is removed to the upper portion of the cladding layer 11, and the common electrode extraction layer 6 is laminated. The common electrode extraction layer 6 uses a semiconductor such as InP having a bandgap energy larger than that of the active layer 1 and the light absorption change layer 2 of the same conductivity type as the intermediate separation layer 3.

【0018】さらに、クラッド層9と同じ組成のクラッ
ド層10を、クラッド層9の上部に、同じ幅かあるいは
クラッド層9より左右を幅広く積層する。つぎに、クラ
ッド層10の上部に、オーミック抵抗を低くするための
電極形成用低抵抗層12を積層する。電極形成用低抵抗
層12は、例えばInGaAsにより形成される。この
状態で、レーザ駆動電極13を半導体基板8の下部に形
成し、また、光吸収変化用の電界印加電極15を電極形
成用低抵抗層12の上部に形成する。さらに、共通電極
取り出し層6の上部に、共通電極16をそれぞれ対向し
て形成する。
Further, a clad layer 10 having the same composition as the clad layer 9 is laminated on the clad layer 9 with the same width or wider than the clad layer 9 on the left and right sides. Next, the electrode forming low resistance layer 12 for lowering the ohmic resistance is laminated on the cladding layer 10. The electrode forming low resistance layer 12 is formed of, for example, InGaAs. In this state, the laser driving electrode 13 is formed below the semiconductor substrate 8, and the electric field applying electrode 15 for changing the light absorption is formed above the electrode forming low resistance layer 12. Further, the common electrodes 16 are formed on the common electrode extraction layer 6 so as to face each other.

【0019】なお、図1では、素子容量の低減や電界印
加電極15と共通電極16を分離しやすくするために例
えばSiO2の絶縁層14を設けている。また、活性層
1と光吸収変化層2の位置関係は中間分離層3を中心に
上下逆転しても良い。
In FIG. 1, an insulating layer 14 of, for example, SiO 2 is provided in order to reduce the element capacitance and facilitate the separation of the electric field applying electrode 15 and the common electrode 16. The positional relationship between the active layer 1 and the light absorption change layer 2 may be reversed upside down around the intermediate separation layer 3.

【0020】光利得を生ずる活性領域の部分と光吸収変
化を生ずる吸収変化領域の部分は、効率よく電流注入あ
るいは電界印加を行うために半導体PN接合とする必要
があるので、クラッド層9、クラッド層10及び電極形
成用低抵抗層12をP型半導体とした場合には、中間分
離層3及び共通電極取り出し層6はN型半導体とする必
要があり、これに対して、半導体基板8及びクラッド層
11はP型半導体で、電流阻止層7はN型半導体あるい
は絶縁性半導体にする必要がある。
The active region portion which produces optical gain and the absorption change region portion which produces optical absorption change must be semiconductor PN junctions for efficient current injection or electric field application. When the layer 10 and the electrode-forming low resistance layer 12 are P-type semiconductors, the intermediate separation layer 3 and the common electrode extraction layer 6 must be N-type semiconductors. The layer 11 must be a P-type semiconductor and the current blocking layer 7 must be an N-type semiconductor or an insulating semiconductor.

【0021】この状態において、活性層1に注入される
電流の経路は、レーザ駆動電極13から電流が注入さ
れ、半導体基板8およびクラッド層11を通り、電流阻
止層7により活性層1付近に電流を集中させ、活性層
1、中間分離層3、共通電極取り出し層6の順に流れ、
共通電極16で取り出される。このとき、PN接合のあ
る活性層1では、発光再結合が起こり、レーザ共振器内
の光利得が光損失とつり合うとレーザ発振を起こす。
In this state, a current is injected from the laser driving electrode 13 into the path of the current injected into the active layer 1, passes through the semiconductor substrate 8 and the clad layer 11, and passes through the current blocking layer 7 in the vicinity of the active layer 1. Flow in the order of the active layer 1, the intermediate separation layer 3, and the common electrode extraction layer 6,
It is taken out by the common electrode 16. At this time, radiative recombination occurs in the active layer 1 having the PN junction, and laser oscillation occurs when the optical gain in the laser resonator is balanced with the optical loss.

【0022】これに対し、共通電極16を電界印加電極
15より高い電圧に印加すると、共通電極取り出し層6
及び中間分離層3とクラッド層9、クラッド層10及び
電極形成用低抵抗層12を介して、光吸収変化層2のP
N接合部に逆バイアスが加わり、光吸収変化層2に集中
して電界が印加される。また、活性層1で発生したレー
ザ光は屈折率の高い活性層1、光吸収変化層2及び光導
波路層4付近に分布して導波する。
On the other hand, when the common electrode 16 is applied with a voltage higher than that of the electric field applying electrode 15, the common electrode take-out layer 6
The intermediate absorption layer 3, the clad layer 9, the clad layer 10, and the electrode-forming low resistance layer 12 are used to interpose P of the light absorption change layer 2.
A reverse bias is applied to the N-junction, and an electric field is applied to the light absorption change layer 2 in a concentrated manner. Further, the laser light generated in the active layer 1 is distributed and guided in the vicinity of the active layer 1, the light absorption change layer 2, and the optical waveguide layer 4, which have a high refractive index.

【0023】なお、図1に示した積層構造半導体は、活
性層1及び光吸収変化層2にInGaAs/InGaA
sPの多層薄膜による多重量子井戸構造を用いた場合の
例であるが、活性層1と光吸収変化層2が同等のバンド
ギャップエネルギの半導体かあるいは光吸収変化層2が
活性層1よりバンドギャップエネルギが大きい半導体
で、他の半導体層よりバンドギャップエネルギが小さけ
れば、別の半導体層であっても良い。また、各層半導体
の導電型の設定はそれぞれ反転させても良い。さらに、
光導波路層4及び分布回折格子5が活性層1の下部に配
置されているが、活性層1の上部や光吸収変化層2の上
部、あるいは光吸収変化層2の下部などレーザ光の光透
過領域における光の伝搬方向に沿って配置されればかま
わない。
In the laminated structure semiconductor shown in FIG. 1, the active layer 1 and the light absorption change layer 2 are made of InGaAs / InGaA.
This is an example of the case of using a multiple quantum well structure using a multilayer thin film of sP. The active layer 1 and the light absorption change layer 2 are semiconductors having the same bandgap energy, or the light absorption change layer 2 has a bandgap more than the active layer 1. Another semiconductor layer may be used as long as the semiconductor has a large energy and the band gap energy is smaller than that of the other semiconductor layers. The conductivity type settings of each layer semiconductor may be reversed. further,
Although the optical waveguide layer 4 and the distributed diffraction grating 5 are disposed under the active layer 1, the optical transmission of the laser light such as the upper part of the active layer 1, the upper part of the light absorption change layer 2 or the lower part of the light absorption change layer 2 is performed. It does not matter if they are arranged along the light propagation direction in the region.

【0024】[0024]

【発明の効果】この発明によれば、光利得を生ずる活性
領域の屈折率を、レーザ共振器内に設けた光吸収変化領
域の電界印加による吸収変化から可変するため、高速で
波長を可変することができるとともに、広帯域の波長領
域を可変することができる。
According to the present invention, since the refractive index of the active region which causes optical gain is changed from the absorption change of the optical absorption change region provided in the laser resonator due to the electric field application, the wavelength can be changed at high speed. It is possible to change the wavelength range of the wide band.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による波長可変半導体レーザ装置の実
施例の構造を示す斜視図である。
FIG. 1 is a perspective view showing the structure of an embodiment of a wavelength tunable semiconductor laser device according to the present invention.

【図2】従来技術による分布反射型波長可変半導体レー
ザ装置の構成図である。
FIG. 2 is a configuration diagram of a distributed reflection type wavelength tunable semiconductor laser device according to a conventional technique.

【図3】従来技術による二重導波路型波長可変半導体レ
ーザ装置の構成図である。
FIG. 3 is a configuration diagram of a double waveguide type wavelength tunable semiconductor laser device according to a conventional technique.

【図4】従来技術による分布帰還型波長可変半導体レー
ザ装置の断面図である。
FIG. 4 is a cross-sectional view of a distributed feedback type wavelength tunable semiconductor laser device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 活性層 2 光吸収変化層 3 中間分離層 4 光導波路層 5 分布回折格子 6 共通電極取り出し層 7 電流阻止層 8 半導体基板 9、10、11 クラッド層 12 電極形成用低抵抗層 13 レーザ駆動電極 14 絶縁層 15 電界印加電極 16 共通電極 1 Active Layer 2 Optical Absorption Change Layer 3 Intermediate Separation Layer 4 Optical Waveguide Layer 5 Distributed Grating 6 Common Electrode Extraction Layer 7 Current Blocking Layer 8 Semiconductor Substrate 9, 10, 11 Clad Layer 12 Low Resistance Layer for Electrode 13 Laser Drive Electrode 14 insulating layer 15 electric field applying electrode 16 common electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ共振器の光導波路内に、導波路方
向に互いに平行に近接配置して形成し、共通の半導体基
板(8) 上に集積され、電流注入により光利得を生ずる半
導体活性層(1) と、電界印加によって光吸収量が変化す
る半導体光吸収変化層(2) を備え、 半導体光吸収変化層(2) は半導体活性層(1) の電流注入
とは独立に電界印加を行い、電界印加による光吸収の変
化から半導体活性層(1) の屈折率を変化させ、レーザ光
の波長を可変することを特徴とする波長可変半導体レー
ザ装置。
1. A semiconductor active layer, which is formed in an optical waveguide of a laser resonator so as to be arranged in parallel and close to each other in the waveguide direction and is integrated on a common semiconductor substrate (8) to generate an optical gain by current injection. (1) and a semiconductor light absorption change layer (2) whose light absorption amount is changed by applying an electric field.The semiconductor light absorption change layer (2) is applied with an electric field independently of the current injection of the semiconductor active layer (1). The wavelength tunable semiconductor laser device is characterized in that the wavelength of the laser light is changed by changing the refractive index of the semiconductor active layer (1) based on the change of light absorption by applying an electric field.
【請求項2】 レーザ共振器の光導波路内に、導波路方
向に互いに平行に近接配置して形成し、共通の半導体基
板(8) 上に集積され、電流注入により光利得を生ずる半
導体活性層(1) と、電界印加によって光吸収量が変化す
る半導体光吸収変化層(2) を備え、 半導体光吸収変化層(2) は半導体活性層(1) の電流注入
とは独立に電界印加を行い、電界印加による光吸収の変
化から半導体活性層(1) の屈折率を変化させるととも
に、波長選択性を持たせるための光分布帰還を行う分布
回折格子(5) をレーザ共振器内の光導波方向に、半導体
活性層(1) 及び半導体光吸収変化層(2) と平行して備
え、レーザ光の波長を可変することを特徴とする波長可
変半導体レーザ装置。
2. A semiconductor active layer, which is formed in an optical waveguide of a laser resonator so as to be arranged in parallel and close to each other in the waveguide direction, integrated on a common semiconductor substrate (8), and which produces an optical gain by current injection. (1) and a semiconductor light absorption change layer (2) whose light absorption amount is changed by applying an electric field.The semiconductor light absorption change layer (2) is applied with an electric field independently of the current injection of the semiconductor active layer (1). Then, the refractive index of the semiconductor active layer (1) is changed from the change of light absorption due to the application of an electric field, and a distributed diffraction grating (5) that performs optical distributed feedback for wavelength selectivity is provided in the laser resonator. A wavelength tunable semiconductor laser device comprising a semiconductor active layer (1) and a semiconductor light absorption change layer (2) arranged in the wave direction in parallel with each other to change the wavelength of laser light.
JP3260693A 1993-01-28 1993-01-28 Variable-wavelength semiconductor laser device Pending JPH06224517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260693A JPH06224517A (en) 1993-01-28 1993-01-28 Variable-wavelength semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260693A JPH06224517A (en) 1993-01-28 1993-01-28 Variable-wavelength semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH06224517A true JPH06224517A (en) 1994-08-12

Family

ID=12363522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260693A Pending JPH06224517A (en) 1993-01-28 1993-01-28 Variable-wavelength semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH06224517A (en)

Similar Documents

Publication Publication Date Title
US5491710A (en) Strain-compensated multiple quantum well laser structures
EP0390167B1 (en) Semiconductor laser device having plurality of layers for emitting lights of different wavelengths and method of driving the same
JP3195159B2 (en) Optical semiconductor device
JPH0770791B2 (en) Semiconductor laser and manufacturing method thereof
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
Yu Theoretical analysis of polarization bistability in vertical cavity surface emitting semiconductor lasers
EP0935319B1 (en) Surface-emitting laser device
JPH04291304A (en) Optical waveguide and control method for light signal
US5912475A (en) Optical semiconductor device with InP
JPH01319986A (en) Semiconductor laser device
US6643309B1 (en) Semiconductor laser device
JPH07231132A (en) Semiconductor optical device
JPH06224517A (en) Variable-wavelength semiconductor laser device
JPS60189981A (en) Single-axial mode semiconductor laser
JP2528886B2 (en) Semiconductor light emitting device
JP3196958B2 (en) Modulator integrated semiconductor laser
JPH06177481A (en) Semiconductor laser device
JP2776381B2 (en) Semiconductor laser device
JPH04280490A (en) Semiconductor laser equipment
JPH03240285A (en) Bistable semiconductor laser
JPH06204620A (en) Semiconductor integrated laser device
JP2903322B2 (en) Semiconductor integrated laser
JP2596329B2 (en) Tunable semiconductor laser
JP2004119459A (en) Optical module and semiconductor optical device
JP2013077645A (en) Semiconductor laser and control method of the same